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Abstract

Air Force Instruction 91-203 (AFI 91-203) directs that a lightning warning be
issued when lightning is occurring or imminent within a 5 nautical mile (NM) radius
of a predetermined location or activity. The 45 Weather Squadron (WS), located
on the central eastern coast of Florida, balances the safety of personnel and space
launch vehicles with lost productivity of taking shelter from lightning. The primary
objective of this study investigates if this 5 NM safety radius can be reduced while
maintaining a desired level of safety. The research uses processed Lightning Detection
and Ranging (LDAR) data to map the movement of preexisting lightning storms using
ellipses, which are updated with every lightning flash. A systematic recording ensues
for the distance from the ellipse boundary of each flash occurring outside the ellipse.
All of those exterior flash distances are then used to find the best-fit distribution
from which the stand-off distance for the desired level of safety can be calculated.
The distances from the edge of the ellipse are fit to a Weibull distribution and a new
warning distance of 4 NM is selected as the most appropriate distance to balance
safety and increase productivity. The 4 NM radius is tested with a resulting failure
rate of .277%, with a savings of 22.5 8-hour man days a year for the months of May
through September.

iv
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MODELING THE DISTRIBUTION OF LIGHTNING STRIKE

DISTANCES OUTSIDE A PREEXISTING LIGHTNING AREA

I. Introduction

1.1 Background

Lightning is one of the most powerful and frequent natural phenomena that poses

a risk to everyday life. Historical data reports that on average there are 50 lightning

strikes on earth in a single second, leading to more than eight million strikes per day

(Kalair et al., 2013). Particularly concerning to the safety of human life, equipment,

and machines is the appearance of cloud-to-ground (CG) lightning which represents

the greatest threat to life and property (Shivalli, 2016). Due to the severe danger

lightning presents for both personnel and equipment, the Air Force (AF) and its

civilian counterparts continually look to find the ideal balance between safety and

productivity.

Located on the central eastern coast of Florida, the 45th Weather Squadron (45

WS) provides weather services to Cape Canaveral Air Force Station (CCAFS), the

Kennedy Space Center (KSC), and Patrick Air Force Base (PAFB). The forecasts,

weather warnings, watches, and advisories delivered by the 45 WS provide weather

safety for over 25,000 personnel and over $20 Billion of resources to include facili-

ties, boosters, and payloads (Roeder et al., 2017). While an ideal location for mis-

sion requirements, the severity and frequency of the weather patterns in this region

have earned it the reputation as the thunderstorm capital of the United States (US)

(Roeder et al., 2017). The more than 2,500 lightning watches and warnings per year

1



delivered by the 45 WS result in false alarms 40% of the time leading to many de-

layed or canceled launches (NASA Facts, 2006). These numbers, coupled with noted

discrepancies between the process of issuing lightning watches and warnings and tech-

niques applied in previous studies, suggest that the current 5 nautical miles (NM)

safety standard set by the Air Force Instruction 91-203 (AFI 91-203) may be reduced

to a distance that would incur fewer losses in man-hours while still maintaining the

necessary level of safety (Department of the Air Force, 2012).

1.2 Problem Statement

The two primary lightning advisories issued by the 45 WS are lightning watches

and lightning warnings. Lightning watches are issued when lightning is expected

within the lightning warning circle(s) with a desired lead-time of 30 minutes and the

upgrade to lightning warning occurs when lightning is imminent or occurring within

the lightning warning circle(s) (Roeder et al., 2017). Currently 10 lightning warning

circles exist to protect the personnel and equipment responsible for the various mis-

sions associated with the 45 WS. The radii of the warning circles vary between 5 NM

for the protection of single small facilities, and 6 NM for larger facilities or a grouping

of several closely located smaller facilities (Roeder et al., 2017).

Prior research on the appropriate distance of these safety buffers has been con-

ducted in an attempt to optimize the balance between safety and operational impact.

Parsons (2000) noted as motivation for her thesis nearly two decades ago that the

lightning safety standards, the same 5 NM distance, resulted as an arbitrary response

to lightning incidents which induced an increase in the warning distance until an

appropriate balance between threat and impact was achieved. Thus, earlier research

served to fill a considerable void by providing support to the 5 NM criterion for light-

ning warning that was previously unsubstantiated. However, weather experts at the

2



45 WS have found that a discrepancy still exists with the method of issuance of their

lightning warnings and how past research determined the optimal stand-off distance.

Past studies that helped to solidify the AFI 91-203 safety standards of a 5 NM

warning buffer utilized techniques that determined CG lightning strike distances orig-

inating from a storm’s center; yet, the lightning warning process employed by the 45

WS is based on the edge of the lightning area (Roeder et al., 2017). Because of this

difference, the 45 WS lightning warnings incorporate not only the required 5 NM

radii, but also includes the radius of the lightning area which ranges anywhere from

3-7 NM (Roeder, 2008). While this extra distance does not impinge on the safety

concerns of lightning warnings as it allows for a greater safety buffer, it does have a

negative effect on productivity. The 45 WS acknowledges that because the “opera-

tional impact of the lightning warning circles is proportional to the area of the circle

and thus scales as the square of the radius, even a relatively small reduction in the

size of the warning circle can yield a large reduction in lost work time” (Roeder et

al., 2017:8). In order to reduce the area of the warning circles, the 45 WS determined

that research is required that examines the total lightning strike distances beyond the

edge of a preexisting lightning area.

The primary objective of this thesis is to determine the appropriate stand-off dis-

tance from the edge of a preexisting lightning area for the desired level of safety. The

overall process through which this is accomplished relies on using processed Lightning

Detection and Ranging (LDAR) data to map the movement of preexisting lightning

areas using ellipses which are updated with every lightning flash. A systematic record-

ing ensues for the distance of each flash occurring outside the ellipse. All of those

exterior flash distances are then used to find the best-fit distribution, potentially an

extreme value distribution, from which the stand-off distance for the desired level of

safety can be calculated. Though the primary consideration for this thesis is that of a
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preexisting area of lightning approaching the 45 WS warning circles, an investigation

of locally developing lightning, before a lightning area has formed, also presents as a

topic of interest.

Because of rapid storm development in central Florida, often enough time does

not always exist in order to generate a lightning warning with 30 minutes of lead time

before the formation of a storm in the immediate local area. Therefore, a secondary

purpose of this research, accomplished in conjunction with the previously outlined

process, lies in documenting the displacement and distribution of the early flashes in

a developing storm. The goal being to verify the current notion that early flashes tend

to occur close to the storm’s origin. Because the earlier outlined best-fit distribution

is determined based on potentially greater distances from the origin of the lightning

area than those found in a developing storm, the findings from the primary objective

will satisfy the safety requirements necessary for those locally developing lightning

storms as well. Corroborating the concept that initial flashes occur close to the storm

origin will substantiate the current processes that dictate the issuance of lightning

watches when preexisting lightning areas are absent.

Thus, we frame the primary research question: what is the shortest approximate

distance from the edge of a preexisting lightning area that incorporates both the nec-

essary safety requirements and risk of being struck? A secondary question being

addressed considers: what is the mean distance from the center of the initial flashes

of lightning in a developing thunderstorm? As a byproduct of answering these two

questions, underlying questions will also be undertaken that consider the distributions

regarding the number of flashes in a storm and the size of the preexisting lightning

area as to aid in the justification of any changes that are made to the lightning

warning circles.
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1.3 Thesis Organization

The overall organization of the remaining chapters of this thesis have the following

layout. Chapter II provides a review of the literature pertaining to the background

of relevant lightning research as well as the potential statistical methods applied

to the primary research problem. This includes an extensive look into best ellipse

fitting routines, prospective extreme value distributions that may be applicable, and

Goodness-of-Fit (GoF) testing techniques. In Chapter III those statistical methods

introduced in Chapter II are developed and outlined with respect to the research

questions. Chapter IV consists of a formal presentation of the results and analysis.

Lastly, Chapter V gives a conclusion to the research with recommendations on further

areas of study. All relevant acronyms introduced throughout this paper can be found

in Appendix A.
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II. Literature Review

2.1 Overview

This section covers a broad range of topics to include the general scientific descrip-

tion of a lightning strike, current lightning safety standards, previous research on the

topic, current prediction methods, ellipse fitting routines, potential distributions for

the distance lightning strikes outside a preexisting lightning area, and GoF testing.

2.2 The Lightning Flash

Scientists have studied the phenomenon of lightning in great detail throughout

history. While advances in technology have significantly aided such endeavors, much

about the true nature of lightning remains unknown. For the purpose of this study,

this section contains a brief review of the more widely accepted scientific findings

regarding lightning. All relevant information in this section originates from Dwyer

and Uman (2014).

When the necessary physical properties to produce lightning exist, the idealized

primary charge structure of an isolated, mature thundercloud consists of many tens

of Coulombs of positive charge in its upper portions and a more or less equal negative

charge in its lower levels. Often a smaller portion of the cloud, underneath the

negatively charged section, exists as another positively charged section. A depiction

of this cloud structure can be seen in Figure 1. Also seen in Figure 1 are the various

types of lightning discharges that occur.

Generally the lightning events separate naturally into two categories, those flashes

that connect with the ground, and those that do not. A lightning discharge that

strikes the ground is known as CG lightning and will be the primary focus of this

research. Lightning discharges that do not strike the ground are considered in-cloud
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lightning, and based on the dispatched location, divide into intracloud, intercloud,

and cloud-to-air lightning as depicted in Figure 1. The terms lightning event, lightning

discharge, lightning flash, lightning strike, lightning stroke and lightning will be used

interchangeably throughout the remainder of the thesis to describe both CG lightning

and in-cloud lightning.

Figure 1: Charge Structure of Two Thunderclouds

Within CG lightning, there are four types that can be seen in Figure 2. The

primary differences between the four forms lie in the sign of the electrical charge

carried in the initial “leader” and by the direction of propagation of that leader.

Negative CG lightning flashes portrayed in Figure 2a result from the lowering of

a negative charge from the negatively charged portion of the cloud to the ground.

About 90% of CG flashes are negative downward strokes; whereas close to 10% of CG

lightning flashes originate from the positively charged region of the cloud resulting in

a positively charged downward stroke as seen in Figure 2c.

The other portion of CG lightning in Figure 2b and 2d, technically ground-to-cloud

lightning, are relatively uncommon and are upward initiated from mountaintops, tall

man-made towers, or other tall objects, towards the cloud charge regions.
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Figure 2: Four Types of CG Lightning Flashes

Given the varying types of CG lightning, the development of a lightning strike is

introduced in terms of the negative CG flash as this is the most frequent manifestation;

illustrations of the entire process can found in Appendix B. The negative charge of a

CG lightning strike exhibits as an electrical discharge known as a step leader which

moves downward from cloud to ground in discrete segments. After approaching the

ground, the large negative charge attracts a positive charge from the Earth’s surface,

and, when the electric field intensity near the ground from these charges becomes large

enough, upward-going, positively-charged electrical discharges from the ground or

from grounded objects will be initiated. When the two charges connect, the downward
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step leader and the upward charge, the lightning strike point is determined as well as

the primary channel of strike between cloud and ground. This initial process, known

as the first return stroke, may conclude the lightning flash if sufficient negative charge

does not exist in the upper portion of the previous stroke channel within about 100

ms from the cessation of the current of the previous stroke. Nearly 80% of negative

CG flashes in temperate regions will have more than one stroke, typically three to

five.

If adequate negative residual charge does exist, another charge leader, known

as the dart leader, travels down the return stroke channel with a negative charge,

providing the necessary electricity for any subsequent return strokes. Because of the

formation of new paths to the ground achieved by the dart leaders, a large portion

of all CG lightning strikes hit the Earth in different locations. With this process in

mind, we next consider the safety standards set forth to protect life and property

from the damaging effects of lightning.

2.2.1 Safe Distance Criterion

In January of 1998 during the American Meteorological Society’s (AMS) Annual

Meeting, a Lightning Safety Group (LSG) met to discuss the inconsistent lightning

safety sanctions as well as new developments in lightning knowledge (Holle et al.,

1999). Referencing advances in the understanding of thunderstorm behavior discov-

ered by López and Holle (1999), the meeting resulted principally in the creation of the

30-30 rule (Holle et al., 1999). Now the standard recommendation in lightning safety

adhered to by agencies such as the Center for Disease Control (CDC), National Aero-

nautics and Space Administration (NASA), National Weather Service (NWS), and

the Occupational Safety and Health Administration (OSHA), the 30-30 rule provides

safety guidance for both the onset and cessation of lightning.
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The first 30 of the 30-30 rule refers to the number of seconds between a lightning

flash and the subsequent sound of thunder. Every five seconds of time lapse between

the lightning flash and the following thunder clap indicates a mile of distance from the

actual strike. Based on their findings of the distance subsequent flashes of lightning

can travel, López and Holle (1999) suggested 6-8 statute miles (M) was a safer distance

for resigning outdoor activities from the previous 2-3 M, which lead to the creation

of the first half of the 30-30 rule by the LSG (Holle et al., 1999). Thus, standard

guidance suggests suspending outdoor activities when lightning occurs within 6 M

(5.21386 NM), that is, when the time measurement between flash and thunder reaches

30 seconds or less. The second 30 of the rule references the number of minutes to

wait from the last lightning flash or thunder to give a clearance to resume outdoor

activities. Although the creation of the AF lightning guidance does not have as

defined a lineage, the practices follow a similar pattern.

During the same time frame, the AF also sought to update lightning safety stan-

dards based on research studies. The lightning strike and subsequent death of an

airman in 1996 at Hurlburt Field prompted the beginning of the investigation and

resulted in several studies, which are outlined in the next section, on the distance CG

lightning can travel (Cox, 1999). After these studies, which used different techniques,

provided similar results on lightning strike distance, the AF safety standard settled

on 5 NM as the radius of optimum safety.

As previously mentioned, the 45 WS bases their weather watches and warnings on

the broader AF safety regulation, AFI 91-203 which states that for any predesignated

locations or activities, a lightning watch is in effect 30 minutes prior to a thunder-

storm being within a 5 NM radius (Department of the Air Force, 2012). A lightning

watch does not constitute a halt in activities but paves the way for the official light-

ning warning. A lightning warning goes into effect once lightning occurs within a 5
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NM radius of predetermined locations and activities and mandates that personnel in

affected locations or engaged in affected activities disengage from outdoor activity

and seek shelter (Department of the Air Force, 2012).

Cessation of AF lightning warnings follows similar protocols to the second half

of the 30-30 rule with the exception that a cancellation of a lightning warning does

not occur if the potential exists for follow-on lightning activity to transpire within 30

minutes (Department of the Air Force, 2012). The current standards have had the

desired effect in regards to maintaining the safety of AF life and property. However,

the methods used in the studies that helped to form the regulations, described in

the following section, do not concur with the issuance processes that result in actual

watches and warnings, leading to the primary purpose of this research.

2.3 Previous Research

In past research, several different techniques have been used to determine the hor-

izontal strike distance of CG lightning. These methods include the Weather Surveil-

lance Radar - 88 Delta (WSR-88D) storm centroid, Distance Between Successive

Flash (DBSF), and a LDAR and National Lightning Detection Network (NLDN)

data pairing method.

2.3.1 WSR-88D Storm Centroid Method

The first of these techniques, the WSR-88D storm centroid, uses the National

Severe Storms Laboratory (NSSL) Storm Cell Identification and Tracking (SCIT) al-

gorithm and the WSR-88D storm series algorithm (Parsons, 2000). Once a storm

centroid has been identified via the algorithm, the second step of the process su-

perimposes the lightning strike data and calculates the horizontal distance between

lightning strike and storm centroid. Used in several studies, this method provided
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an initial answer to the question of how far horizontally a CG lightning strike travels

but neglected the concept of storm origin as no true positive identification could be

made in reference to which thunderstorm the lightning strike actually originated.

Cox (1999) employed the WSR-88D storm centroid method using Build 10.0 of

WSR-88D Algorithm Testing and Display System (WATADS) and compared it to

the DBSF method for two months worth of data, April and July of 1996. Results for

the WSR-88D portion of Cox’s analysis returned, for the months of April and July

respectively, 39% and 32% of lightning strikes occurring at a distance greater than 5

NM. Conducted a year earlier in 1998 by Renner, a similar study using Build 9.0 of

WATADS for the same time frame, showed 75% of all lightning flashes were within

10 NM for April, and 85% to 90% were within 10 NM for July. As well as presenting

a difficulty with identifying storm origin for each lightning strike, Cox (1999) noted

that the WSR-88D method required an extreme amount of time and disk space to

process the data.

2.3.2 DBSF Method

The second method, DBSF, relies on NLDN data and groups strikes as clusters

based on spatial and temporal criteria. Different studies determined varying time and

spatial constraints on the grouping process. Once grouped, a lightning centroid calcu-

lation ensues by taking the mean distance of each flash in the cluster. Subsequently,

the distance of each strike results from the distance an individual strike occurs from

that centroid. One issue discovered with this method lay in the number of isolated

flashes that appeared; an isolated flash refers to one that has no assigned cluster as no

other flashes met the spatial and temporal criteria to constitute a grouping. Another

concern, the same as the primary concern with the WSR-88D method, is that the

true origin of the flash could not be identified by this method.
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Earlier referenced as the study that drove the 30-30 rule, López and Holle (1999)

employed the DBSF algorithm grouping flashes with the constraint that successive

flashes occur within five minutes and no more than 15 kilometers (KM) apart. As

previously mentioned, this study resulted in an updated assessment that to ensure

adequate personal safety, outdoor activity should desist at a distance of 6 M from the

last lightning strike. Cox (1999) applied the DBSF method in conjunction with the

WSR-88D method with the constraint of grouping clusters based on flashes falling

within either 6 minutes of time from the first flash of the group and within a distance

of 15 KM. Providing similar results to the WSR-88D method, Cox (1999) found that

34.41% of strikes for the April data fell beyond the 5 NM safety distance and 18.04%

of July’s strike data had the same result.

By far the most comprehensive study to date conducted using the DBSF method,

Parsons (2000) focused on reducing the number of isolated flashes by increasing the

clustering criteria to 15 minutes and 17 KM apart. The data used spanned from

1995 to 1999 and covered nearly the entire continental United States; defined for the

study, six regions separated this area and analysis ensued for each region. Specifically,

Region Five included the central eastern coast of Florida. Besides increasing the

amount of time and distance criteria that determined flash clustering, this study

included the isolated flashes in the analysis and found that in Region Five particularly,

“the probability of an isolated flash striking an exact location does not drop below

5% until 19 KM for the isolated flashes” (Parsons, 2000:45). Each region produced

similar results in regards to the clustered strikes as well; reports for Region Five found

that lightning occurred at distances greater than 5 NM between 21% and 32% of the

time.
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2.3.3 LDAR and NLDN Pairing Method

To correct for the issue of storm origin discussed in the previous two methods,

McNamara (2002) utilized a method of pairing flashified LDAR data with the ground

strike data provided by NLDN. The process begins by taking LDAR data, which

is described in further detail in a later section, and using a flash-grouping program

to group the LDAR data points into flashes. To include data points in a flash, the

program detects if a flash falls within a 3 second window from the time of the first

data point in the flash. Another requirement of a data point being included in a

flash is that it must fall within 0.5 seconds of the previous data point in the flash.

A distance limit also factors into the determination of whether or not a data point

belongs to a specific lightning flash. Once flash grouping concludes, the procedure of

branch grouping begins. Branch data points fall within .03 seconds of each other and

also rely on similar spatial constraints as those set for the flash grouping.

After all LDAR data has been processed, the pairing of LDAR flashes to NLDN

strike locations begins. To pair origin and strike data, the process uses an Interactive

Data Language (IDL) program that compares NLDN strike locations and the timing

and location of the flashified LDAR data. Again, time and spatial constraints played

a role in the pairing as a flash is only be considered as the origin of the ground

stroke if the LDAR data point occurs within 1 second and 50 KM of the NLDN

detected ground strike. After identifying the flash that produced the ground strike,

the program proceeded to calculate the horizontal distance of the strike from the

origin.

The data were analyzed both as a whole and seasonally. The seasonal analysis

included a breakdown of the data by months, creating the four seasons, Summer, Fall,

Winter, and Spring. Binning the data based on distances, a frequency distribution was

created to display the number of all the flashes occurring at each distance. McNamara
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(2002) included in the study over one and a half million lightning strokes during

the period of March 1997 to December 2000. Evaluating the data in its entirety

produced 28.4% of strikes extending beyond 5 NM (McNamara, 2002). The seasonal

data produced anywhere from 18.7% to 38.5% of strikes occurring outside the 5 NM

distance. Thus, along with the other studies by Cox (1999) and Parsons (2000) who

sought specifically to verify the AF’s 5 NM lightning standards, McNamara (2002)

concluded that a high percentage of strikes occur at distances greater than 5 NM.

While limitations also existed with McNamara’s (2002) research as some assump-

tions made could potentially have lead to very conservative estimates of the true

horizontal distance CG lightning travels, his research filled a considerable hole in

regards to determining the origin of a lightning strike in conjunction with its strike

location. However, all of the studies outlined looked at determining the distance

lightning strikes travel from storm origin when actual forecasting methods execute

watches and warnings based on the edge of the storm or preexisting lightning area.

2.3.4 Current Methods of Lightning Strike Prediction

Several methods of lightning strike prediction exist in the meteorological com-

munity. The majority rely on radar and local sensors, when available, to detect

the physical characteristics associated with active or developing thunderstorms. His-

torical data plays an important role as factors observed during previous lightning

events have been studied to detect the exact environment or conditions that gen-

erate lightning capable clouds. Private companies in particular strive to be on the

cutting edge of lightning prediction techniques, primarily due to the extreme danger

lightning presents to life and property and the monetary opportunities that danger

imposes. However, government and research based organizations also continuously

look to improve upon current methods.
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Many existing detection systems commercially available attempt to determine the

path of lightning by tracking previous strikes with NLDN data or by measuring elec-

trical activity in the atmosphere in a specific location. One company, WeatherData,

Inc., patented a lightning detection system that uses “an algorithm which analyzes

radar data to locate areas where cloud tops extend above a predetermined temper-

ature threshold and have sufficient radar reflectivity” (WeatherData, Inc., 2018:1).

This leads to detecting cloud particles with higher electrical charge, indicating the

likelihood of lightning. Other studies have looked to create a set of forecast equa-

tions designed to predict lightning strike by a statistical process that uses Principal

Component Analysis (PCA) with logistic regression (Bothwell and Richardson, 2014).

Regardless of the studies that exist, very few weather services or local weather fore-

casters provide lightning forecasts or warnings.

Researchers at the University of Oklahoma’s Cooperative Institute for Mesoscale

Meteorological Studies and the National Oceanic and Atmospheric Administration’s

(NOAA) NSSL perceived this absence and have developed a system that attempts to

bridge this gap (Calhoun et al., 2018). Essentially this model considers storm condi-

tions in the local area and uses historical data from past storms in a machine learning

random forest algorithm that generates a single probability of lightning. Trials have

been conducted with NWS forecasters, emergency managers, and broadcast meteo-

rologists in an effort to test the usability of the software; currently, the Graphical

User Interface (GUI) still requires further simplification to be considered an effective

lightning prediction tool.

Although the civilian market offers various techniques for lightning detection and

prediction, the military also boasts an array of cutting edge technology. Because

so many sensitive and expensive systems exist within the Department of Defense

(DoD), the military, and other government agencies, have consistently seen the need
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for lightning detection systems to protect both personnel and equipment. The 45 WS

in particular hosts one of the most advanced lightning detection systems in terms of

the shear number of sensors available for data collection. While the primary tool for

forecasting locally developing thunderstorms lies in traditional radar, the 45 WS has

also historically housed and currently maintains a series of detection tools to assist

in forecasting.

These tools include the LDAR system and the Cloud-to-Ground Lightning Surveil-

lance System (CGLSS) both utilized prior to 2008. Then during the period of

2008-2016, forecasters relied on the Four Dimensional Lightning Surveillance System

(4DLSS), which consisted of upgraded and combinatorial use of the LDAR network

and the CGLSS. Finally, most currently in use since 2016 is the Mesoscale Eastern

Range Lightning Information Network (MERLIN). The Launch Pad Lightning Warn-

ing System (LPLWS) and the NLDN also assist in lightning detection at the 45 WS.

These various technologies, combined with the two weather radar systems and satel-

lite imagery, allow forecasters to make the most informed decisions using forecaster

techniques known as The Pinder Principles (Roeder and Pinder, 1998). Based on The

Pinder Principles, several radar rules determine the issuance of lightning watches and

warnings. Phenomena concentrating on cloud and lightning type in conjunction with

temperature and elevation levels play a pivotal role as well as local convergence and

consequent convection (Roeder and Pinder, 1998).

Regardless of the technology or methods being applied to lightning forecasting,

an alignment of prediction techniques and the distance CG lightning travels proves

vital. All previous methods of determining the horizontal distance CG lightning

travels concentrated on the distance from the center of the storm. However, the

systems described in this section generate watches and warnings based on the edge of

the storm or preexisting lightning area. Therefore, this research seeks to resolve this
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discrepancy by applying a new technique that considers the distance lightning travels

from the boundary of the preexisting lightning area.

2.4 Lightning Data Source

We now turn to a brief review of the system from which the data for this study

is procured. Several references to the LDAR network have already been made. The

following section outlines the origin of the LDAR-I system and discusses the updates

made to that system to create the LDAR-II network that supplies the data for this

research.

2.4.1 Lightning Detection and Ranging (LDAR) System

Developed in 1971 by NASA engineer Carl Lennon and considered one of the first

operational systems for detecting in-cloud lightning, the LDAR system has served

the operational and research needs of KSC and CCAFS for over four decades (Starr

et al., 1998). The original LDAR-I system employed seven Very High Frequency

(VHF) radio receivers with 66-MHz central frequency and 6-MHz bandwidth, six of

the receiver stations surround one central site at distances ranging from 6 to 10 KM

(Starr et al., 1998).

When upgrades were made to the system to create the LDAR-II network in 2008,

the older receivers were replaced with nine LDAR-II sensors (Roeder, 2010). A de-

piction of the site locations for LDAR-II can be seen in Figure 3. Unless otherwise

cited, the remainder of the information about the LDAR data set in this section orig-

inates from Roeder (2010) and any use of the term LDAR going forward refers to the

LDAR-II system.

The LDAR system senses the radio pulses generated by lightning step leaders as

well as other in-cloud lightning mechanisms and operates by identifying the electro-
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magnetic pulses emitted by those lightning events. The difference in time-of-arrival

(TOA) of these radio pulses at pairs of LDAR-II sensors is used to calculate a hy-

perbolic volume. Then, the intersection of four different hyperbolae locates the step

leader in three dimensions. As the nine LDAR sensors provide numerous locations for

a single event, in order to produce a single 3-dimensional (3D) location and time of

each lightning strike, the best location of the step leader is procured using a statistical

Chi-Squared minimization technique.

Figure 3: LDAR-II Site Locations

An accuracy test conducted in 1995 of the legacy LDAR-I system found that when

fully operational, flash detection efficiency neared 100% and false alarm rates fell to

less than 1% (Mata and Wilson, 2012). In his 2010 review of the upgraded system,

Roeder confirms that the updated LDAR network’s performance exceeds its earlier

edition with a 140% increase in detection. As well as having excellent efficiency, the

LDAR system offers an indication of lightning activity 10 to 20 minutes earlier than

other systems. The data from LDAR also provides deeper knowledge into the origin
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of a lightning flash as it presents a 3D view of numerous data points (Britt et al.,

1998). These advantages to LDAR data as opposed to other systems serve as the

primary justification for using LDAR data in this study.

Several limitations to the LDAR system are important to note here. Primarily, the

LDAR system does not relay CG lightning strikes. The 4DLSS previously mentioned

as a tool for lightning detection by the 45 WS relies on the updated CGLSS portion to

provide actual CG strike locations. The second item of concern is the limiting factor

of location accuracy and detection rate as the radius of inclusion expands beyond

the central cluster of sensors. These decreases in detection rate and accuracy as the

radius expands can be seen in Figure 4 under the assumption that all nine sensors are

used in the solution. The first of these limitations will inform certain assumptions

made during the research process, while the second will help to inform the choices of

data reduction for this study.

Figure 4: Performance of LDAR across East Central Florida

2.5 Ellipse Fitting Methods

One aspect of this research includes defining a boundary around a preexisting

lightning area in order to characterize the edge of the storm from which a lightning

watch or warning is issued. This process is achieved using ellipses as the boundary.

In this section we outline the various parameterizations of ellipses and discuss three
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different fitting methods to include least squares best fit ellipses, PCA confidence

ellipses, and minimum area ellipses.

2.5.1 Ellipse Parameterizations

An ellipse is defined as the set of all points (x, y) in a plane, the sum of whose

distances from two distinct fixed points (foci) is constant. An ellipse has five param-

eters including the center coordinates, two semiaxes, and the tilt. In Figure 5 the left

image depicts the location of the foci of an ellipse, while the right image shows the

major and minor axes along with the center and two sets of vertices. The center is the

midpoint of the major axis and the minor axis is perpendicular to the major axis at

the center of an ellipse. Though not depicted in Figure 5, the tilt of an ellipse refers

to the rotation of an ellipse with respect to the X and Y axes of the coordinate plane.

The various algorithms used to fit ellipses often rely on different parameterizations of

an ellipse.

Figure 5: Components of an Ellipse

Van Loan (2006) describes the following parameterizations of an ellipse as well as

conversions from one form to the other. First, the conic representation of an ellipse

is defined as the set of points (x, y) that satisfy

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 (1)
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if B2− 4AC < 0. To avoid degenerate ellipses, it is also required that D2

4A
+ E2

4C
−F >

0. While the conic representation is useful, we primarily define ellipses using the

parametric form.

In its most basic form, the parametric representation consists of four of the five

parameters of an ellipse with center (h, k) and semiaxes a and b:

(
x− h
a

)2

+

(
y − k
b

)2

= 1 (2)

Equation 2 can also be written as the set of points (x(t), y(t)) where

x(t) = h+ a cos(t)

y(t) = k + b sin(t)

(3)

and 0 ≤ t ≤ 2π. To include the tilt of the ellipse in Equation 3, a counter-clockwise

rotation by τ radians takes the form:

x(t) = h+ cos(τ)[a cos(t)]− sin(τ)[b sin(t)]

y(t) = k + sin(τ)[a cos(t)] + cos(τ)[b sin(t)]

(4)

Thus, Equation 4 gives the parametric representation of an ellipse with all five pa-

rameters.

The last representation is the foci/string form. With two foci points F1 = (x1, y1)

and F2 = (x2, y2), let s be a positive number greater than the distance between them.

Then the set of points (x, y) that satisfy

√
(x− x1)2 + (y − y1)2 +

√
(x− x2)2 + (y − y2)2 = s (5)

defines an ellipse. Appendix C includes a table of these parameterizations as well as
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the various methods of conversion from one form to another. Now that the various

parameterizations of an ellipse have been defined, we turn to the different methods

of fitting ellipses.

2.5.2 Least Squares Best Fit Ellipses

Because of the various applications of pattern recognition to which the shape of an

ellipse can be applied, the process of finding a best fit ellipse has been widely studied.

The different approaches may be divided into two broad categories, often known as the

geometric and algebraic approaches. The geometric methods include the use of such

techniques as the Hough transform and fuzzy clustering; these methods are robust

to outliers but are slow and expensive computationally requiring large memory while

producing lower levels of accuracy (Haĺı̌r and Flusser, 1998). In contrast, the algebraic

methods are based on “optimization of an objective function which characterizes a

goodness of a particular ellipse with respect to the given set of data points”(Haĺı̌r and

Flusser, 1998:1). These algebraic methods provide greater speed and accuracy but

have a higher sensitivity to outliers than the geometric methods. The least squares

approach falls into the category of algebraic methods.

The premier work on the least squares approach from which more refined tech-

niques have developed was done by Fitzgibbon et al. (1996). For the purposes of

outlining the least squares best fit approach, we concentrate this section on the fit-

ting routine that became known as Fitzgibbon’s technique and reference the 1996

paper on the results of those efforts. Methods used prior to this technique for gen-

eral conic fitting, even for ellipse specific data, would often result in hyperbolas and

parabolas. Thus, the new method sought to apply a constraint to the general conic

fitting least squares approach that would force the resulting conic to be an ellipse.

The general conic least squares approach to fitting an ellipse begins by taking
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Equation 1 subject to the ellipse specific constraint

B2 − 4AC < 0 (6)

The polynomial form can be rewritten with vectors

a = [A,B,C,D,E, F ]T

x = [x2, xy, y2, x, y, 1]

(7)

in the vector form

Fa(x) = x · a = 0 (8)

For a general conic, fitting a set of points (xi, yi) for i = 1, ..., N to the given data

may then be achieved by minimizing the sum of squared algebraic distances of the

points to the conic which is represented by coefficients a:

min
a

N∑
i=1

F (xi, yi)
2 = min

a

N∑
i=1

(
Fa(xi)

)2
= min

a

N∑
i=1

(xi · a)2

(9)

Equation 9 can be solved by the standard least squares approach but the results

may not necessarily produce an ellipse. Therefore, a specific constraint is introduced

to ensure an ellipse-specific solution; that is, the inequality of Equation 6 becomes an

equality constraint

4AC −B2 = 1 (10)

Now the ellipse-specific fitting problem can be redefined as

min
a
||Da||2 subject to aTCa = 1 (11)
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The minimization problem from Equation 11 may now be solved by a quadratically

constrained least squares minimization. Applying the Lagrange multipliers gives the

system

Sa = λCa

aTCa = 1

(12)

where S = DTD. This system from Equation 12 can then be solved using generalized

eigenvectors where there exist up to six solutions. However, the overall solution is

chosen to yield the minimal positive eigenvalue. The design matrix D, constraint

matrix C, and scatter matrix S from this process can be seen in Appendix D. Figure

6 shows the results of employing Fitzgibbon’s method to fit an ellipse to a series of

lightning flashes. From Figure 6 we observe the fit of an ellipse to data points, where

by the least squares method, the distance from the edge of the ellipse to the points

is minimized. For all plots moving forward, including Figure 6, the X and Y axes

are the distance (KM) from the legacy central LDAR site located at (0,0). Another

relevant method that exists for fitting ellipses is the application of confidence ellipses

using PCA.
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Figure 6: Example of Least Squares Fitzgibbon Ellipse Specific Method
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2.5.3 PCA Confidence Ellipses

A commonly applied multivariate statistical tool, PCA seeks to determine the

principal components of a data set that explain the greatest amount of the total vari-

ation in the data. The first principal component extracted accounts for the largest

amount of the total variation in the data and “gives the direction in which the variance

of the data is maximal”(Wijewickrema and Papliński, 2004:1). The second principal

component, orthogonal to the first, “accounts for the maximum amount of the remain-

ing total variation not already accounted for by the first principal component”(Dillon

and Goldstein, 1984:25). Employing the concepts of PCA with the assumption of an

underlying multivariate normal distribution allows for the construction of confidence

ellipses around a given set of data points. The following outline of the application

of PCA to create confidence ellipses originates from the 2004 work of Wijewickrema

and Papliński.

We start with a set of data, X, which consists of n m-dimensional vectors

X =


x(1)

...

x(n)

 (13)

where x(k) = [x1(k)...xm(k)]. Because we are only working with 2D data, m = 2,

thus the matrix X is n× 2 and consists of the coordinates of all the points for which

we are trying to draw an ellipse. The covariance matrix S of the 2D vectors provides a

measure of the strength of the correlation between components and can be calculated

by

S =
1

n− 1
XT ·X (14)

We also note that S is a symmetrical positive-definite matrix and X is not a zero

matrix.
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Once the covariance matrix is obtained, we next find the eigenvectors v and cor-

responding eigenvalues λ such that

S · v = λ · v (15)

Since S is a positive definite matrix, S will only have real eigenvalues. Therefore, we

can use matrix decomposition on Equation 15 as follows

S · V = V · Λ, or S = V · Λ · V −1 (16)

where Λ is a diagonal matrix of eigenvalues and V is a matrix whose columns are

the corresponding eigenvectors. We also know that because the eigenvectors are

orthogonal to each other and are of unit length, the matrix of eigenvectors is an

orthogonal matrix, meaning we can rewrite Equation 16

S = V · Λ · V T (17)

From this process we construct the components of the confidence ellipse. The

center of the ellipse can be calculated as the mean of all the data points. We then take

the direction of eigenvector one, the first principal component, to be the major axis

of the ellipse and the direction of eigenvector two, the second principal component,

to be the minor axis of the ellipse. The lengths of the major and minor axes are then

determined by using the eigenvalues that correspond with the principal components

(eigenvectors), λ1 and λ2 respectively. The size of the ellipse will depend upon the

level of confidence desired where higher levels of confidence result in larger ellipses.

To calculate the lengths of the axes, ai, we use the following

ai =
√
z · λi i = 1, 2 (18)

where z is a z-score for a specified α level with m and n − m degrees of freedom.

Figure 7 gives a depiction of this method at varying levels of confidence on a series of
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lightning flashes. In Figure 7, each PCA ellipse is actually being drawn based on the

convex hull of the data points, the reasoning for this is discussed further in Chapter

III.

While PCA Ellipses may be effective given certain objectives, there often exists

the need to bound a set of points by the smallest possible ellipse. Although PCA

Ellipses may accomplish this bounding objective incidentally given a small enough α

value, a separate method exists dedicated entirely to this objective. Therefore, in the

next section we discuss the minimum area ellipse fitting method.
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Figure 7: PCA Confidence Ellipse Results for Varying Levels of α

2.5.4 Minimum Area Ellipses

Applicable to fields such as optimal design, computational geometry, convex op-

timization, computer graphics, pattern recognition, and statistics, the problem of

finding a minimum volume enclosing ellipsoid (MVEE) has been studied for decades

resulting in a variety of algorithms (Todd and Yildirim, 2007). These algorithms fall

into several categories including first-order algorithms, second-order interior-point al-
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gorithms, or combinations of these two types of algorithms. For the purposes of

this review, we focus our attention on the overall optimization problem of defining

a MVEE and an example of one specific algorithmic implementation, the Khachiyan

algorithm. The following outline originates from an overview of the Khachiyan algo-

rithm by Todd and Yildirim (2007).

First, we introduce the notation and formulation of the problem. A full-dimensional

ellipsoid EQ,c in Rd is specified by a d × d symmetric positive definite matrix Q and

a center c ∈ Rd represented by

EQ,c = {x ∈ Rd : (x− c)TQ(x− c) ≤ 1} (19)

The volume of the ellipsoid EQ,c, denoted by Vol(EQ,c), is given by Vol(EQ,c) =

ρ det Q−1/2, where ρ is the volume of the unit ball in Rd. We then define the scaled

volume by

Vol(EQ,c) := det Q−1/2 (20)

Now, let A := {a1, ..., am} ⊂ Rd be a finite set of vectors whose affine hull is Rd. We

will assume A is centrally symmetric for the sake of simplicity but note that there is

a lifting operation defined by Todd and Yildirim (2007) to induce central symmetry

when A is not centrally symmetric.

As we are assuming A is centrally symmetric, then MVEE(A ) is centered at

the origin. If A ⊂ EQ,c where c 6= 0, then A ⊂ E(1/θ)Q,0, where θ := 1 − cTQc < 1,

which implies that the latter ellipsoid has a smaller volume by Equation 20. Thus, the

problem of computing MVEE(A ) can be defined as the following convex optimization

problem (
P(A )

)
minM − log det M

s.t. (qi)TMqi ≤ 1, i = 1, ...,m,

M ∈ Rn×n is symmetric and positive definite

(21)
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where M ∈ Rn×n is the decision variable. The Khachiyan algorithm focuses on the

Lagrangian dual of
(
P(A )

)
which is equivalent to

(
D(A )

)
maxp φ(p) := log det Λ(p)

s.t. eTp = 1,

p ≥ 0

(22)

where p ∈ Rm is the decision variable and Λ : Rm → Rn×n is the linear operator given

by

Λ(p) :=
m∑
i=1

piq
i(qi)T (23)

The Khachiyan algorithm seeks a minimum-volume ellipsoid containing L :=

conv{±q1, ...,±qm}. However, since it is a dual algorithm, it constructs a sequence

of ellipsoids Ek := {y ∈ Rn : yTΛ(pk)−1y ≤ 1} satisfying Ek ⊆ L and stops when

L ⊆
√

(1 + ε)nEk, that is when a pre-specified tolerance is reached. An example of

an execution of the Khachiyan algorithm with a tolerance of .01 can be seen in Figure

8.

From Figure 8 we see the implementation of a 2-Dimensional (2D) MVEE where

the ellipse is the smallest ellipse enclosing a given series of lightning flashes. A careful

examination of Figure 8 yields the discovery that several data points fall outside the

MVEE; this is due to the specific tolerance of .01 used when running the algorithm. A

smaller tolerance would increase the accuracy of the algorithm at the cost of increasing

the computational speed of the algorithm. Further justification for the selection of a

.01 tolerance is given in Chapter III.

Because of certain limitations of the first two methods discussed, we choose to in-

corporate the latter method. Although we are only working with 2D data, minimum

area ellipses will continue to be referred to throughout the rest of this text as MVEE
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as the generalized concept for multidimensional use, whether 2D or greater, is com-

monly referenced in literature as MVEE. Further details on the MVEE method as the

selection of choice are given in Chapter III. We now consider the various distributions

that may be applied to the resulting array of distances collected that occur beyond

the boundaries of the ellipses.
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Figure 8: Example of Minimum Area Ellipse using the Khachiyan Algorithm

2.6 Potential Distributions

Due to the nature of the phenomenon being studied, a different set of distributions

must be considered when hypothesizing the form of the distribution of lightning strikes

outside a preexisting lightning area. This section overviews the Generalized Extreme

Value (GEV) distribution and the three GEV distribution sub-types.

2.6.1 Extreme Value Distributions (EVD)

The GEV continuous probability distribution originates from the Extreme Value

Theorem (EVT) which states that a given function f(x) that is continuous on the
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closed interval [a, b] has both a maximum and minimum value on the interval [a, b].

Any extreme value distribution is considered a limiting model, which is a model that

determines how large or small the data might be. The information in this section

originates from Kotz and Nadarajah (2000).

Given a large set of independent, identically distributed (iid) random values, the

GEV distribution may be used to model the smallest or largest values. The GEV

distribution consists of three parameters and unites three underlying distributions.

The three parameters are location - µ, scale - σ, and shape - ξ, leading to the following

Cumulative Distribution Function (CDF) of the GEV distribution:

F (x;µ, σ, ξ) = exp

{
−
[
1 + ξ

(x− µ
σ

)]−1/ξ}
(24)

Equation 24 is valid when:

σ > 0

1 + ξ x−µ
σ

> 0

ξ, µ ∈ R

The three underlying models represent different shapes of a respective parent

distribution; thus, it is customary to select one of the three sub-models based on

the behavior in the tail of the parent distribution. However, if the behavior of the

parent distribution is unknown, then choosing the proper sub-model proves difficult,

leading to the use of the GEV distribution accounting for all three forms. The three

sub-models are the Gumbel Distribution (Type I), the Fréchet Distribution (Type

II), and the Weibull Distribution (Type III).

The most commonly known Extreme Value Distribution (EVD), the Gumbel dis-

tribution, has two forms, one for the minimum and one for the maximum. It is

unbounded and defined on the entire range of real numbers. The parameter of the

GEV distribution related to the Gumbel distribution is the location parameter µ.

32



Increasing µ shifts the distribution to the left, while decreasing µ shifts it to the

right. The Gumbel distribution is found when the shape parameter ξ = 0 in the

GEV distribution. The CDF for the Gumbel distribution follows:

F (x;µ, σ) = exp

{
− exp

(
− x− µ

σ

)}
(25)

The Fréchet distribution is used to model the maximum values in a data set.

Consisting of all three parameters from the GEV distribution, the Fréchet distribution

converges slowly to 1 and has the following CDF when x > µ:

F (x;µ, σ, ξ) = exp

{
−
(x− µ

σ

)−ξ}
(26)

This CDF is defined from the GEV distribution when ξ > 0. Many natural phe-

nomena have been modeled with the GEV Type II distribution to include maximum

rainfalls and human lifespans.

Last of the three distributions is the Weibull distribution which is primarily used

to model failure times. Extremely useful in reliability, the Weibull actually comprises

a family of distributions that take on multiple shapes depending on the parameteri-

zation. The GEV distribution CDF becomes the Weibull CDF when ξ < 0 and, when

X ≥ 0, takes on the form:

F (x;σ, ξ) = 1− exp

{
−
(x
σ

)ξ}
(27)

EVDs are useful in a variety of contexts. The nature of the primary problem for

this research lends itself well to potentially incorporating the use of an extreme value

distribution for the distribution of lightning strikes that occur outside the preexisting

lightning area.
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2.7 Goodness-of-Fit (GoF) Tests

Once the data on the distances outside a preexisting lightning area is fit to a

distribution, the next step is to test the fit of that distribution to the data. Common

to the statistical world, GoF tests seek to determine if a set of data originates from

a population with a specific distribution. This is accomplished by failing to reject

the null hypothesis for the test, which specifies that the data follows a conjectured

distribution, at some level of confidence. Several tests exist for testing GoF of sample

data. This section contains an overview of three tests to include Anderson-Darling

(A-D), Kolmogorov-Smirnov (K-S), and the Chi-Square. The pertinent information

in this section on GoF tests draws from the Engineering Statistics Handbook (2018).

2.7.1 A-D GoF Test

Often the preferred test because of its more sensitive approach to deviations in

the tails than the K-S test, the A-D test may be applied to any distribution. The A-D

test gains more power as the sample size increases and is consistently more powerful

than the K-S test. When calculating the critical values, the A-D test incorporates

the specific distribution being tested. Common distributions for which tables of crit-

ical values are readily available include the normal, uniform, lognormal, exponential,

Weibull, Gumbel, generalized Pareto, and logistic distributions. The definition of the

A-D test follows Equations 28 and 29 where F is the CDF of the specified distribution

and {Yi < ... < YN} are the ordered data.

H0 : The data follow a specified distribution.

H1 : The data do not follow the specified distribution.

Test Statistic:

A2 = −N − S (28)
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S =
N∑
i=1

(2i− 1)

N
[lnF (Yi) + ln(1− F (YN+1−i))] (29)

After choosing a significance level α and calculating the test statistic, the critical

value, which is dependent on the specific distribution being tested, may be found in

one of the aforementioned tables for the listed distributions. The A-D test is one-

sided and the null hypothesis is rejected if the test statistic A2 is greater than the

critical value.

2.7.2 K-S GoF Test

One of the most well known GoF tests, the K-S test is based on the empirical

distribution function (EDF). With N ordered data points Y1, Y2, ..., YN the EDF is

defined:

EN =
n(i)

N
(30)

where n(i) is the number of points less than Yi and the Yi are ordered by value from

smallest to largest. Unlike the A-D test, the K-S test statistic does not depend on an

underlying distribution; however, several limitations exist for the K-S test. Besides

only being applicable for continuous distributions, the K-S test holds more sensitivity

near the center of the distribution than at the tails as indicated previously when

describing the A-D test. A more difficult limitation though is that the distribution

in question must be fully specified for the K-S test, that is the parameters of the

distribution may not be estimated from the data because that would invalidate the

critical value. This means simulations are often necessary to determine the parameters

of the distribution.

The K-S test is defined with the same null and alternative hypotheses as the

A-D test. The test statistic for the K-S test follows where F is the fully specified
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theoretical CDF of the distribution being tested:

D = max
1≤i≤N

(
F (Yi)−

i− 1

N
,
i

N
− F (Yi)

)
(31)

After choosing a significance level α and obtaining the critical value from an associated

table, rejection of the null hypothesis occurs when the test statistic D is greater than

the critical value. Although the K-S test may often provide adequate results, the A-D

test, considered a refinement of the K-S test, is often preferred as it is considered to

be more powerful than the K-S test.

2.7.3 The Chi-Square GoF Test

Differing from the two previously described tests, the Chi-Square GoF test may

be applied to any univariate distribution for which a CDF can be calculated but must

be applied to binned data. The binning requirement is not an incredible restriction

as a histogram or frequency table may be generated for non-binned data prior to

accomplishing the chi-square test. However, it is important to note that the test

statistic value is dependent on the nature of the binning of the data. Another potential

limitation lies in the fact that the chi-square test requires a sufficient sample size for

the test to be valid. One advantage the chi-square test has over the two previous

tests is that it can be applied to discrete distributions.

The null and alternative hypotheses for the chi-square test are the same as for the

previous two tests. After the data are divided into k bins the chi-square test statistic

follows:

χ2 =
k∑
i=1

(Oi − Ei)2

Ei
(32)

Here Oi is the observed frequency for bin i and Ei is the expected frequency for bin
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i where the expected frequency is calculated:

Ei = N(F (Yu)− F (Yl)) (33)

Equation 33 is based on sample size N where F is the CDF for the distribution

being tested and Yu and Yl are respectively the upper and lower limits for class i.

The test is sensitive to the choice of bins and there is no optimal choice for the

bin width; however, most reasonable choices should produce similar results. The

expected frequency should be at least five and combining some bins in the tails might

be necessary if the counts are less than five.

If c = p + 1 is the number of estimated parameters for the distribution plus one,

then the test statistic approximately follows a chi-square distribution with (k − c)

degrees of freedom, k being the number of non-empty cells. Thus, the null hypothesis

will be rejected at the level of significance α if:

χ2 > χ2
1−α,k−c (34)

where χ2
1−α,k−c is the chi-square critical value.

Several factors must be taken into account when determining what GoF test should

be applied to a set of data. First, considering whether or not the data is continuous

or discrete is paramount. The sample size plays an important role as well since

some tests require an adequate number of data points to maintain validity. Also,

depending on the distribution to which the data is being compared there could be

potential concerns about the availability of tables. An additional option to choosing

one test over another would be to apply two or more to the data; however, this might

result in confounding results and lead to the lack of an overall conclusion on the

distributional form of the data.
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2.8 Summary

We now have more detailed knowledge of the lightning strike process which helps

inform the application of the LDAR data being used in the creation of the ellipse

fitting algorithm. An overview of the current methods of prediction reveals to us the

number of techniques and plethora of technology being utilized to help safeguard life

and property from lightning. A thorough review of past research suggests the impor-

tance of the new methodologies being employed in this study. Finally, a summary of

the ellipse fitting and statistical methods considered for implementation prepares us

for discussing the methodologies actually used in this study. Therefore, we continue

to the next chapter where we discuss the detailed methodologies we apply to the data

to identify a fitting distribution for lightning strikes beyond a preexisting lightning

area.
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III. Methodology

3.1 Overview

This chapter details the data used for analysis as well as how that data is processed

in preparation for the study. We then discuss the process used to fit ellipses to the

data to include how previously outlined techniques from Chapter II are incorporated

and any assumptions that are made about the data for purposes of the fitting routine.

Lastly, we discuss the analysis process, including an outline of a validation method

that tests the chosen safety distance using the actual lightning warning circles of the

45 WS.

3.2 Data

The source of data for this study originates from the LDAR network. As the LDAR

network registers many in-cloud events and step leaders as lightning sources or source

points, a single lightning flash may contain anywhere from several to thousands of

source points. The Applied Meteorology Unit (AMU) at the 45 WS provided the

flashified LDAR data for this study. For the years of 2013 through 2016, LDAR data

from CCAFS is flashified by grouping source points; if any two source points are

within 0.3 seconds and 3,000 meters, they are grouped together as part of the same

flash.

For every month, January through December of 2013 through 2016, a text file is

generated with this flashified LDAR data where every vertical line break indicates a

new flash. Any source of lightning detected by the LDAR system registers a date/time

stamp along with a 3D recording of location and an epoch time. Table 1 illustrates

the data collected for each source point; in the provided text files, the data are in a

comma separated format with the following fields: Date/time, X, Y, Z, and epoch
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time. The X, Y, and Z coordinates are in reference to KSC’s LDAR-I Central Site.

Appendix E provides an example of these monthly text files. From this example in

Appendix E we see that a lightning event can range anywhere from one to hundreds

or thousands of source points as indicated earlier. An example of the largest flash

from June 2013 containing 1,321 source points of can be seen in Figure 9. The MVEE

for this flash covers a geographical area of 328.17 NM2.

Table 1: Format of Data Collected via LDAR system

Date/Time:
MM/DD/YYYY HH:MM:SS:ms

(hours are 00-23, milliseconds to 6 digits)

X: east/west distance from center in meters

Y: north/south distance from center in meters

Z: altitude in meters

epoch time: number of seconds since 01/01/1970 00:00:00
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Figure 9: June 2013 Lightning Flash

40



For the purposes of this research we determined after consultation with subject

matter experts that we would remove from the data any events with less than five

source points. The principal reasoning for this is that those readings with few to no

other nearby source points detected by the LDAR system are generally not considered

to be full lightning flashes. Also, because the peak lightning season for the central

eastern coast of Florida occurs in the summer months, we narrowed the focus of the

analysis to the months of May through September for 2013-2016, giving us 20 months

of data for the complete analysis process. Lastly, because the accuracy and detection

rate for the LDAR network decrease as the distance from the sensors increases, subject

matter experts also suggested a reduction in data with a focus on the flashes that

occur within a 25 NM (46.3 KM) radius of the central LDAR site. Although this

reduction results in a smaller data set, the 25 NM radius still covers all 10 lightning

warning circles supported by the 45 WS.

3.2.1 Data Processing

All data processing and analysis discussed throughout the following sections relied

on MATLAB R2015a. The relevant code for the following outline of how the flashified

LDAR data is processed can be found in Appendix F. The subsequent process is

applied to all 20 months of data. After the data is read in, the X and Y coordinates

are converted from meters to kilometers (KM). The Z coordinates are removed as

we are not considering the height of a lightning flash in this particular study. The

number of source points associated with each flash is counted. If a flash does not have

five or more source points, it is removed from the data. Two separate matrices are

then created to record the x and y coordinates for every source point of each flash.

For example, if the first flash has 20 source points, column one of the matrices flash x

and flash y would have 20 non-zero entries reflecting the x and y coordinates of the
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source points, respectively. The dimension of each of these matrices is the maximum

number of source points for the largest flash by the total number of flashes.

The next step is to assign a date/time stamp for each flash. Because any two source

points for a single flash occur within 0.3 seconds of each other, we determine that

using the time stamp associated with the first source point of the flash is sufficient.

Therefore, the time stamp from the first source point of each flash is extracted and

associated with each flash. Given the nature of the analysis being performed on the

data set, we foresaw the relevance of determining the extreme source points of each

flash. That is, using a convex hull MATLAB function we found the outer most source

points of each flash. An example of this on the largest flash in June 2013 can be seen in

Figure 26 where the resulting number of extreme points for this flash is 13. The code

for the convex hull function can be found in Appendix G. The x and y coordinates for

each of these extreme points are recorded in a similar fashion as outlined previously

for all the source points. The matrices used to record the extreme points of each flash

are flash x extremes and flash y extremes where the dimension of each of these

matrices is the maximum number of extreme points by the total number of flashes.
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Figure 10: June 2013 Lightning Flash Extreme Points and Convex Hull
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To store all the relevant information for each flash, a single matrix date0 is

created. The date0 matrix records the following for each flash: the original flash

number, the number of source points, the date/time stamp (in six columns: YYYY,

MM, DD, HH, mm, SS.msssss), and the number of extreme points. The total number

of columns in this matrix is 10, where the tenth column is reserved for recording the

associated ellipse number for each particular flash.

The subsequent step of the data reduction process is to determine which flashes

occur within the specified 25 NM (46.3 KM) radius of the central site. For each flash,

the distance each extreme point lies from the central site is calculated. If all the

extreme points occur within 25 NM of the central LDAR site, the flash is retained. If

even one extreme point occurs outside the 25 NM radius, the entire flash is removed

from the data set. Figure 11 gives a visual of this data reduction, where the black

source points represent flashes with five or more source points.

Figure 11: June 2013 Data Reduction
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All of the previously specified matrices are then updated to only include flashes

that occurred within the 25 NM radius of the central site. A final matrix designated

flash mat is also created to maintain a comprehensive listing of all the x and y

coordinates of the included flashes. The flash mat matrix dimensions are the total

number of source points for all flashes by six. The six columns are: x coordinates

for all source points, y coordinates for all source points, x coordinates for all extreme

points, y coordinates for all extreme points, the final flash number associated with

each source point, and the final flash number associated with each extreme point.

These final flash numbers are simply a renumbering of the flashes so that the first

flash with five or more source points and within the 25 NM radius is now flash

number one and so on; however, the original flash number for each source point is

still maintained in column one of the date0 matrix.

As observed in Figure 11 a considerable amount of data reduction occurs to ready

the data for the ellipse fitting routine. Table 2 gives the specifics of the data reduction

for the number of flashes. A total of 808,430 flashes, 4% of all the flashes that occurred

from May to September of 2013 to 2016, have been extracted to use in the actual

ellipse fitting process. July 2014 has the greatest number of flashes in every category

(original number of flashes, flashes with five or more source points, and flashes within

25 NM of the central site). June 2013, May 2015, and June 2016 have the greatest

percentage of flashes with five or more source points, with each month having 33% of

its source points retained through this particular data reduction step. And May 2013

has the greatest percentage of flashes within the 25 NM radius of the central site.

In Table 3 we see the number of source points in each month. Not surprisingly,

the month with the greatest number of source points in every category is again July

2014. The largest flash, that is the one with the greatest number of source points,

occurs in August 2015 where one flash has 2,560 source points. Lastly, the month
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with the largest number of flashes on average is May 2014 with a mean number of

source points per flash of 151.

Table 2: Number of Flashes by Month

Month
Original #

Flashes

Flashes >=5

Source Points

Flashes

<= 25 NM

% Flashes >= 5

Source Points

% Flashes

<= 25 NM

May-13 305,142 97,887 30,311 32% 10%

Jun-13 1,017,798 340,642 64,789 33% 6%

Jul-13 452,182 139,423 23,818 31% 5%

Aug-13 755,052 200,016 24,408 26% 3%

Sep-13 649,287 195,280 22,527 30% 3%

May-14 486,595 142,587 11,825 29% 2%

Jun-14 1,783,266 527,485 58,277 30% 3%

Jul-14 1,849,330 580,752 126,384 31% 7%

Aug-14 1,593,201 483,207 73,902 30% 5%

Sep-14 817,718 180,377 22,761 22% 3%

May-15 299,013 99,105 11,134 33% 4%

Jun-15 1,441,951 459,392 43,668 32% 3%

Jul-15 1,145,037 350,497 51,321 31% 4%

Aug-15 1,597,543 428,337 55,781 27% 3%

Sep-15 673,189 171,177 26,663 25% 4%

May-16 848,919 228,413 21,755 27% 3%

Jun-16 760,832 249,381 33,288 33% 4%

Jul-16 847,517 267,508 31,065 32% 4%

Aug-16 368,214 97,915 8,029 27% 2%

Sep-16 1,015,235 313,125 66,724 31% 7%

Overall 18,707,021 5,552,506 808,430 30% 4%

Table 4 gives the last data summary with the monthly number of extreme points.

Again we see July 2014 has the greatest number of extreme source points in every
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category. One important note about these data summaries is that they are based on

the data after slight modifications are made to ready the data for the ellipse fitting

algorithm. Specifically, some flashes are removed from certain months and added to

the end of the previous month; the reasoning for this change is explained in further

detail later.

Table 3: Number of Source Points by Month

Month
Original #

Source Points

Total Source Points

flashes >= 5

Total Source Points

flashes <= 25 NM

Max # Source Points

(Final Data)

Mean # Source Points

(Final Data)

May-13 3,138,848 2,786,095 1,084,971 1,601 36

Jun-13 11,231,273 2,828,053 3,493,132 1,321 54

Jul-13 4,152,709 3,614,903 1,028,104 1,067 43

Aug-13 6,528,645 5,596,959 1,638,228 1,031 67

Sep-13 5,980,882 5,198,347 1,206,091 1,060 54

May-14 7,741,792 7,187,196 1,786,503 1,627 151

Jun-14 19,678,385 17,648,540 3,834,333 1,927 66

Jul-14 22,304,479 20,247,683 7,295,701 1,908 58

Aug-14 19,775,169 17,993,453 5,316,811 1,663 72

Sep-14 9,975,539 9,040,597 2,570,368 1,646 113

May-15 3,804,174 3,469,991 859,383 1,460 77

Jun-15 16,610,301 14,978,016 3,258,952 1,384 75

Jul-15 14,596,621 13,298,406 4,521,050 2,056 88

Aug-15 18,859,328 17,015,787 5,158,066 2,560 92

Sep-15 5,845,101 5,048,310 1,376,242 1,453 52

May-16 7,520,125 6,499,344 1,396,893 1,466 64

Jun-16 7,687,396 6,848,603 1,541,787 1,725 46

Jul-16 6,708,425 5,725,809 1,079,353 1,050 35

Aug-16 3,112,428 2,684,850 600,879 1,219 75

Sep-16 11,879,607 10,752,551 3,861,580 2,245 58

Overall 207,131,227 178,463,493 52,908,427 2,560 65
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Table 4: Number of Extreme Points by Month

Month
Total Extreme Points

Flashes >=5

Total Extreme Points

Flashes <= 25 NM

Max # Extreme Points

(Final Data)

Mean # Extreme Points

(Final Data)

May-13 622,591 200,911 19 6.63

Jun-13 2,159,814 467,706 20 7.22

Jul-13 853,684 161,167 20 6.77

Aug-13 1,212,872 178,995 23 7.33

Sep-13 1,198,246 161,045 20 7.15

May-14 930,780 95,935 21 8.11

Jun-14 3,299,047 417,604 21 7.17

Jul-14 3,663,170 892,645 21 7.06

Aug-14 3,060,281 533,500 21 7.22

Sep-14 1,176,175 176,632 21 7.76

May-15 631,795 83,128 19 7.47

Jun-15 2,877,164 318,416 24 7.29

Jul-15 2,226,579 387,689 25 7.55

Aug-15 2,699,805 419,299 23 7.52

Sep-15 1,041,714 182,911 19 6.86

May-16 1,388,369 160,739 21 7.39

Jun-16 1,541,280 236,656 20 7.11

Jul-16 1,596,892 208,379 18 6.71

Aug-16 601,933 61,745 19 7.69

Sep-16 1,990,370 483,000 25 7.24

Overall 34,772,561 5,828,102 25 7.21

3.3 Selection of the Ellipse Fitting Method

The choice of which ellipse fitting method to use is one of the most critical decisions

in the creation of the final algorithm to find the distance lightning strikes beyond the

edge of a preexisting lightning area. The code for all of these ellipse fitting algorithms

can be found in Appendix H. We do not heavily consider the least squares best fitting

ellipse method for this particular application. This is primarily due to the fact that

this method seeks to fit the boundary of an ellipse to a given set of data points;

that is, the least squares best fit ellipse seeks to minimize the distance of each data
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point from the edge of the ellipse. However, for our ellipse formations, we would

prefer the ellipse to be drawn around a certain percentage, if not all, of the data

points (preferably centered around the data points) as opposed to drawn through the

data points. An ideal algorithm for such a task would be a least squares approach

that seeks to minimize the distance of each data point from the center of an ellipse;

however, to our knowledge, there does not currently exist an algorithm that performs

this specific task.

We heavily investigate and apply the method of PCA confidence ellipses to this

problem. The reasoning behind using the PCA approach is that it provides a good

deal of elliptical coverage over a large percentage of flashes while not producing overtly

large areas. For all investigative purposes, the data for the months of May and June

2013 are used. The first necessary step in applying the PCA confidence ellipses is

to determine what α value to use for the ellipse formations. To find the desired α

value, we use the data from May 2013 and apply an early version of the ellipse fitting

algorithm, the details of which we discuss in a later section. At various α values (.20,

.15, .10, .05, .01), the algorithm calculates the area of each ellipse that is drawn, as

well as the percentage of points that are inside the ellipse. As a way to determine the

optimum α level, we then proceed to find the following value for each ellipse drawn:

f(α,%) =
area of ellipse

% of flashes inside ellipse
(35)

Taking the mean of these values for each α level and selecting the minimum results

in α = .20 being the optimum alpha value to use. Table 5 gives a breakdown of this

analysis.
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Table 5: Optimal Alpha Value

α level Mean Area (KM2) Mean % Flashes inside f(α,%)

.01 2,357 90.6% 2,604

.05 1,114 79.4% 1,419

.10 716 70.2% 1,037

.15 523 62.8% 852

.20 384 56.8% 697

After choosing α = .20, we begin to examine plots of the performance of the PCA

ellipse fitting method. The first problem we discover using the PCA approach is that

when all of the source points are used to create the ellipses, large clusters of source

points overpower the smaller outlying source points, as is the nature of PCA. An

example of this can be seen in Figure 12 where an ellipse is drawn for a series of

lightning flashes using all the source points from each flash.
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Figure 12: PCA Ellipse using All Source Points
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From Figure 12 we see that using all of the source points to draw the PCA ellipse

results in a large portion of the source points falling outside of the ellipse. This does

not achieve the initial goal of fitting an ellipse to the data. The next attempt we

make is to apply PCA ellipses using the extreme points of every flash. However, the

same general problem of larger clusters of extreme points overpowering the smaller

groups of extreme points persists. Figure 13 shows an updated version of Figure 12

with the extreme points of each flash specifically identified and a new ellipse drawn

using just those extreme points.

Distance from Central LDAR Site (KM)

-35 -30 -25 -20 -15 -10 -5 0 5

D
is

ta
n

c
e

 f
ro

m
 C

e
n

tr
a

l 
L

D
A

R
 S

it
e

 (
K

M
)

-5

0

5

10

15

20

25

All Source Points

All Extreme Points

PCA Ellipse on All Source Points

PCA Ellipse on All Extreme Points

Figure 13: PCA Ellipse using All Extreme Points

The final attempt we make to salvage the PCA approach relies on taking the

convex hull of all the extreme points and using those most extreme points to create

the PCA ellipse. This method solves a large portion of the problem; however, too

many source points still lay outside of the ellipses, creating an inflation in the number

and length of the distances that are being recorded for lightning strikes beyond the

edge of a preexisting lightning area. Figure 14 demonstrates this last PCA ellipse
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approach using the most extreme points. Therefore, as the least squares method and

PCA approach do not generate the desired results, the final method chosen is the

MVEE technique.

The main concern in using the MVEE method from the onset is the size of the

ellipses, or the amount of area that is contained within these ellipses. However, certain

choices in the ellipse fitting algorithm help to curtail the formation of extremely large

ellipses. In Table 6, we see a comparison between the ellipses created using the PCA

technique and those created using the MVEE method for the May 2013 trial data.

The PCA ellipses in Table 6 are those created using the last PCA approach where the

most extreme points are applied in the creation of the ellipses. Although the MVEE

are larger on average than the PCA ellipses, the mean lengths of the axes for both

methods are similar and not implausible in regards to the size of actual lightning

storms.
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Table 6: Comparison between PCA Ellipses and MVEE

Ellipse Fitting
Mean Area (NM2) Max Area (NM2)

Mean Major Mean Minor

Technique Axis (NM) Axis (NM)

PCA Ellipses 636.5 1,281.9 9.6 5.7

MVEE 815.9 1,745.2 10.5 6.7

The last decision to be made in regards to the use of the MVEE method is to

determine the optimum tolerance value for the algorithm. The choice is based on

finding a balance between computational speed and accuracy. Table 7 and Figure 15

provide the numerical and visual support for the final choice of a .01 tolerance level,

respectively. Considering Figure 15 and Table 7 simultaneously we see that there is

not much accuracy lost when moving from a tolerance of .0001 to .01; but, there is a

97% increase in computational speed between the two tolerance levels. At the same

time, moving from .01 to .05 we begin to see a deterioration in the accuracy of the

algorithm with no speed increase. Thus, the final decision is to use a tolerance of .01

for optimum computational speed and accuracy. We now turn to the ellipse fitting

algorithm and the assumptions that are made to create it.

Table 7: Computational Speed of MVEE Algorithm

Tolerance Level MVEE Algorithm Speed (seconds)

.0001 .336

.001 .035

.01 .010

.05 .010

.10 .009
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3.4 Ellipse Fitting Algorithm and Assumptions

When discussing the function of the ellipse fitting algorithm, we consider the

overarching goal of this research of finding a distributional representation of light-

ning strikes beyond a preexisting lightning area. Therefore, the purpose of the ellipse

fitting algorithm is to draw elliptical boundaries around active lightning areas and

measure the distance a lightning strike occurs outside of these ellipses. As we describe

the process of the algorithm, we outline the specific assumptions that are made in its

creation. The code for this algorithm can be found in Appendix I. The first assump-

tion lies in the concept of a lightning strike. Recall from Chapter II that the LDAR

network does not produce CG strike data, rather it gives X and Y coordinates for all
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the source points associated with a lightning strike. Therefore, the first assumption

made is that each source point of a flash is considered as a potential CG strike at

each source points X and Y coordinate location.

The algorithm functions in accordance with the following series of steps and begins

with the first flash from a list of all the flashes for the entire month. When a new

flash occurs, if it is the first flash of the month or an existing ellipse is not already

present, then an ellipse is drawn around it; if it is not the first flash of the month

and an existing ellipse is already present, meaning an ellipse has already been drawn

around at least one previous flash, then the time difference between the current flash

and the last flash of the current ellipse is found. If the time difference is more than

30 minutes, the current flash represents the start of a new ellipse. This assumption

originates from the second part of the 30-30 rule discussed in Chapter II and suggests

that if lightning has not occurred within 30 minutes of the previous flash, then it is

not a part of the previous storm but rather a new one.

However, if the time difference is less than 30 minutes, the current flash might

potentially belong to the current storm for which the current ellipse was drawn.

Therefore, the next step is to determine if the lightning flash occurred within or

outside the current ellipse. If the lightning occurred within the ellipse, then the

distance from the center of the ellipse to the furthest source point of the lightning

flash is recorded and the algorithm moves on to the next flash. In contrast, if even

one source point of the flash occurred outside the ellipse, then the distance from the

edge of the ellipse to each source point striking outside the ellipse is determined and

the largest distance is taken as the flash’s distance from the edge of the ellipse.

Next, the algorithm uses that distance to establish if the current flash is within

16 KM of the current ellipse. If the current flash is not within 16 KM of the current

ellipse, it is not included in the current ellipse, but annotated as still needing assign-
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ment to an ellipse, and the algorithm will then move on to the next flash in the list. If

the current flash is within 16 KM of the current ellipse then the flash will be included

in the current ellipse and the next step of the process is initiated. The reasoning

behind using a 16 KM distance threshold is to decipher between different storms that

might be active at the same point in time. Several distances were considered for this

particular problem; however, using a shorter length arbitrarily curtails lightning that

strikes at greater distances beyond a preexisting lightning area, and larger distances

create ellipses that are immense and encompassing far too much area. Previous stud-

ies outlined in Chapter II also referenced similar distance thresholds; for example,

Parsons (2000) used a 17 KM distance threshold for her clustering criteria. Subject

matter experts were presented these details and agreed that 16 KM is the best choice

for the algorithm.

The subsequent step of the algorithm is to go through all of the flashes in the

current ellipse and remove those that are older than 10 minutes from the time of the

current flash. This step accounts for the movement of a storm over time and also

helps to ensure that the ellipses being drawn are not overly large. Subject matter

experts were also consulted on this point and did not contend with its implementation

as it was offered that removal at both 5 and 15 minutes were also attempted and the

differences in the distributional results between all three time removal thresholds

were minimal. Therefore, removal of flashes at 10 minutes is selected as the moderate

choice.

At this point in time, a new ellipse is drawn using the MVEE algorithm with a

.01 tolerance level. A matrix entitled ellipses records the summary information of

each ellipse that is drawn. Specifically, the ellipses matrix includes for each flash:

the ellipse number, the area of the ellipse, the distance the flash occurred from the

edge of the ellipse, the distance the flash occurred from the center of the ellipse, the
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number of flashes in the ellipse, and the parameters of the ellipse (a, b, h, k, τ).

The algorithm continues this process until one of three events happen. The first

was already mentioned, that the time difference between the last flash of the current

ellipse and the current flash being considered is greater than 30 minutes. The second

event that interrupts this process deals with the number of flashes in a row that occur

further than 16 KM from the edge of the current ellipse. Every time a flash occurs

beyond 16 KM from the edge of the current ellipse, a counter is incremented; this

counter is reset to zero if a subsequent flash occurs within 16 KM of the current ellipse.

However, if the counter reaches five, meaning five flashes in a row have occurred at

a distance of 16 KM or more beyond the edge of the current ellipse, the algorithm

process is again interrupted. The reasoning for this is twofold. First, if there are

no more relevant flashes for the current ellipse, curtailing the process at this point

saves valuable computation time as the algorithm does not have to continue cycling

through a larger amount of flashes without drawing ellipses. Secondly, this allows

that there might be other storms in the same area, currently further than 16 KM

away, that may be moving towards the current ellipse; thus, it would be better to

interrupt the process before a flash from another storm reaches that 16 KM threshold

and is included, incorrectly, in the current ellipse.

The third event that interrupts the algorithm’s status queue is reaching the end

of the existing list of unused flashes (flashes that have not been assigned or used in

the creation of an ellipse). As the algorithm runs, besides storing information in the

ellipses matrix, the ellipse number is also recorded in the last column of the date0

matrix for each flash. If the algorithm’s process is interrupted for one of the three

events previously described, a new list of unused flashes is generated by looking at

the last column of the date0 matrix. This process continues using this new list of

flashes until every flash of the month has been included in an ellipse.
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We made note earlier that some flash data is removed from certain months and

placed at the end of the previous month. This happens because, for multiple pairs of

months, the same storm spanned both months. For example, if there is a lightning

storm late on the night of 30 June that continues into the early morning hours of

1 July, the flashes that occur in July inherently belong with the flashes that occur

on the last day of June. Therefore, if there is any overlap between the last day of

one month and the first day of the next month, we find the first time break between

flashes of 30 minutes or more on the first day of the month and move all the flashes

prior to that time break to the end of the previous month.

3.5 Validation of the New Warning Distance

Once the process for fitting ellipses is complete, we fit the distances obtained

from the algorithm, which represent the distance lightning strikes beyond the edge of

a preexisting lightning area, to a distribution. After finding the best distributional

representation of these distances, we determine the appropriate distance for initiating

a lightning warning given the level of increased risk we are willing to accept. After

this new stand-off distance is ascertained, we empirically decipher how often this new

stand-off distance fails as opposed to the previous 5 NM distance.

To complete this empirical process, we use the actual warning circles from the 45

WS. Given the latitude and longitude of each warning circle center, we calculate the

geographical distance of each warning circle center from the central LDAR site. As

all of the LDAR data are X and Y coordinates from the central LDAR site, we also

need the warning circle centers as X and Y coordinates from the central LDAR site.

These conversions are made using the National Deep Submergence Facility (NDSF)

Coordinate Conversion Utility tool (NDSF, 2018).
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After obtaining the X and Y coordinates, we proceed to calculate the euclidean

distance of each warning circle center to the central LDAR site. We then compare

the euclidean and geographical distances and determine the difference between the

two to be marginal. Table 8 provides all of this information as well as references the

radius of each warning circle (recalling that some are 5 NM while others are 6 NM).

Figure 16 depicts the location of each warning circle in relation to the central LDAR

site. As all the circles fall completely within the 25 NM radius of the central LDAR

site, we determine to complete the empirical validation process for all the warning

circles.

Table 8: 45 WS Warning Circles Distance from Central LDAR Site

Warning Circle Radius(NM)

Geographical Distance

From LDAR

Central Site (KM)

Euclidean Distance

From LDAR

Central Site (KM)

Difference Between

Geographical and Euclidean

Distance (KM)

HAULOVER 5 24.57 24.52 0.05

ASTROTECH 5 17.13 17.16 0.03

LC39 6 7.38 7.36 0.02

SLF 6 9.90 9.88 0.02

IA 6 2.18 2.17 0.01

40/41 5 7.21 7.22 0.00

37/ITL 5 6.67 6.68 0.01

CENTRAL 6 10.81 10.8 0.01

PORT 5 14.52 14.48 0.04

PAFB 5 34.00 33.89 0.11

To determine how well the newly selected warning radius performs as compared to

the previous 5 or 6 NM radii, we execute the following process for each warning circle

for all 20 months of data. The code for this process can be found in Appendix J. The

first objective of this process is to establish how much time is saved if the warning

circle radius is reduced from 5 or 6 NM to the newly identified radius length. A second

objective of this process is to detect how many false alarms are saved using the new

radius. We define a false alarm as a warning that would occur at the current 5 or 6

58



NM radii distance but would not be issued using the new radius distance because no

flash occurs within the new radius for the duration of the storm. The final objective

is to ascertain how many warning failures occur at the new warning radius distance.

That is, how many times does a lightning strike occur within .5 NM of the center

of the warning circle before a warning would have been called at the new warning

radius. The distance of .5 NM is used as a failure radius as the assets actually being

protected fall within .5 NM of the center of each warning circle.
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Figure 16: Lightning Warning Circles in Relation to Central LDAR Site

The process begins by initially finding for each flash, the closest source point to

the center of the warning circle; this distance is then designated as the only distance

associated with each flash. Next, only the flashes that fall within 5 or 6 NM (respective

of the warning circle’s radius) are retained for that particular warning circle. The

flashes are then separated into storms where any time there is at least a 30 minute
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break between flashes designates a new storm. Then each flash is assigned a number

in accordance with Table 9, a visual of which can be seen in Figure 17.

Table 9: Number Assignment for Flash Distance from Center of Warning Circle

Distance Flash X occurs
Number Assignment

from Warning Circle Center

new radius < X ≤ 5 or 6 NM 1

.5 NM < X ≤ new radius 2

X ≤ .5 NM 3
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Figure 17: Number Assignment for Flash Distance from Center of Warning Circle
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Once each flash is assigned a number based on its distance from the center of the

warning circle, the following information is collected for each storm: the first flash

assigned a two, the time between that first flash assigned a two and the first flash of

the storm (as the first flash of the storm indicates when the original 5 or 6 NM warning

is called), the time of the first flash assigned a three, a logical indicator determining

if a three was recorded before a two (indicating a failure in the new warning radius),

and the total warning time for the original 5 or 6 NM radius. From this information

we gather the necessary statistics on how much time is saved, how many false alarms

are averted, and how many failures occur both by month and by warning circle.

3.6 Summary

We have now discussed the particular methods being employed to preprocess the

data, create the ellipse fitting algorithm, and validate the new warning distance.

The next chapter provides the results and analysis of these methods. Specifically, in

Chapter IV we see how the choices made in the ellipse fitting algorithm assumptions

affect the formation of ellipses. We also use results from these methods to address

the secondary research question about the mean distance the initial strikes of a storm

occur from the center of the storm. Finally, applying the empirical validation routine

provides an answer to the primary research question as to whether or not a new and

shorter warning distance may be safely selected and implemented.
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IV. Results and Analysis

4.1 Overview

In this section we present descriptive statistics regarding the ellipses formed using

the ellipse fitting algorithm. We also answer our secondary research question regard-

ing the mean distance of strike for the initial flashes in a storm before continuing

on to the primary objective. We then fit the distances ascertained from the ellipse

fitting algorithm to a distribution and determine if a new warning distance can be

implemented with the appropriate level of safety. Finally, we provide the empirical

validation results on the new warning distance. For all statistical testing we apply an

alpha value of .05.

4.2 Ellipse Data

After executing the ellipse fitting algorithm for all 20 months of data, we examine

several different outcomes for how the algorithm processes the data. Table 10 provides

a compilation of what we find for each month as well as overall for all 20 months.

Particularly, column one of Table 10 references the total number of ellipses for each

month; this can also be considered the total number of storms in each month as each

ellipse represents a single storm. August and July of 2015 have the greatest number

of storms with 256 and 252 respectively.

One especially interesting result of the algorithm is that 25% of all ellipses are

ellipses with only one flash. This means that there are single flashes either too far

away from another storm and/or the time difference between these flashes and those

before or after it are greater than 30 minutes. A closer examination of the data

provides that of the 730 single flash ellipses, 25% of those are a result of time and/or

distance isolation. The other 75% are a result of the assumptions and limitations of
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the algorithm. We discuss an alternative ellipse fitting method as a possible solution

to this issue in Chapter V.

Table 10: Ellipse Statistics for Each Month

Month
Total #

Ellipses

Mean # Flashes

in Each Ellipse

Largest # Flashes

in an Ellipse

Total # Ellipses

with 1 Flash

% Ellipses

with 1 flash

May-13 84 361 20,266 29 35%

Jun-13 148 438 10,962 26 18%

Jul-13 127 188 3,750 39 31%

Aug-13 174 140 3,484 44 25%

Sep-13 79 285 12,113 24 30%

May-14 98 121 3,597 25 26%

Jun-14 150 389 12,587 35 23%

Jul-14 216 585 21,675 54 25%

Aug-14 151 489 11,147 37 25%

Sep-14 173 132 3,990 46 27%

May-15 45 247 6,228 14 31%

Jun-15 162 270 11,986 42 26%

Jul-15 252 204 9,765 59 23%

Aug-15 256 218 17,695 56 22%

Sep-15 157 170 6,212 40 25%

May-16 109 200 9,891 25 23%

Jun-16 176 189 6,208 38 22%

Jul-16 101 308 19,339 20 20%

Aug-16 96 84 1,382 23 24%

Sep-16 209 319 9,878 54 26%

Overall 2,963 273 21,675 730 25%

To answer our secondary research question, we next investigate the behavior of the

initial flashes in a lightning storm from our data. To begin this part of the analysis

we determine to only examine ellipses with 10 or more flashes. Of the 2,963 ellipses
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created from the algorithm, 1,178 ellipses, about 40% of the ellipses, have 10 or more

flashes. For each ellipse in each month we find the mean distance from the center for

the first five flashes as well as the first ten flashes. Table 11 provides a summary of

these means where the values reported are the means of the means and the overall

mean is calculated for the entirety of the data, that is for all 1,178 ellipses.

Table 11: Mean Distance from Center for initial Flashes in a Lightning Storm

Month
Mean Distance (NM) Mean Distance (NM)

for 5 Flashes for 10 Flashes

May-13 3.26 3.65

Jun-13 2.94 3.28

Jul-13 3.61 4.16

Aug-13 3.09 3.47

Sep-13 2.97 3.36

May-14 3.70 4.30

Jun-14 3.38 3.83

Jul-14 2.69 2.96

Aug-14 2.69 2.99

Sep-14 3.07 3.74

May-15 3.11 3.45

Jun-15 3.05 3.39

Jul-15 3.19 3.70

Aug-15 3.20 3.67

Sep-15 3.83 4.01

May-16 3.31 3.99

Jun-16 3.10 3.48

Jul-16 1.80 2.11

Aug-16 3.22 3.44

Sep-16 3.56 3.94

Overall 3.13 3.53
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From Table 11 we see that the mean distance for the first few flashes is between

3.13 and 3.53 NM depending on the number of flashes being considered. The 95%

confidence intervals for these means are (3.03,3.22) and (3.42,3.63) respectively. Fur-

ther descriptive statistics to include the histograms for these mean distances of the

initial flashes in a lightning storm can be found in Appendix K. Conducting a paired

t-test on the means of five and ten flashes gives us a p-value of < .0001 which suggests

at a significance level of α = .05 that there is enough evidence to conclude that the

difference between the mean distances using five flashes and the mean distances using

ten flashes is not zero. This difference can also be observed by the lack of overlap in

the respective confidence intervals. Although there is a detectable difference in the

mean distance from the center when considering five flashes versus ten flashes, we

now have numerical evidence that the first few flashes of a storm, where we define

the first few flashes as anywhere from five to ten flashes, occur within a 4 NM radius

of the center of the storm on average. Now we consider the main research question

of the distribution of lightning strikes beyond the edge of a preexisting area.

4.3 Distribution Fitting

Using the results of the ellipse fitting algorithm we extracted a total of 48,134

distances from the edge of an ellipse. A histogram of these distances can be seen in

Figure 18. The maximum distance being less than 16 is due to the distance between

storms restriction that was included in the ellipse fitting algorithm.

The two primary distributions we consider fitting to this data are the GEV and

the Weibull. The application of the GEV to the data can be seen in Figure 19.

The parameters of this particular GEV make it a Fréchet distribution since ξ =

.834 > 0. The GEV fits fairly well, however, it does not capture the full extent

of the higher number of observations at shorter distances. Conversely, the Weibull

65



distribution, seen in Figure 20, also offers an adequate fit while capturing the higher

frequency of shorter distances. We did not attempt to find the distribution in terms

of order statistics as this would require looking at the maximum order statistics from

the distribution of the distances from the center of the ellipse and then taking a

transformation to characterize a parent distribution of these distance measurements.
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Figure 18: Histogram of the Distance (KM) From the Edge of a Preexisting Area

Conducting a GoF test for each of these distributions is the next logical step;

however, because our sample size is so high, any GoF test applied to the data would

result in a rejection of the null hypothesis. That is, the p-values from any GoF test

would be so low that any test would determine the hypothesized distribution is not

an adequate fit. This is due to the fact that such a large sample size is indicative

of having an entire population rather than just a sample. Therefore, we conclude

based on the general fit of both distributions that the Weibull is the best choice when

looking at the probability of strike beyond the edge of a preexisting area. The specific
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details of the particular Weibull distribution fit to the data, along with a table of the

probability of strike can be found in Appendix L.
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Figure 19: GEV fit to Distance from the Edge of a Preexisting Area
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The next step of our analysis process is to determine if a new warning distance

may be safely established. The primary concern in decreasing the distance of warning

for lightning strike is the extra risk incurred with such a reduction. As we decrease

the warning distance we can determine from the established Weibull distribution the

percentage of risk increase. This percentage of risk increase is then compared to the

amount of area decreased when considering the warning distance as the radius of

a warning circle as utilized by the 45 WS. Table 12 displays the percentage of risk

increase and area decrease from the current 5 NM radius.

Table 12: Percentage of Area Decrease and Risk Increase from 5 NM Radius

Radius (NM)
Percentage of Area Percentage of Risk

Decrease from 5 NM Increase from 5 NM

4.75 10% 15%

4.5 19% 33%

4.25 28% 54%

4 36% 78%

3.75 44% 107%

3.5 51% 140%

3.25 58% 179%

3 64% 226%

From Table 12 we calculate the percentage of rate gained for both the risk increase

and area reduction. The plot of these percentages can be seen in Figure 21. From

Figure 21 we see that the amount of rate gained for both risk and area diminishes

substantially around 4 NM. Therefore, we elect 4 NM as the new alternative warning

distance that offers an appropriate balance of area reduction and increased risk. Now

that a new radius has been established, we move to testing this radius empirically

68



using the 45 WS warning circles. It is important to note here that the specific Weibull

distribution that is fit to this set of data is not intended to perfectly model the strike

distance of lightning outside a preexisting area; rather, this distribution serves as a

stepping tool to select a new potential radius. The results of the empirical validation

process provide the strongest justification for accepting or rejecting a shorter warning

distance.
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Figure 21: Percentage of Risk and Area Rate Gained from 5 NM Warning Distance

4.4 Empirical Validation Results

The first empirical testing we apply is the chosen 4 NM radius. Table 13 provides

a breakdown of the results of this test by warning circle, while Table 14 provides

a breakdown of the results by month. From Table 14, we find a reduction for all

the warning circles from 5 or 6 NM to 4 NM provides a savings of 720.15 hours or

90.02 8-hour man days with only .277% of failure. This is a savings of about 22.5

8-hour man days a year just in the five summer months. We also find that the 4
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NM reduction produces a total of 724 false alarms saved; this gives us an average

of 181 false alarms saved a year in the five summer months. The hours saved from

these prevented false alarms are included in the overall time savings and account for

roughly 60% of the total time saved. The breakdown by circle reveals that eight of

the ten warning circles experienced at least one failure, with the IA, 37/ITL, and

Port circles having two failures each. The highest percentage of failures by warning

circle is 0.571% for the 37/ITL circle as it saw two failures out of three hundred fifty

total storms. To ensure that a reduction to 4 NM is the appropriate choice, we also

complete the empirical test for several other reductions.

Table 13: Results by Circle for Reduction of Warning Radius to 4 NM

Warning Circle Radius (NM)
Hours Saved # False Alarms

# Failures Total Storms % Failures
(8 hr man days) Saved

HAULOVER 5 42.96 (5.37) 45 1 376 0.266%

ASTROTECH 5 62.11 (7.76) 66 1 445 0.225%

LC39 6 112.67 (14.08) 124 1 421 0.238%

SLF 6 115.50 (14.44) 112 0 449 0.000%

IA 6 98.17 (12.27) 87 2 431 0.464%

40/41 5 40.35 (5.04) 43 1 349 0.287%

37/ITL 5 44.37 (5.55) 45 2 350 0.571%

CENTRAL 6 104.10 (13.01) 96 0 399 0.000%

PORT 5 49.17 (6.15) 47 2 380 0.526%

PAFB 5 50.74 (6.34) 59 1 370 0.270%

Specifically, we test a reduction from the 5 or 6 NM to 4.5, 4.25, 3.75, and 3.5

NM; we also compare the 4 NM reduction failure count to the number of failures seen

if the warning circles have 6 and 7 NM radii reduced to the current 5 and 6 NM radii

respectively. Finally, we compare the time saved and number of failures for reducing

5 and 6 NM to 4 and 5 NM respectively in order to determine if making the larger

jump from 6 to 4 NM is having a greater impact on the total number of failures. The

results of these tests can be seen in Table 15.
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Table 14: Results by Month for Reduction of Warning Radius to 4 NM

Month
Hours Saved # False Alarms

# of Failures Total Storms % of Failures
(8 hr man days) Saved

May-13 23.01 (2.88) 29 0 106 0.000%

Jun-13 36.98 (4.62) 37 1 240 0.417%

Jul-13 32.07 (4.01) 31 0 181 0.000%

Aug-13 49.35 (6.17) 61 0 229 0.000%

Sep-13 24.77 (3.10) 26 0 140 0.000%

May-14 14.64 (1.83) 16 0 86 0.000%

Jun-14 37.62 (4.70) 39 1 198 0.505%

Jul-14 58.59 (7.32) 45 1 352 0.284%

Aug-14 48.90 (6.11) 45 1 265 0.377%

Sep-14 41.01 (5.13) 42 1 217 0.461%

May-15 11.58 (1.45) 13 0 65 0.000%

Jun-15 30.69 (3.84) 29 0 165 0.000%

Jul-15 48.01 (6.00) 43 0 282 0.000%

Aug-15 49.85 (6.23) 57 3 284 1.056%

Sep-15 43.52 (5.44) 45 1 213 0.469%

May-16 23.44 (2.93) 20 0 173 0.000%

Jun-16 37.77 (4.72) 37 2 219 0.913%

Jul-16 22.14 (2.77) 22 0 102 0.000%

Aug-16 26.81 (3.35) 28 0 151 0.000%

Sep-16 59.40 (7.43) 59 0 302 0.000%

Total 720.15 (90.02) 724 11 3,970 0.277%

From Table 15 we see that the current radii of 5 and 6 NM produces six failures,

only five fewer than the newly selected 4 NM radius. We also see a decrease of 30%

and 28% respectively in the number of hours saved and the number of false alarms

saved, with only two fewer failures when reducing the 5 and 6 NM radii to 4 and 5

NM radii as compared to reducing all the circles to 4 NM.
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Table 15: Number of Failures, Hours Saved, and False Alarms Saved at Different
Warning Distances

Original Radii (NM) New Radii (NM)
Hours Saved # False Alarms

# of Failures % of Failures
(8-hr man days) Saved

6 and 7 5 and 6 - - 6 0.151%

5 and 6 4.5 463.25 (57.91) 479 8 0.202%

5 and 6 4.25 588.51 (73.56) 600 9 0.227%

5 and 6 4 and 5 505.59 (63.20) 523 9 0.227%

5 and 6 4 720.15 (90.02) 724 11 0.277%

5 and 6 3.75 848.32 (106.04) 837 19 0.479%

5 and 6 3.5 966.62 (120.83) 932 27 0.680%

A visualization of the data from Table 15 can be seen in Figure 22 where we see

the number of failures at each new warning distance plotted simultaneously with the

number of days saved and hundreds of false alarms saved. The conversions from hours

saved to days saved and the scaling of the number of false alarms saved by 100 were

made to allow for concurrent plotting of the three statistics. From Figure 22 we see

that when specifically considering the number of failures at each warning distance, 4

NM again proves to be the pivotal distance. This is primarily due to the number of

failures more than doubling with an additional eleven failures from the current 5 and

6 NM when reduced to 3.75 NM as opposed to the increase of only five failures when

moving from 5 and 6 NM to 4 NM.

Part of this investigation poses the question as to whether or not the current

warning circles that have 6 NM radii are increasing the number of failures when

moving directly from a 6 NM to 4 NM warning distance. When the reduction is

made to 4 and 5 NM respectively from the previous 5 and 6 NM, there are only two

fewer failures. Both of these failures can be attributed to warning circles currently

at 6 NM. However, Table 16 and Figure 23 demonstrate that overall, it is not the

6 NM warning circles contributing to the bulk of the failures. From Table 16 and

Figure 23 we see that the increase in failures for the 6 NM warning circles is relatively
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consistent while the greater number of failures occurring at the shorter radii are due

to the larger increase in failures for the 5 NM warning circles.
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Figure 22: Number of Failures, Days Saved, and Hundreds of False Alarms Saved at
Different Warning Distances

Table 16: Number of Failures by Current Warning Circle Radii (NM)

Current Warning New Warning Circle Radii (NM)

Circle Radii (NM) 4.5 4.25 4 and 5 4 3.75 3.5

5 6 7 8 8 14 20

6 2 2 1 3 5 7

Total 8 9 9 11 19 27
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4.5 Summary

In conclusion, we found using the ellipse fitting algorithm results that the initial

strikes of a storm on average occur within 4 NM of the center of the storm. Completing

the process of fitting the distances from the edge of a preexisting lightning area yielded

a Weibull distribution fit. Though the particular Weibull distribution chosen is not

meant to be a precise model of the actual probability of strike, we used it as a tool

to determine the increase in probability of strike. Comparing the rate gained of risk

increase and area reduction led to the selection of 4 NM as the new warning radius.

Finally, the empirical validation results confirmed the selection of the 4 NM warning

radius as the best choice when considering the amount time and the number of false

alarms saved versus the extra risk incurred. In the next chapter, we discuss the results

from this study as compared to past results. We also suggest further areas of study

to include possible changes or follow-on studies from this work.
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V. Conclusions

5.1 Overview

The purpose of this section is to provide a summary of the method applied to

the primary research problem as well as the results of that method. We also discuss

the differences and similarities of this method in regards to past research on the

same topic. Additionally, we present an alternative methodology for solving the same

problem, including the advantages and disadvantages of using a different method.

We also suggest future work that can be explored regarding this research. Finally, we

offer our conclusions as to the operational application of the results of this study.

5.2 Results and Comparison to Past Research

Because of the discrepancy of past research methodologies and the manner in

which lightning warnings are issued, meteorologists at the 45 WS recognized the need

for a study that considered the distribution of the distance lightning travels beyond

the edge of a preexisting area. We found, using ellipses as the boundary, that an

extreme value distribution, specifically the Weibull distribution, may be used to fit

the distance lightning strikes beyond the edge of a preexisting area. Applying the

Weibull distribution and ascertaining the amount of additional risk incurred at shorter

distances, the distance of 4 NM was chosen as the new radius to empirically test.

Comparing the empirical results of 4 NM to various other choices, the 4 NM radius

continued to present as the appropriate choice based on the amount of additional risk

it produced.

Past studies focused on the distance lightning travels from the center of an area

designated as a storm; thus, there are fewer comparisons to be made as the purpose

of the studies differed slightly. We applied similar time and spatial constraints to our
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data as that of previous work. We used 20 months of data from a single location, a

considerable amount more than most other studies. The amount of data we used fell

third in magnitude behind Parsons (2000) who used four years worth of data covering

the majority of the US and McNamara (2002) whose study also included nearly four

years worth of data from the 45 WS.

One similarity between our study and the majority of previous work, save Mc-

Namara (2002), is the apparent problem of not accounting for storm origin. Recall

from Chapter II that McNamara (2002) corrected for this by pairing flashified LDAR

data, much like what we used in our study, with NLDN data, which provides actual

strike location. Our omission of the concept of storm origin was opposite that of the

other studies in that we used the in-cloud data and assumed ground strike location

at any of the various LDAR source point locations. We discuss a solution to this lack

of origin problem in the next section.

Briefly discussed in Chapter IV was the issue of isolated flashes. Various other

studies mentioned in Chapter II provide the single flash results of their studies. Par-

sons (2000) was particularly concerned with the number of isolated flashes in studies

predating hers and attempted to reduce the number of isolated flashes her method

produced. Although we mention this as a similarity to other studies, it is not a pri-

mary concern to us; however, we do suggest in the next section a different method

that might alleviate some of the isolated flashes.

5.3 Alternative Methodology and Future Research

While creating the primary ellipse fitting algorithm an alternative method that

could be applied to this data became perceptible. One of the hardest portions of

the phenomena of the lightning storm to model is the concept of multiple storms

occurring at the same time as well as the merging of two or more storm cells. The
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assumptions and conditions placed in the ellipse fitting algorithm of this research

attempted to correct for these issues as much as possible. Therefore, an alternative

method that arose as a potential solution to these problems is the idea of a dynamic

clustering analysis.

Clustering analysis would deal with similar issues as those we discovered in the

ellipse fitting algorithm. This includes how to decipher to which storm a particular

flash belongs when a flash occurs between two or more storms, or what is the criteria

for merging multiple storm cells. Although similar decisions must be made using a

dynamic clustering analysis, the results of such an application would be interesting

to observe, especially as a comparison to the results we found with our ellipse fitting

algorithm. Two specific advantages of a dynamic clustering algorithm would be a

reduction in the mean area of the ellipses as well as a reduction in the number of

isolated flashes. An example of a k-means cluster analysis on the same set of flashes

from Chapters II and III can be seen in Figure 24. To create this example we chose

to find three distinct clusters and then applied the MVEE to these specific clusters.

From Figure 24 we already see the problem of storms merging between storms one

and two.

In addition to a comparative study between cluster analysis and the method we

chose to adapt, further work could be done with our data. Primarily, a pairing of

the strike data, collected by the updated CGLSS, with our LDAR data to account

for the idea of lightning origin and provide true ground strike location would offer

additional justification of the warning distance reduction. Also, further empirical

testing of the new 4 NM warning radius using the current MERLIN system would be

useful. Finally, similar research in other geographic locations would help to solidify

the reduction in warning radius.
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Figure 24: K-Means Cluster Analysis Ellipse Fitting Approach

5.4 Final Remarks

While there is further research to be done on this particular topic, the results of

this study are very revealing. The amount of risk incurred with a reduction of 4 NM

from the current 5 NM lightning warning distance of .277% is acceptable, especially

given that there is presently risk at the current distance. We saw with a 4 NM warning

radius at the 45 WS an immense reduction in the amount of time saved with 22.5 8-hr

man days recovered as well as an average of 181 false alarms saved in five months a

year alone. As suggested previously, further studies of different locations and storm

types would offer even greater support of a reduction in the lightning warning radius.

However, because the 45 WS has so much invested in the assurance of safety of life

and property due to the nature of their mission, much of the decision to update the

AFI 91-203 lightning safety standards has historically been dictated by the 45 WS.

Therefore, with the results of this study, we suggest that the AFI 91-203 lightning

safety standards be changed to reflect a 4 NM watch and warning distance across the

United States Air Force (USAF).
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Appendices
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A. List of Acronyms

2D 2-Dimensional

3D 3-Dimensional

45 WS 45 Weather Squadron

4DLSS Four Dimensional Lightning Surveillance System

A-D Anderson-Darling

AF Air Force

AFI 91-203 Air Force Instruction 91-203

AMS American Meteorological Society

CCAFS Cape Canaveral Air Force Station

CDC Center for Disease Control

CDF Cumulative Distribution Function

CG Cloud-to-Ground

CGLSS Cloud-to-Ground Lightning Surveillance System

DBSF Distance Between Successive Flash
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DoD Department of Defense

EDF Empirical Distribution Function



EVD Extreme Value Distribution

EVT Extreme Value Theorem

GEV Generalized Extreme Value

GoF Goodness-of-Fit

GUI Graphical User Interface

IDL Interactive Data Language

IID Independent and Identically Distributed

KM Kilometers

K-S Kolmogorov-Smirnov

KSC Kennedy Space Center

LDAR Lightning Detection and Ranging

LPLWS Launch Pad Lightning Warning System

LSG Lightning Safety Group

M Statute Miles

MERLIN Mesoscale Eastern Range Lightning Information Network

MVEE Minimum Volume Enclosing Ellipsoid

NASA National Aeronautics and Space Administration
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NLDN National Lightning Detection Network

NM Nautical Miles

NOAA National Oceanic and Atmospheric Administration

NSSL National Severe Storms Laboratory

NWS National Weather Service

OSHA Occupational Safety and Health Administration

PAFB Patrick Air Force Base

PCA Principal Component Analysis

SCIT Storm Cell Identification and Tracking

TOA Time of Arrival

US United States

USAF United States Air Force

VHF Very High Frequency

WATADS WSR-88D Algorithm Testing and Display System

WSR-88D Weather Surveillance Radar - 88 Delta
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B. Lightning Strike Process

Figure 25: Steps of the Lightning Strike Process
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C. Ellipse Representations and Conversions

Parametric: h, k, a, b, and τ

ε =

{
(x, y) |

x
y

 =

h
k

+

cos(τ) − sin(τ)

sin(τ) cos(τ)


a cos(t)

b sin(t)

 , 0 ≤ t ≤ 2π

}

Conic: B, C, D, E, and F

ε =
{

(x, y) | x2 +Bxy + Cy2 +Dx+ Ey + F = 0
}

Foci/String: α1, β1, α2, β2, and s

ε =
{

(x, y) |
√

(x− α1)2 + (y − β1)2 +
√

(x− α2)2 + (y − β2)2 = s
}

Conic → Parametric

If Ax2+Bxy+Cy2+Dx+Ey+F = 0 specifies an ellipses and we define the matrices:

M0 =


F D/2 E/2

D/2 A B/2

E/2 B/2 C

 M =

 A B/2

B/2 C


then,

a =
√
−det(M0)/(det(M)λ1) b =

√
−det(M0)/(det(M)λ2)

h = (BE − 2CD)/(4AC −B2) k = (BD − 2AE)/(4AC −B2)

τ = arctan((A− C)/B)/2

where λ1 and λ2 are the eigenvalues of M ordered so that |λ1 −A| ≤ |λ1 − C|. (This

ensures that |λ2 − C| ≤ |λ2 − A|.)
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Parametric → Conic

If c = cos(τ) and s = sin(τ), then the ellipse

x(t) = h+ c[a cos(t)]− s[b sin(t)]

y(t) = k + s[a cos(t)] + c[b sin(t)]

is also specified by Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 where

A = (bc)2 + (as)2

B = −2cs(a2 − b2)

C = (bs)2 + (ac)2

D = −2Ah− kB

E = −2Ck − hB

F = −(ab)2 + Ah2 +Bhk + Ck2

Parametric → Foci/String

Let ε be the ellipse

x(t) = h+ cos(τ)[a cos(t)]− sin(τ)[b sin(t)]

y(t) = k + sin(τ)[a cos(t)] + cos(τ)[b sin(t)]

If c =
√
a2 − b2 then ε has foci

F1 = (h− cos(τ)c, k − sin(τ)c) F2 = (h+ cos(τ)C, k + sin(τ)C)

and string length
s = 2a
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Foci/String → Parametric

If F1 = (α1, β1), F2 = (α2, β2) and s defines an ellipse then

a = s/2

b =
√
s2 − ((α1 − α2)2 + (β1 − β2)2)/2

h = (α1 + α2)/2

k = (β1 + β2)/2

τ = arctan((β2 − β1)/(α2 − α1))
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D. Design, Constraint, and Scatter Matrices of the
Fitzgibbon Least Squares Ellipse Fitting Approach

Design Matrix

D =



x2
1 x1y1 y2

1 x1 y1 1

...
...

...
...

...
...

x2
i xiyi y2

i xi yi 1

...
...

...
...

...
...

x2
N xNyN y2

N xN yN 1


Constraint Matrix

C =



0 0 2 0 0 0

0 −1 0 0 0 0

2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


Scatter Matrix

S = DTD

=



Sx4 sx3y Sx2y2 Sx3 Sx2y Sx2

Sx3y Sx2y2 Sxy3 Sx2y Sxy2 Sxy

Sx2y2 Sxy3 Sy4 Sxy2 Sy3 Sy2

Sx3 Sx2y Sxy2 Sx2 Sxy Sx

Sx2y Sxy2 Sy3 Sxy Sy2 Sy

Sx2 Sxy Sy2 Sx Sy S1


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E. LDAR Data Sample

Date Time X Y Z Epoch Time

01/07/2013 00:58:08:442365,-23634,-126106,10450,1357538288.442365

01/07/2013 01:02:40:561306,-20468,-58349,6492,1357538560.561306

01/07/2013 01:02:40:56143,-20846,-57710,6262,1357538560.56143

01/07/2013 01:02:40:563187,-20955,-57658,6968,1357538560.563187

01/07/2013 01:02:40:563633,-18778,-58969,7399,1357538560.563633

01/07/2013 01:02:40:564347,-19129,-61794,10385,1357538560.564347

01/07/2013 01:02:40:564678,-19100,-59666,6212,1357538560.564678

01/07/2013 01:02:40:565384,-19065,-56984,7530,1357538560.565384

01/07/2013 01:02:40:565833,-18570,-57859,7201,1357538560.565833

01/07/2013 01:02:40:568385,-18826,-55372,8458,1357538560.568385

01/07/2013 01:02:40:569221,-18177,-56798,7685,1357538560.569221

01/07/2013 01:02:40:569344,-17871,-55716,7164,1357538560.569344

01/07/2013 01:02:40:569954,-18403,-56330,7539,1357538560.569954

01/07/2013 01:02:40:573603,-19857,-55328,7232,1357538560.573603

01/07/2013 01:02:40:574448,-21581,-56418,6816,1357538560.574448

01/07/2013 01:02:40:574825,-17578,-57205,7528,1357538560.574825

01/07/2013 01:02:40:575795,-21655,-57388,6873,1357538560.575795

01/07/2013 01:02:40:577273,-19918,-56176,7115,1357538560.577273

01/07/2013 01:02:40:578929,-19581,-59359,6973,1357538560.578929

01/07/2013 01:02:40:580822,-19288,-54003,7130,1357538560.580822

01/07/2013 01:02:40:588608,-18725,-54068,7022,1357538560.588608

01/07/2013 01:02:40:592467,-18857,-52932,8758,1357538560.592467

01/07/2013 01:02:40:603366,-20878,-58533,6172,1357538560.603366
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01/07/2013 01:02:40:61154,-21118,-59062,5938,1357538560.61154

01/07/2013 01:02:40:617129,-21432,-58926,6225,1357538560.617129

01/07/2013 01:04:53:424723,64603,4312,7624,1357538693.424723

01/07/2013 01:04:53:416047,59911,4527,6052,1357538693.416047

01/07/2013 01:04:53:416221,59598,4388,6051,1357538693.416221

01/07/2013 01:04:53:425215,59188,5224,6842,1357538693.425215

01/07/2013 01:04:53:432122,59371,5021,6771,1357538693.432122

01/07/2013 01:04:53:432539,59801,5129,6892,1357538693.432539

01/07/2013 01:04:53:43475,61915,5119,6413,1357538693.43475

01/07/2013 01:04:53:436361,60388,5108,6988,1357538693.436361

01/07/2013 01:04:53:437636,58233,5579,8100,1357538693.437636

01/07/2013 01:04:53:439928,61687,5327,6498,1357538693.439928

01/07/2013 01:04:53:442614,62915,5535,6481,1357538693.442614

01/07/2013 01:04:53:44505,59129,6168,6945,1357538693.44505

01/07/2013 01:04:53:468761,63627,6067,9137,1357538693.468761

01/07/2013 01:04:53:480643,59279,5822,7077,1357538693.480643

01/07/2013 01:04:53:483627,60567,6893,7237,1357538693.483627

01/07/2013 01:04:53:488159,63754,7208,6855,1357538693.488159

01/07/2013 01:04:53:489197,61920,7748,7243,1357538693.489197

01/07/2013 01:10:21:532066,-19170,-124046,10521,1357539021.532066

01/07/2013 01:14:25:251286,67865,10952,5758,1357539265.251286
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01/07/2013 01:14:24:927772,61464,16105,3153,1357539264.927772

01/07/2013 01:14:24:899732,69816,17468,8373,1357539264.899732

01/07/2013 01:14:25:174882,68290,16900,2157,1357539265.174882

01/07/2013 01:14:24:886718,71644,14324,9189,1357539264.886718

01/07/2013 01:14:24:835782,69105,12175,5141,1357539264.835782

01/07/2013 01:14:24:83985,67512,12172,8240,1357539264.83985

01/07/2013 01:14:24:91162,68162,12695,4846,1357539264.91162

01/07/2013 01:14:24:832529,60837,10795,3821,1357539264.832529

01/07/2013 01:14:24:834874,63576,11024,6775,1357539264.834874

01/07/2013 01:14:24:835276,64821,11005,7807,1357539264.835276

01/07/2013 01:14:24:836762,62665,10501,6142,1357539264.836762

01/07/2013 01:14:24:837259,65252,10304,7519,1357539264.837259

01/07/2013 01:14:24:840787,65873,10842,8243,1357539264.840787

01/07/2013 01:14:24:846928,62411,10853,4729,1357539264.846928

01/07/2013 01:14:24:848087,64968,11256,6517,1357539264.848087

01/07/2013 01:14:24:851182,65615,11624,3553,1357539264.851182

01/07/2013 01:14:24:855456,65620,12453,7702,1357539264.855456

01/07/2013 01:14:24:864968,64424,13113,6762,1357539264.864968

01/07/2013 01:14:24:871735,65060,13328,6934,1357539264.871735
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F. Data Processing Code

%Import Data

[ date x0 y0 z0 epoch ] = text read ( 'F:\LDAR Thes is Data\LDAR 2013\LDAR 2013 06 . txt ' , '%s %f %f %f %f '

, ' de l im i t e r ' , ' , ' ) ;

[ f l a s h ] = text read ( 'F:\LDAR Thes is Data\LDAR 2013\LDAR 2013 06 . txt ' , '%s ' , ' de l im i t e r ' , '\n ' ) ;

x0 = x0 /1000 . ; %convert to km

y0 = y0 /1000 . ; %convert to km

%crea t e a l l the counters

row count = 1 ; %row counter

num sourcepts = 0 ; %number o f source po in t s in f l a s h counter

f l a s h t o t = 0 ; %counter f o r t o t a l number o f f l a s h e s in f i r s t loop

pcount = 0 ; %counter f o r the number o f source po in t s in f i r s t loop f o r

each f l a s h

fpcount = ze ro s (1 , l ength ( f l a s h ) ) ; %p r e a l l o c a t e s i z e o f matrix that counts number o f s ou r c epo in t s

in each f l a s h

%This loop goes through the f l a s h data and counts the number o f

%sour c epo in t s in each f l a s h and keeps track o f the t o t a l number o f f l a s h e s

%the t o t a l number o f source po int s f o r each f l a s h i s s to red in fpcount

f o r i = 1 : l ength ( f l a s h )

i f (˜ isempty ( f l a s h { i }) )

pcount = pcount + 1 ;

e l s e

f l a s h t o t = f l a s h t o t + 1 ;

fpcount ( f l a s h t o t ) = pcount ;

pcount = 0 ;

end

end

f l a s h t o t = f l a s h t o t +1; %t o t a l number o f f l a s h e s in f i l e ( s i n c e l a s t one isn ' t counted during

the loop we add one )

fpcount ( f l a s h t o t )= pcount ; %we have to input the l a s t number o f source po int s f o r the l a s t f l a s h

as i t ' s not accounted f o r in loop

max pcount = max( fpcount ) %ju s t g i v e s max number o f s ou r c epo in t s in a f l a s h

%t o t a l s ou r c epo in t s f o r a l l f l a h s e s w/ >=5 sour c epo in t s

%t o t a l f l a s h e s >= 5 source po int s

%count number o f s ou r c epo in t s and f l a s h e s to p r e a l l o c a t e s i z e s f o r f a s t e r

%proc e s s i ng

fpcount 2 = f ind ( fpcount >=5) ;

t o t a l f l a s h e s = length ( fpcount 2 )

extra = ze ro s (1 , t o t a l f l a s h e s ) ;

fpcount 2 = [ fpcount 2 ; extra ] ;

fpcount 2 ( 2 , : )= fpcount ( fpcount 2 ( 1 , : ) ) ;

t o t a l s r c p t s = sum( fpcount 2 ( 2 , : ) )

date0 = ze ro s ( t o t a l f l a s h e s , 1 1 ) ; %p r e a l l o c a t e s i z e o f date matrix

%date0 : c o l 1 = f l a s h #, co l 2 = # s r cp t s in f l a sh , c o l 3 :8 = yyyy MM DD hh

%mm ss SSSSSS ,

f l a s h x = ze ro s (max pcount , t o t a l f l a s h e s ) ;

f l a s h y = ze ro s (max pcount , t o t a l f l a s h e s ) ;

%th i s loop goes through and s epe r a t e s f l a s h e s in to useab le form so that

%date / time stamps are accounted f o r f o r each f l a s h / source po int . It ' s only

%look ing f o r f l a s h e s with >= 5 source po int s

l a s t = 0 ;

dcount=1; %date counter
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row count2 = 1 ; %second row counter

f l a s h c oun t = 0 ; %number o f f l a s h e s in the f i l e g r e a t e r than/ equal to 5 source

po in t s counter

co l count = 1 ; %column counter

s o u r c e s t a r t =1; %f i r s t s t a r t i n g point o f loop and subsequent s t a r t i n g point

a f t e r num sourcepts i s added

f o r i = 1 : l ength ( fpcount )

num sourcepts = fpcount ( i ) ; %makes cur rent number o f source po int s fpcount ( i )

i f num sourcepts >= 5

l a s t = s ou r c e s t a r t + num sourcepts −1;

f l a s h c oun t= f l a sh coun t + 1 ;

date0 ( dcount , 1 )= f l a sh coun t ;

date0 ( dcount , 2 )=num sourcepts ;

dcount = dcount+1;

f o r n = s ou r c e s t a r t : l a s t

%f la sh mat ( row count , 1 ) = x0 (n) ;

% f la sh mat ( row count , 2 ) = y0 (n) ;

f l a s h x ( row count2 , co l count )=x0 (n) ;

f l a s h y ( row count2 , co l count )=y0 (n) ;

% row count = row count +1;

row count2 = row count2+1;

end

s o u r c e s t a r t = l a s t +1;

co l count = co l count + 1 ;

row count2 = 1 ;

e l s e

l a s t = s ou r c e s t a r t + num sourcepts −1;

s o u r c e s t a r t = l a s t + 1 ;

end

end

%r e s e t counters f o r l a s t loop

row count = 1 ; %row counter

s o u r c e s t a r t = 1 ; %f i r s t s t a r t i n g point o f loop and subsequent s t a r t i n g point

a f t e r num sourcepts i s added

dates = c e l l ( t o t a l f l a s h e s , 1 ) ; %p r e a l l o c a t e the c e l l l i s t f o r a l l the date / time stamps o f the

f i r s t sourcepo in t o f a s t r i k e

%th i s loop goes through and pu l l s the f i r s t time stamp f o r every f l a s h w/ >= 5

%source po int s

f o r i = 1 : l ength ( fpcount )

num sourcepts = fpcount ( i ) ;

i f ( num sourcepts >= 5)

%l a s t = s ou r c e s t a r t + num sourcepts ;

%f l a sh coun t= f l a sh coun t + 1 ;

dates{ row count ,1} = date{ s o u r c e s t a r t } ;

s o u r c e s t a r t = s ou r c e s t a r t + num sourcepts ;

row count = row count + 1 ;

e l s e

s o u r c e s t a r t = s ou r c e s t a r t + num sourcepts ;

end

end

%th i s loop goes through , conver t s the dates to readab le form and then puts

%them into the date0 matrix so that the f l a s h #, # source po in t s in f l a sh ,

%and date / time stamp f o r each f l a s h are a l l in the same

f o r i = 1 : l ength ( dates )
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conv date = datet ime ( dates ( i ) , ' InputFormat ' , 'MM/dd/yyyy HH:mm: s s : SSSSSS ' , 'Format ' , 'dd−MM−yyyy

HH:mm: s s . SSSSSS ' ) ;

%put dates in to vector in date0 matrix

date0 ( i , 3 : 8 ) = datevec ( conv date ) ;

end

%c r e a t e s a l l the counters

num sourcetpts = 0 ;

f l a sh ex t r eme = ze ro s (max pcount , t o t a l f l a s h e s ) ; %c r e a t e s a matrix that l i s t s a l l the extreme

po int s f o r each f l a s h

row count = 1 ;

co l count = 1 ;

e x t s t a r t = 1 ;

l a s t = 0 ;

to t = 0 ;

%th i s loop goes through and f i nd s a l l the extreme po int s f o r each f l a sh , i t

%s t o r e s which po int s they are in the f l a sh ex t r eme matrix and reco rds the

%number o f extreme po int s

f o r i = 1 : t o t a l f l a s h e s

num sourcetpts = date0 ( i , 2 ) ;

extreme = convhul l ( f l a s h x ( 1 : num sourcetpts , i ) , f l a s h y ( 1 : num sourcetpts , i ) ) ;

to t = nnz ( extreme )−1;

f l a sh ex t r eme ( 1 : tot , c o l count ) = extreme ( 1 : to t ) ;

date0 ( i , 9 ) = tot ;

co l count = co l count + 1 ;

end

most extremes = max( date0 ( : , 9 ) ) ; %reco rds the max number o f extreme sour c epo in t s f o r any given

f l a s h

to ta l ex t r emes = sum( date0 ( : , 9 ) ) ; %reco rds the t o t a l number o f extreme sour c epo in t s f o r a l l the

f l a s h e s

%th i s loop goes through and c r e a t e s s epe ra t e f l a s h x and f l a s h y matr i ces

%f o r the extreme po int s o f each f l a s h

f l a sh x ex t r eme s = ze ro s ( most extremes , t o t a l f l a s h e s ) ;

f l a sh y ex t r eme s = ze ro s ( most extremes , t o t a l f l a s h e s ) ;

row count = 1 ;

f o r i = 1 : t o t a l f l a s h e s

f i n a l = nnz ( f l a sh ex t r eme ( : , i ) ) ;

f o r n = 1 : f i n a l

f l a sh x ex t r eme s ( row count , i ) = f l a s h x ( f l a sh ex t r eme (n , i ) , i ) ;

f l a s h y ex t r eme s ( row count , i ) = f l a s h y ( f l a sh ex t r eme (n , i ) , i ) ;

row count = row count + 1 ;

end

row count = 1 ;

end

o r i g i n a l s r c p t s = sum( fpcount ) ;

numextpts = 0 ; %counts number o f extreme po int s f o r each f l a s h

x1 = 0 ; %x coord inate f o r c en t r a l s i t e

x2 = 0 ; %x coord inate f o r each ext s r cp t

y1 = 0 ; %y coord inate f o r c en t r a l s i t e

y2 = 0 ; %y coord inate f o r each ext s r cp t

d = 0 ; %d i s tance from sr cp t to c en t r a l s i t e

date00 = ze ro s ( t o t a l f l a s h e s , 2 ) ;

o l d t o t s r c p t s = t o t a l s r c p t s ;

o l d t o t f l a s h e s = t o t a l f l a s h e s ;
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o ld to t ex t r emes = to ta l ex t r emes ;

%th i s loop goes through and i d e n t i f i e s a l l o f the f l a s h e s that are out s ide a

%25 mile rad ius o f the c en t r a l s i t e

f o r i = 1 : t o t a l f l a s h e s

numextpts = date0 ( i , 9 ) ;

d i s t ance check = ze ro s ( numextpts , 1 ) ;

f o r w = 1 : numextpts

x2 = f l a sh x ex t r eme s (w, i ) ;

y2 = f l a sh y ex t r eme s (w, i ) ;

d = sq r t ( ( x2−x1 ) ˆ2 + (y2−y1 ) ˆ2) ;

i f d > 40.2336

d i s t ance check (w, 1 ) = 1 ;

end

end

i f sum( d i s t ance check ( : , 1 ) ) == 0

date00 ( i , 1 ) = 1 ; %i nd i c a t e s the f l a s h i s with in the boundary

date00 ( i , 2 ) = d ;

end

end

i n s i d e f l a s h e s = sum( date00 ( : , 1 ) ) ;

f i r s t i n s i d e f l a s h = f ind ( date00 ( : , 1 ) ==1,1, ' f i r s t ' ) ;

l a s t i n s i d e f l a s h = f ind ( date00 ( : , 1 ) ==1,1, ' l a s t ' ) ;

i n f l a sh mat = ze ro s ( i n s i d e f l a s h e s , 1 ) ;

i n f l a sh mat ( : , 1 ) = f i nd ( date00 ( : , 1 ) == 1) ;

date0 = date0 ( i n f l a sh mat ( : , 1 ) , : ) ; %g iv e s the date matrix o f only those f l a s h e s that are with in

25 mi l e s

f l a sh ex t r eme = f l a sh ex t r eme ( : , i n f l a sh mat ( : , 1 ) ) ;

f l a s h x = f l a s h x ( : , i n f l a sh mat ( : , 1 ) ) ;

f l a s h y = f l a s h y ( : , i n f l a sh mat ( : , 1 ) ) ;

f l a sh x ex t r eme s = f l a sh x ex t r eme s ( : , i n f l a sh mat ( : , 1 ) ) ;

f l a sh y ex t r eme s = f l a sh y ex t r eme s ( : , i n f l a sh mat ( : , 1 ) ) ;

%th i s loop goes through and adds a l l o f the extreme sour c epo in t s f o r each

%f l a s h in to the f l a sh mat matrix where co l 1 = x−va lues f o r a l l source

%points , c o l 2 = y−va lues f o r a l l source points , c o l 3 = x−va lues f o r

%extreme sourcepo int s , c o l 4 = y−va lues f o r extreme sour c epo in t s

row count = 1 ;

row count2 = 1 ;

t o t a l s r c p t s = sum( date0 ( : , 2 ) ) ;

f l a sh mat = ze ro s ( t o t a l s r c p t s , 6 ) ; %p r e a l l o c a t e s i z e o f f l a s h matrix

f o r i = 1 : i n s i d e f l a s h e s

f i n a l = nnz ( f l a sh ex t r eme ( : , i ) ) ;

f o r n = 1 : f i n a l

f l a sh mat ( row count , 3 ) = f l a s h x ( f l a sh ex t r eme (n , i ) , i ) ;

f l a sh mat ( row count , 4 ) = f l a s h y ( f l a sh ex t r eme (n , i ) , i ) ;

row count = row count + 1 ;

end

l a s t one = date0 ( i , 2 ) ;

f o r p = 1 : l a s t one

f l a sh mat ( row count2 , 1 ) = f l a s h x (p , i ) ;

f l a sh mat ( row count2 , 2 ) = f l a s h y (p , i ) ;

row count2 = row count2 + 1 ;

end

end
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%th i s loop goes through and adds the f l a s h number a s s o c i a t ed with each

%sourcepo in t to the f l a sh mat matrix

s t a r t = 1 ;

s t a r t e x t = 1 ;

l a s t e x t = 0 ;

l a s t = 0 ;

num srcpts = 0 ;

num extpts = 0 ;

f o r i = 1 : l ength ( date0 )

num srcpts = date0 ( i , 2 ) ;

num extpts = date0 ( i , 9 ) ;

l a s t = s t a r t + num srcpts − 1 ;

l a s t e x t = s t a r t e x t + num extpts −1;

f o r n = s t a r t : l a s t

f l a sh mat (n , 5 ) = i ;

end

f o r p = s t a r t e x t : l a s t e x t

f l a sh mat (p , 6 )=i ;

end

s t a r t e x t = s t a r t e x t + num extpts ;

s t a r t = s t a r t + num srcpts ;

end

t o t a l s r c p t s = sum( date0 ( : , 2 ) ) ;

t o t a l f l a s h e s = i n s i d e f l a s h e s ;

t o t a l ex t r emes = sum( date0 ( : , 9 ) ) ;

most extremes = max( date0 ( : , 9 ) ) ;

max pcount = max( date0 ( : , 2 ) ) ;
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G. Convex Hull Code

f unc t i on convexhul l

a=imread ( ' impcon .bmp ' ) ;

a=a ( : , : , 3 ) ;

o=a ;

subplot (2 , 2 , 1 )

imshow( o )

t i t l e ( ' o r i g i n a l image ' ) ;

[ r , c ]= s i z e ( a ) ;

c=[1 0 0 ;1 0 0 ;1 0 0 ]

c1=[1 1 1 ;0 0 0 ;0 0 0 ] ;

c2=[0 0 1 ; 0 0 1 ;0 0 1 ] ;

c3=[0 0 0 ;0 0 0 ;1 1 1 ] ;

b=a ;

f o r u=1:10

d=(imerode (b , c ) ) | a ;

i f (b==d)

break ;

end

b=d ;

end

%−−−−−−−−−−−−−

m=a ;

f o r u=1:10

n=(imerode (m, c1 ) ) | a ;

i f (m==n)

break ;

end

m=n ;

end

%−−−−−−−−−−−−−

p=a ;

f o r u=1:10

l=(imerode (p , c2 ) ) | a ;

i f (p==l )

break ;

end

p=l ;

end

%−−−−−−−−−−−−−

z=a ;

f o r u=1:10

v=(imerode ( z , c3 ) ) | a ;

i f ( z==v)

break ;

end

z=v ;

end

%−−−−−−−−−−−−−

H=z | p |m| b ;

subplot (2 , 2 , 2 )

imshow(H)

t i t l e ( ' convex Hull o f image ' ) ;
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H. Ellipse Fitting Functions

Least Squares Best Fit Ellipse Code:

f unc t i on A = E l l i p s eD i r e c tF i t (XY, c o l o r ) ;

% Direct e l l i p s e f i t , proposed in a r t i c l e

% A. W. Fitzgibbon , M. Pilu , R. B. F i sher

% ”Direc t Least Squares F i t t i n g o f E l l i p s e s ”

% IEEE Trans . PAMI, Vol . 21 , pages 476−480 (1999)

% Our code i s based on a numer ica l ly s t ab l e ve r s i on

% of t h i s f i t publ i shed by R. Ha l i r and J . F lu s s e r

% Input : XY(n , 2 ) i s the array o f coo rd ina t e s o f n po int s x ( i )=XY( i , 1 ) , y ( i )=XY( i , 2 )

% Output : A = [ a b c d e f ] ' i s the vector o f a l g eb r a i c

% parameters o f the f i t t i n g e l l i p s e :

% axˆ2 + bxy + cyˆ2 +dx + ey + f = 0

% the vector A i s normed , so that | |A| |=1

% This i s a f a s t non−i t e r a t i v e e l l i p s e f i t .

% I t r e tu rns e l l i p s e s only , even i f po in t s are

% be t t e r approximated by a hyperbola .

% I t i s somewhat b iased toward sma l l e r e l l i p s e s .

c en t ro id = mean(XY) ; % the cen t ro id o f the data s e t

D1 = [ (XY( : , 1 )−c en t ro id (1) ) . ˆ2 , (XY( : , 1 )−c en t ro id (1) ) . ∗ (XY( : , 2 )−c en t ro id (2) ) , ...

(XY( : , 2 )−c en t ro id (2) ) . ˆ 2 ] ;

D2 = [XY( : , 1 )−c en t ro id (1) , XY( : , 2 )−c en t ro id (2) , ones ( s i z e (XY, 1 ) ,1) ] ;

S1 = D1 ' ∗D1 ;

S2 = D1 ' ∗D2 ;

S3 = D2 ' ∗D2 ;

T = −inv ( S3 ) ∗S2 ' ;

M = S1 + S2∗T;

M = [M( 3 , : ) . / 2 ; −M(2 , : ) ; M( 1 , : ) . / 2 ] ;

[ evec , eva l ] = e i g (M) ;

cond = 4∗ evec ( 1 , : ) .∗ evec ( 3 , : )−evec ( 2 , : ) . ˆ 2 ;

A1 = evec ( : , f i nd ( cond>0) ) ;

A = [A1 ; T∗A1 ] ;

A4 = A(4)−2∗A(1) ∗ c en t ro id (1)−A(2) ∗ c en t ro id (2) ;

A5 = A(5)−2∗A(3) ∗ c en t ro id (2)−A(2) ∗ c en t ro id (1) ;

A6 = A(6)+A(1) ∗ c en t ro id (1)ˆ2+A(3) ∗ c en t ro id (2)ˆ2+...

A(2) ∗ c en t ro id (1) ∗ c en t ro id (2)−A(4) ∗ c en t ro id (1)−A(5) ∗ c en t ro id (2) ;

A(4) = A4 ; A(5) = A5 ; A(6) = A6 ;

A = A/norm(A) ;

de l t a = A;

rx = XY( : , 1 ) ;

ry = XY( : , 2 ) ;

%co l o r = ' black ' ;

d r awe l l i p ( de l ta , rx , ry , c o l o r )

end % E l l i p s eD i r e c tF i t

Draw Ellipse Code (used in Least Squares Best Fit Ellipse Code):

% draws an e l l i p s e with a (1) xˆ2 + a (2) xy + a (3) yˆ2 + a (4) x + a (5) y + a (6) = 0

% ove r l a i d with o r i g i n a l po in t s ( rx , ry )

func t i on drawe l l i p ( de l ta , rx , ry , c o l o r )

%de l t a = check ;
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% rx = p l o t t i n g2 ( 1 : l a s t2 , 1 ) ;

% ry = p l o t t i n g2 ( 1 : l a s t2 , 2 ) ;

A = de l t a (1 ) ;

B = de l t a (2) ;

C = de l t a (3 ) ;

D = de l t a (4) ;

E = de l t a (5 ) ;

F = de l t a (6 ) ;

Mnot = [F D/2 E/2 ; D/2 A B/2 ; E/2 B/2 C ] ;

M = [A B/2 ; B/2 C ] ;

[ Vnot , Dnot ] = e i g (Mnot) ;

[V, Dnew ] = e i g (M) ;

i f abs (Dnew(1 ,1 )−A) <= abs (Dnew(1 ,1 )−C)

lambda 1 = Dnew(1 ,1 ) ;

lambda 2 = Dnew(2 ,2 ) ;

e l s e

lambda 1 = Dnew(2 ,2 ) ;

lambda 2 = Dnew(1 ,1 ) ;

end

a = sq r t ((−det (Mnot) ) /( det (M) ∗ lambda 1 ) ) ;

b = sq r t ((−det (Mnot) ) /( det (M) ∗ lambda 2 ) ) ;

h = (B∗E − 2∗C∗D) /(4∗A∗C − Bˆ2) ;

k = (B∗D − 2∗A∗E) /(4∗A∗C − Bˆ2) ;

tau = ( acot ( (A−C)/B) ) /2 ;

t = 0 : . 0 1 : 2 ∗ pi ;

x = h + cos ( tau ) ∗a∗ cos ( t )−s i n ( tau ) ∗b∗ s i n ( t ) ;

y = k + s in ( tau ) ∗a∗ cos ( t )+cos ( tau ) ∗b∗ s i n ( t ) ;

hold on

p lo t (x , y , ' Color ' , c o l o r ) ;

p l o t ( rx , ry , ' . ' , ' Color ' , ' black ' ) ;

PCA Ellipse Code:

f unc t i on [ h , k , a , b , tau , x , y , cha r l i e , F 1 , F 2 , s , area ] = PCA Ellipse (x , y , conf )

% x =p l o t t i n g ( 1 : l a s t , 1 ) ;

% y = p l o t t i n g ( 1 : l a s t , 2 ) ;

% conf = . 7 5 ;

% co l o r = ' green ' ;

XY = [ x y ] ;

c ente r = mean(XY) ;

h = cente r (1 ) ;

k = cente r (2 ) ;

% c = convhul l (XY) ; %NEW

% c = c ( 1 : end−1) ; %NEW

% XY = XY( c , : ) ; %NEW

CovMat = cov (XY) ;

[ eigVec , e igVal ] = e i g (CovMat) ;

[ eigVec , e igVal ] = sortem ( eigVec , e igVal ) ;

%conf = . 9 5 ;

n = length (XY) ;

p = 2 ;

c = f i nv ( conf , p , n−p) ;

a = sq r t ( c∗ e igVal (1 , 1 ) ) ;

b = sq r t ( c∗ e igVal (2 , 2 ) ) ;
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t = 0 : . 0 1 : 2 ∗ pi ;

tau = atan ( eigVec (2) / eigVec (1) ) ;

x = h + cos ( tau ) ∗a∗ cos ( t )−s i n ( tau ) ∗b∗ s i n ( t ) ;

y = k +s in ( tau ) ∗a∗ cos ( t )+cos ( tau ) ∗b∗ s i n ( t ) ;

c h a r l i e = sq r t ( aˆ2 − bˆ2) ;

F 1 = [ h − cos ( tau ) ∗ cha r l i e , k−s i n ( tau ) ∗ c h a r l i e ] ;

F 2 = [ h + cos ( tau ) ∗ cha r l i e , k + s in ( tau ) ∗ c h a r l i e ] ;

s = 2∗a ;

area = pi ∗a∗b ;

% hold on

% plo t (XY( : , 1 ) ,XY( : , 2 ) , ' . ' , ' Color ' , ' black ' ) ;

% p lo t (x , y , '− ' , ' Color ' , ' blue ' ) ;

%p lo t (h , k , ' o ' , ' Color ' , ' green ' ) ;

Sort Function Code (used in PCA Ellipse Code):

f unc t i on [ P2 ,D2]=sortem (P,D)

% th i s func t i on takes in two matr i ces P and D, presumably the output

% from Matlab ' s e i g funct ion , and then s o r t s the columns o f P to

% match the so r t ed columns o f D ( going from l a r g e s t to sma l l e s t )

% EXAMPLE:

% D =

% −90 0 0

% 0 −30 0

% 0 0 −60

% P =

% 1 2 3

% 1 2 3

% 1 2 3

% [P,D]=sortem (P,D)

% P =

% 2 3 1

% 2 3 1

% 2 3 1

% D =

% −30 0 0

% 0 −60 0

% 0 0 −90

D2=diag ( s o r t ( diag (D) , ' descend ' ) ) ; % make d iagona l matrix out o f so r t ed d iagona l va lues o f input D

[ c , ind ]= so r t ( diag (D) , ' descend ' ) ; % s t o r e the i n d i c e s o f which columns the so r t ed e i g enva lue s come

from

P2=P( : , ind ) ; % arrange the columns in t h i s order

Minimum Volume Enclosing Ellipsoid Code (2D):

f unc t i on [ h , k , a , b , tau , x , y , cha r l i e , F 1 , F 2 , s , area ]= MVE(P, to l e rance , c o l o r )

% [A , c ] = MinVolEl l ipse (P, t o l e r an c e )

% Finds the minimum volume en c l s i n g e l l i p s o i d (MVEE) o f a s e t o f data

% po int s s to red in matrix P. The f o l l ow ing opt imizat i on problem i s so lved :

% minimize log ( det (A) )

% sub j e c t to ( P i − c ) ' ∗ A ∗ ( P i − c ) <= 1

% in va r i a b l e s A and c , where P i i s the i−th column of the matrix P.

% The s o l v e r i s based on Khachiyan Algorithm , and the f i n a l s o l u t i on

% i s d i f f e r e n t from the optimal value by the pre−s p e s i f i e d amount o f ' to l e rance ' .
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% inputs :

%−−−−−−−−−

% P : (d x N) dimnes iona l matrix conta in ing N po int s in Rˆd .

% to l e r an c e : e r r o r in the s o l u t i on with r e spe c t to the optimal value .

% outputs :

%−−−−−−−−−

% A : (d x d) matrix o f the e l l i p s e equat ion in the ' cente r form ' :

% (x−c ) ' ∗ A ∗ (x−c ) = 1

% c : 'd ' dimens ional vec tor as the cente r o f the e l l i p s e .

%%%%%%%%%%%%%%%%%%%%% Solv ing the Dual problem%%%%%%%%%%%%%%%%%%%%%%%%%%%5

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% data po int s

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[ d N] = s i z e (P) ;

Q = ze ro s (d+1,N) ;

Q( 1 : d , : ) = P( 1 : d , 1 :N) ;

Q(d+1 , :) = ones (1 ,N) ;

% i n i t i a l i z a t i o n s

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

count = 1 ;

e r r = 1 ;

u = (1/N) ∗ ones (N, 1 ) ; % 1 s t i t e r a t i o n

% Khachiyan Algorithm

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

whi le e r r > to l e rance ,

X = Q ∗ diag (u) ∗ Q ' ; % X = \ sum i ( u i ∗ q i ∗ q i ' ) i s a (d+1)x (d+1) matrix

M = diag (Q' ∗ inv (X) ∗ Q) ; % M the d iagona l vec tor o f an NxN matrix

[maximum j ] = max(M) ;

s t e p s i z e = (maximum − d −1) /( ( d+1)∗(maximum−1) ) ;

new u = (1 − s t e p s i z e ) ∗u ;

new u ( j ) = new u ( j ) + s t e p s i z e ;

count = count + 1 ;

e r r = norm( new u − u) ;

u = new u ;

end

%%%%%%%%%%%%%%%%%%% Computing the E l l i p s e parameters%%%%%%%%%%%%%%%%%%%%%%

% Finds the e l l i p s e equat ion in the ' cente r form ' :

% (x−c ) ' ∗ A ∗ (x−c ) = 1

% I t computes a dxd matrix 'A' and a d dimens ional vec tor ' c ' as the cente r

% of the e l l i p s e .

U = diag (u) ;

% the A matrix f o r the e l l i p s e

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A = (1/d) ∗ inv (P ∗ U ∗ P ' − (P ∗ u) ∗(P∗u) ' ) ;

% cente r o f the e l l i p s e

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c = P ∗ u ;

%N = 50 ;

[U D V] = svd (A) ;

a = 1/ sq r t (D(1 ,1 ) ) ;

b = 1/ sq r t (D(2 ,2 ) ) ;

t = [ 0 : . 0 1 : 2 ∗ pi ] ;

% Parametric equat ion o f the e l l i p s e

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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% sta t e ( 1 , : ) = a∗ cos ( t ) ;

% s t a t e ( 2 , : ) = b∗ s i n ( t ) ;

% Coordinate transform

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

h = c (1) ;

k = c (2) ;

tau = atan (V(2) /V(1) ) ;

% X = V ∗ s t a t e ;

% X( 1 , : ) = X( 1 , : ) + h ;

% X( 2 , : ) = X( 2 , : ) + k ;

c h a r l i e = sq r t ( aˆ2 − bˆ2) ;

F 1 = [ h − cos ( tau ) ∗ cha r l i e , k−s i n ( tau ) ∗ c h a r l i e ] ;

F 2 = [ h + cos ( tau ) ∗ cha r l i e , k + s in ( tau ) ∗ c h a r l i e ] ;

s = 2∗a ;

area = pi ∗a∗b ;

x = h + cos ( tau ) ∗a∗ cos ( t )−s i n ( tau ) ∗b∗ s i n ( t ) ;

y = k +s in ( tau ) ∗a∗ cos ( t )+cos ( tau ) ∗b∗ s i n ( t ) ;

% p lo t (X( 1 , : ) ,X( 2 , : ) , ' Color ' , ' magenta ' ) ;

hold on

p lo t (x , y , 'LineWidth ' , 2 , ' Color ' , c o l o r ) ;

%p lo t (P( 1 , : ) ,P( 2 , : ) , ' o ' , ' Color ' , ' green ' ) ;
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I. Ellipse Fitting Algorithm Code

penny = 1 ;

FINALS = c e l l (20 ,2 ) ;

f o r tango = 15:16

f o r f o x t r o t = 5 :9

fu l lF i l eName = s p r i n t f ( '%d %d IF .mat ' , f ox t ro t , tango ) ;

sFileName = s p r i n t f ( '%d %d el l ipse data MVE .mat ' , f ox t ro t , tango ) ;

load ( fu l lF i l eName ) ;

%alpha = . 8 0 ;

d va l = 16 ; %20 ;

t ime va l = 600 ;

N = t o t a l f l a s h e s ; %t o t a l number o f f l a s h e s in date0 matrix (# of rows )

e l l i p s e s = ze ro s ( t o t a l f l a s h e s , 1 2 ) ; %c r ea t e the output matrix f o r a l l the data

cur r ent t ime = ze ro s (1 , 6 ) ; %current time o f cur rent f l a s h

l a s t f l a s h t im e = ze ro s (1 , 6 ) ; %time o f prev ious f l a s h

t ime e l ap s e = 0 ; %time between current f l a s h and prev ious f l a s h

p1 = 0 ; %x coord inate o f cur rent extreme point

p2 = 0 ; %y coord inate o f cur rent extreme point

d i s t ance = 0 ; %d i s tance from edge o f l a s t e l l i p s e to cur rent extreme point

d i s t aw a y l a s t e l l i p s e = 0 ; %max o f a l l d i s t an c e s = d i s t ance new f l a s h i s from l a s t e l l i p s e

c u r r e n t e l l i p s e = ze ro s ( t o t a l s r c p t s , 3 ) ; %matrix that holds a l l the sou r c epo in t s f o r the cur rent

e l l i p s e

i n s i d e = 0 ; % s r cp t s that occur i n s i d e cur rent e l l i p s e

out s ide = 0 ; % s r cp t s that occur out s ide e l l i p s e

a l l d i s t f r om c e n t e r = 0 ; %the d i s t ance from the cente r f o r each extreme point o f the cur rent

f l a s h

d i s t f r om c en t e r = 0 ; %max d i s tance from the cente r f o r the cur rent f l a s h

f l a s h e s i n c u r r e l l = ze ro s (N, 9 ) ; %matrix that keeps t rack o f cur rent f l a s h e s in the e l l i p s e

f l a s h t ime = ze ro s (1 , 6 ) ;

t d = 0 ;

c u r r s r c p t s = 0 ;

P = ze ro s (2 , t o t a l s r c p t s ) ;

t o l = . 0 1 ;

%LIST OF COUNTERS%

m = 0; %t o t a l number o f f l a s h e s used where ” i ” i s the cur rent f l a s h we are look ing at

c u r r f l a s h e s i n e l l = 0 ; %t o t a l number o f f l a s h e s in cur rent e l l i p s e

extpt s = 0 ; %count o f extpt s f o r each f l a s h

%EXTPT Counters f o r loop checking d i s t ance from l a s t e l l i p s e

count far away = 0 ;

row count = 1 ;

%EXTPT Counters f o r loop checking d i s t ance from l a s t e l l i p s e

e l l c o un t = 1 ; %count o f number o f e l l i p s e s that have been created

new srcpts = 0 ; %count o f s r cp t s f o r cur rent f l a s h

%counters f o r loop c r e a t i ng c u r r e n t e l l i p s e matrix

c u r r e l l s t a r t = 1 ; %current p lace to s t a r t counting f o r c u r r e n t e l l i p s e

c u r r e l l l a s t = 0 ; %l a s t entry in c u r r e n t e l l i p s e matrix

row counter = 1 ;

%counters f o r loop c r e a t i ng c u r r e n t e l l i p s e matrix

%a l l s r c p t s = 0 ; %count o f a l l s r cp t s in cur rent e l l i p s e

%LIST OF COUNTERS%

date0 ( : , 1 0 ) = ze ro s ( t o t a l f l a s h e s , 1 ) ; %changes va lues o f the t r a cke r f o r i f a f l a s h has/has not

been used a l l back to unused
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%Fi r s t whi le loop keeps everyth ing going un t i l a l l f l a s h e s have been used

%in an e l l i p s e

whi le m < N

%hold o f f

DD = f ind ( date0 ( : , 1 0 )==0) ;

dusk = length (DD) ;

f o r i = 1 : dusk %run through a l l f l a s h e s

whiskey = DD( i ) ;

% i f date0 ( whiskey , 1 0 ) == 0 %i f f l a s h has not been used , cont inue

cur r ent t ime = date0 ( whiskey , 3 : 8 ) ; %record current time o f the cur rent f l a s h

%i f there i s a l ready a f l a s h in the e l l i p s e t h i s loop w i l l go

%through and see what the time d i f f e r e n c e i s

i f c u r r f l a s h e s i n e l l > 0

l a s t f l a s h t im e = f l a s h e s i n c u r r e l l ( c u r r f l a s h e s i n e l l , 4 : 9 ) ; %

%%%%%%%%%%%%%%%%%%%%%%%%%%

t ime e l ap s e = etime ( current t ime , l a s t f l a s h t im e ) ;

i f t ime e l ap s e > 1800 | | count far away >= 5 %i f time d i f f e r e n c e i s g r e a t e r than

30 minutes we r e s e t everyth ing and s t a r t over at the beginning o f the f l a s h

l i s t

%INCLUDE UPDATE TO COUNTERS HERE

f l a s h e s i n c u r r e l l = ze ro s (N, 9 ) ;

d i s t aw a y l a s t e l l i p s e = 0 ;

c u r r e n t e l l i p s e = ze ro s ( t o t a l s r c p t s , 3 ) ;

c u r r e l l s t a r t = 1 ;

c u r r e l l l a s t = 0 ;

c u r r f l a s h e s i n e l l = 0 ;

date0 ( whiskey , 1 0 ) = 0 ;

e l l c o un t = e l l c o un t + 1 ;

break

end

extpts = date0 ( whiskey , 9 ) ; %f i nd s the number o f extreme po int s f o r the f l a s h ( s to r ed

in date0 co l #9)

d i s t = ze ro s ( extpts , 2 ) ; %c r e a t e s a matrix to record the d i s t an c e s from the

edge o f the e l l i p s e and from the cente r f o r each extreme point in the

f l a s h f o r n = 1 : extpts

p1 = f l a sh x ex t r eme s (n , whiskey ) ; %x coord o f cur rent extreme point

p2 = f l a sh y ex t r eme s (n , whiskey ) ;%y coord o f cur rent extreme point

%i f statment checks i f po int i s i n s i d e or out s ide

%the e l l i p s e , i f i t i s i n s ide , we can d i s r ega rd i t , i f

%out s ide we c a l c u l a t e d i s t ance and record in d i s t

%matrix

i f ( s q r t ( ( p1−F 1 (1 ,1 ) ) ˆ2 + (p2 − F 1 (1 ,2 ) ) ˆ2) + sq r t ( ( p1−F 2 (1 ,1 ) ) ˆ2 + (p2−F 2

(1 ,2 ) ) ˆ2) > s )

d t = sq r t ( ( p1−x ) .ˆ2 + (p2 − y ) . ˆ 2 ) ;

d i s t ance = min ( d t ) ;

d i s t (n , 1 ) = d i s tance ;

end

%f ind the d i s t ance from the cente r f o r each extreme point and record i t in co l

#2 o f the d i s t matrix

a l l d i s t f r om c e n t e r = sq r t ( ( p1−h) ˆ2 + (p2−k ) ˆ2) ;

d i s t (n , 2 ) = a l l d i s t f r om c e n t e r ;

end

row count = 1 ; %r e s e t s counter f o r d i s t matrix

d i s t aw a y l a s t e l l i p s e = max( d i s t ( : , 1 ) ) ; %determine the d i s t ance away from current
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e l l i p s e

d i s t f r om c en t e r = max( d i s t ( : , 2 ) ) ; %determine the d i s t ance away from the cente r o f

the cur rent e l l i p s e

e l l i p s e s ( whiskey , 4 : 6 ) = [ d i s t aw a y l a s t e l l i p s e ; d i s t aw a y l a s t e l l i p s e ;

d i s t f r om c en t e r ] ; %record in e l l i p s e s matrix end

i f d i s t aw a y l a s t e l l i p s e < d va l %16 KM = apprx . 9 .94 Miles

count far away = 0 ;

%ELLIPSE CALCULATIONS HERE

new srcpts = date0 ( whiskey , 9 ) ; %f i nd the number o f new sour c epo in t s ( extreme

po int s now) f o r the cur rent f l a s h

c u r r f l a s h e s i n e l l = nnz ( f l a s h e s i n c u r r e l l ( : , 1 ) ) ; %determine number o f

f l a s h e s cu r r en t l y in the e l l i p s e

%th i s loop goes through and f i nd s the f i r s t f l a s h in

%the e l l i p s e that i s at l e a s t 10 minutes o ld and

%removes that f l a s h from both matr i ces

i f c u r r f l a s h e s i n e l l > 0

f o r w = c u r r f l a s h e s i n e l l :−1:1

f l a s h t ime = f l a s h e s i n c u r r e l l (w, 4 : 9 ) ;

t d = etime ( current t ime , f l a s h t ime ) ;

i f t d > t ime va l

rmf lash = f l a s h e s i n c u r r e l l (w, 1 ) ;

f l a s h e s i n c u r r e l l ( 1 :w , : ) = [ ] ;

l a s t i n l i s t = f i nd ( c u r r e n t e l l i p s e ( : , 3 ) == rmflash , 1 , ' l a s t ' ) ;

c u r r e n t e l l i p s e ( 1 : l a s t i n l i s t , : ) = [ ] ;

break

end

end

end

c u r r f l a s h e s i n e l l = nnz ( f l a s h e s i n c u r r e l l ( : , 1 ) ) ;

c u r r s r c p t s = nnz ( c u r r e n t e l l i p s e ( : , 1 ) ) ;

c u r r e l l s t a r t = cu r r s r c p t s + 1 ; %update s t a r t i n g point in c u r r e n t e l l i p s e

matrix

c u r r e l l l a s t = c u r r e l l s t a r t + new srcpts − 1 ;

new f la sh = c u r r f l a s h e s i n e l l + 1 ;

f l a s h e s i n c u r r e l l ( new f lash , 1 ) = whiskey ;

f l a s h e s i n c u r r e l l ( new f lash , 2 ) = date0 ( whiskey , 2 ) ;

f l a s h e s i n c u r r e l l ( new f lash , 3 ) = new srcpts ;

f l a s h e s i n c u r r e l l ( new f lash , 4 : 9 ) = date0 ( whiskey , 3 : 8 ) ;

%%%th i s goes through and adds a l l the r e l a t i v e sou r c epo in t s to the

%%%cu r r e n t e l l i p s e matrix to be used f o r c r e a t i ng the cur rent e l l i p s e

c u r r e n t e l l i p s e ( c u r r e l l s t a r t : c u r r e l l l a s t , 1 ) = f l a sh x ex t r eme s ( 1 :

new srcpts , whiskey ) ;

c u r r e n t e l l i p s e ( c u r r e l l s t a r t : c u r r e l l l a s t , 2 ) = f l a sh y ex t r eme s ( 1 :

new srcpts , whiskey ) ;

c u r r e n t e l l i p s e ( c u r r e l l s t a r t : c u r r e l l l a s t , 3 ) = whiskey ;

row counter = 1 ; %r e s e t row counter f o r prev ious loop

c e l l c o un t = nnz ( c u r r e n t e l l i p s e ( : , 1 ) ) ; %f i nd s the number o f nonzero rows in

c u r r e n t e l l i p s e matrix which i s a r e co rd ing o f the number o f ext s r cp t s in

the e l l i p s e

P = [ c u r r e n t e l l i p s e ( 1 : c e l l c oun t , 1 ) , c u r r e n t e l l i p s e ( 1 : c e l l c oun t , 2 ) ] ' ;

i f ( d i s t aw a y l a s t e l l i p s e > 0 && c u r r f l a s h e s i n e l l >0) | |

c u r r f l a s h e s i n e l l == 0

KK = convhul l (P ' ) ; %convexhul l pts f o r f a s t e r MVE algor i thm

KK = KK(1 : end−1 ,1) ;%f ind only unique e n t r i e s f o r convexhul l
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%KK = unique (KK( : ) ) ;

Q = P( : ,KK) ;%Q = P(KK, : ) ; %s e l e c t those e n t r i e s as what the e l l i p s e w i l l be

bounded around

% plo t (x , y , ' Color ' , ' white ' ) ;

[ h , k , a , b , tau , x , y , cha r l i e , F 1 , F 2 , s , area ] = MVE(Q, t o l ) ; %PCA Ellipse (Q( : , 1 ) ,Q

( : , 2 ) , alpha ) ; % c r e a t e s a Minimum area e l l i p s e based on the

c u r r e n t e l l i p s e matrix

%%%%%%%%%%%%%PLOT ELLIPSE & POINTS%%%%%%%%%%%%%%%%%

% plot (Q( 1 , : ) ,Q( 2 , : ) , ' o ' , ' Color ' , ' black ' ) ;

% hold on

% %plo t (Q( : , 1 ) ,Q( : , 2 ) , ' o ' , ' Color ' , ' black ' ) ;

% p lo t (x , y , ' Color ' , ' blue ' ) ;

%%%%%%%%%%%%%PLOT ELLIPSE & POINTS%%%%%%%%%%%%%%%%%

%ELLIPSE CALCULATIONS HERE

%CALCULATE NUMBER OF POINTS INSIDE ELLIPSE

% fo r p = 1 : c e l l c o un t

% i f ( sq r t ( ( c u r r e n t e l l i p s e (p , 1 )−F 1 (1 ,1 ) ) ˆ2 + ( c u r r e n t e l l i p s e (p , 2 )−F 1

(1 ,2 ) ) ˆ2)+sq r t ( ( c u r r e n t e l l i p s e (p , 1 )−F 2 (1 ,1 ) ) ˆ2 + ( c u r r e n t e l l i p s e (p , 2 )−F 2 (1 ,2 ) ) ˆ2)<= s )

% in s i d e = i n s i d e + 1 ;

% e l s e

% out s ide = out s ide + 1 ;

% end

% end

% to t a l = i n s i d e + out s ide ; %reco rds t o t a l o f a l l po in t s . . . should match

c e l l c o un t

% e l l i p s e s ( whiskey , 3 ) = i n s i d e / t o t a l ; %reco rds the percentage o f po in t s i n s i d e

the cur rent e l l i p s e

% i n s i d e = 0 ; %r e s e t s counter

% out s ide = 0 ; %r e s e t s counter

%CALCULATE NUMBER OF POINTS INSIDE ELLIPSE

end

% plo t (P( 1 , : ) ,P( 2 , : ) , ' . ' , ' Color ' , ' magenta ' ) ;

e l l i p s e s ( whiskey , 2 )=area ; %reco rds e l l i p s e area

e l l i p s e s ( whiskey , 8 : 1 2 ) = [ a ; b ; h ; k ; tau ] ; %reco rds r e l a t i v e in format ion f o r

newly created e l l i p s e

m = m+1; %update the number o f po in t s that have been used

date0 ( whiskey , 1 0 ) = e l l c o un t ; %record the e l l i p s e number f o r t rack ing

e l l i p s e s ( whiskey , 1 ) = e l l c o un t ; %record the e l l i p s e number f o r data

e l l i p s e s ( whiskey , 7 ) = new f la sh ; %record the number o f f l a s h e s in cur rent

e l l i p s e

c u r r f l a s h e s i n e l l = new f la sh ;

e l s e

count far away = count far away + 1 ;

new srcpts = date0 ( whiskey , 9 ) ;

% p lo t ( f l a sh x ex t r eme s ( 1 : new srcpts , whiskey ) , f l a sh y ex t r eme s ( 1 : new srcpts , whiskey

) , ' o ' , ' Color ' , ' red ' ) ;

date0 ( whiskey , 1 0 ) =0;

e l l i p s e s ( whiskey , 4 ) = 0 ; %se t d i s t ance from l a s t e l l i p s e to zero

e l l i p s e s ( whiskey , 6 ) = 0 ; %se t d i s t ance from cente r to zero

%INCLUDE UPDATE TO COUNTERS HERE

end

%end

%%%th i s loop t e l l s us i f the d i s t ance away from the l a s t e l l i p s e i s

%%%grea t e r than 16 and we are on the f i n a l f l a sh , then we have to
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%%%re s e t and s t a r t back at the beginning o f the f o r loop

i f d i s t aw a y l a s t e l l i p s e >= d va l && whiskey == N

f l a s h e s i n c u r r e l l = ze ro s (N, 9 ) ;

d i s t aw a y l a s t e l l i p s e = 0 ;

c u r r e n t e l l i p s e = ze ro s ( t o t a l s r c p t s , 3 ) ;

c u r r e l l s t a r t = 1 ;

c u r r e l l l a s t = 0 ;

c u r r f l a s h e s i n e l l = 0 ;

date0 ( whiskey , 1 0 ) = 0 ;

e l l c o un t = e l l c o un t + 1 ;

end

end

end

FINALS{penny ,1} = e l l i p s e s ;

FINALS{penny ,2} = date0 ;

save ( sFileName , ' e l l i p s e s ' , ' date0 ' ) ;

c l e a r v a r s −except 'FINALS ' 'penny ' ' tango ' ' f o x t r o t '

penny = penny + 1 ;

end

end

save ( ' Fina l s . mat ' , 'FINALS ' ) ;
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J. Empirical Validation Code

%loads the po int s o f each warning c i r c l e 2−10 are the ones we are going to

%use

All Done = c e l l (20 ,1 ) ; %f i n a l s to rage p lace f o r a l l the data

%load ( 'C:\ Users\Admin\Documents\Thes is\Daily Updates\19 Dec 18\ wa rn i n g c i r c l e s .mat ' )

penny = 1 ; %counter f o r f i n a l s to rage

f o r tango = 13:16 %loop through a l l years

f o r f o x t r o t = 5 :9 %loop through a l l months

fu l lF i l eName = s p r i n t f ( '%d %d IF .mat ' , f ox t ro t , tango ) ;

load ( fu l lF i l eName ) ;

l a s t = length ( date0 ) ;

extra = ze ro s ( l a s t , 9 ) ; %add extra columns f o r the d i s t an c e s from a l l the l i g h t n i n g warning c i r c l e s

date0 = [ date0 extra ] ;

%%th i s code goes through and f i nd s the d i s t ance each source po int i s from

%%the cente r o f each warning c i r c l e

co l count = 11 ;

f o r i = 2:11

x1 = po int s ( i , 1 ) ;

y1 = po int s ( i , 2 ) ;

f o r p = 1 : l a s t

ext = date0 (p , 9 ) ;

d i s t anc e s = ze ro s ( ext , 1 ) ;

f o r m = 1 : ext

x2 = f l a sh x ex t r eme s (m, p) ;

y2 = f l a sh y ex t r eme s (m, p) ;

d i s t = sq r t ( ( ( x2−x1 ) ˆ2)+((y2−y1 ) ˆ2) ) ;

d i s t anc e s (m, 1 ) = d i s t ;

end

sma l l e s t = min ( d i s t an c e s ( : , 1 ) ) ;

date0 (p , co l count ) = sma l l e s t ;

end

co l count = co l count + 1 ;

end

%th i s code goes through and pu l l s out the f l a s h e s that are with in 5 or 6

%mi le s r e s p e c t i v e l y o f each s i t e ( o f course us ing km here )

Ult imates = c e l l (10 ,4 ) ;

f o r i = 2:11

mi leage = po int s ( i , 3 ) ; %record o f the rad ius o f each warning c i r c l e

co l count = i +9;

winners = f ind ( date0 ( : , c o l count )<=mileage ) ;

dunzo = date0 ( winners , : ) ;

entry = i −1;

Ult imates{ entry ,1} = dunzo ;

end

f i r s t b r e a k = 0 ;

rcheck = 7 . 4 08 ;

f o r i = 1:10

% i f po in t s ( i +1 ,3) == 11.1120

% rcheck = 9 . 2 6 ;

% e l s e

% rcheck = 7 . 4 08 ;

% end
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%rcheck = po int s ( i +1 ,3) ;

i n s i d e c i r c l e = Ult imates{ i , 1 } ;

c o l c ount = i + 10 ;

l a s t = length ( i n s i d e c i r c l e ) ;

extra = ze ro s ( l a s t , 2 ) ;

condensed = [ i n s i d e c i r c l e ( : , 3 : 8 ) i n s i d e c i r c l e ( : , c o l count ) extra ] ;

%%%%%%%%%%Sets up the data f o r the time por t ion

f o r m = 2 : l a s t

p r e v f l a s h = condensed (m−1 ,1:6) ;

c u r r f l a s h = condensed (m, 1 : 6 ) ;

td = abs ( etime ( cu r r f l a s h , p r e v f l a s h ) ) ;

condensed (m, 8 ) = td ;

end

t ime breaks = f ind ( condensed ( : , 8 )>=1800)−1;

t ime i n t e r v a l s = ze ro s ( l ength ( t ime breaks ) +1 ,9) ;

t im e i n t e r v a l s (1 , 1 ) = 1 ;

t ime i n t e r v a l s ( 1 : s i z e ( t ime i n t e r va l s , 1 ) −1 ,2) = t ime breaks ( : , 1 ) ;

f o r w = 2 : s i z e ( t ime i n t e r va l s , 1 )

t ime i n t e r v a l s (w, 1 ) = t ime i n t e r v a l s (w−1 ,2) + 1 ;

end

t ime i n t e r v a l s ( s i z e ( t ime i n t e r va l s , 1 ) ,2 ) = l a s t ;

%%%%%%%%%%

fo r de l t a = 1 : s i z e ( t ime i n t e r va l s , 1 )

s t a r t = t ime i n t e r v a l s ( de l ta , 1 ) ;

f i n i s h = t ime i n t e r v a l s ( de l ta , 2 ) ;

f o r t = s t a r t : f i n i s h

i f condensed ( t , 7 ) <= rcheck && condensed ( t , 7 ) > . 926 %7.408

s ta tu s = 1 ;

e l s e i f condensed ( t , 7 ) <=.926

s ta tu s = 2 ;

e l s e

s t a tu s = 5 ;

end

condensed ( t , 9 ) = s ta tu s ;

end

c e s s a t i o n = etime ( condensed ( f i n i s h , 1 : 6 ) , condensed ( s ta r t , 1 : 6 ) ) + 1800;

check mat = condensed ( s t a r t : f i n i s h , : ) ;

f i r s t f o u r = f i nd ( check mat ( : , 9 ) ==1,1, ' f i r s t ' ) ;

i f isempty ( f i r s t f o u r ) == 1

f i r s t f o u r = 0 ;

end

t ime i n t e r v a l s ( de l ta , 3 ) = f i r s t f o u r ;

i f f i r s t f o u r > 1

time gap = etime ( check mat ( f i r s t f o u r , 1 : 6 ) , check mat ( 1 , 1 : 6 ) ) ;

t im e i n t e r v a l s ( de l ta , 4 ) = time gap ;

e l s e

t ime gap = 0 ;

t ime i n t e r v a l s ( de l ta , 4 ) = time gap ;

end

f i r s t b r e a k = f ind ( check mat ( : , 9 ) ==2,1, ' f i r s t ' ) ;

i f isempty ( f i r s t b r e a k ) == 1

f i r s t b r e a k = 0 ;

end

i f f i r s t b r e a k > 1
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t ime break = etime ( check mat ( f i r s t b r e a k , 1 : 6 ) , check mat ( 1 , 1 : 6 ) ) ;

t im e i n t e r v a l s ( de l ta , 5 ) = time break ;

e l s e

t ime break = 0 ;

t ime i n t e r v a l s ( de l ta , 5 ) = time break ;

end

i f f i r s t b r e a k < f i r s t f o u r && f i r s t b r e a k ˜= 0

t ime i n t e r v a l s ( de l ta , 6 ) = 1 ;

end

t o t a l b r e a k s = sum( check mat ( : , 9 )==2) ;

t ime i n t e r v a l s ( de l ta , 7 ) = f i r s t b r e a k ;

t ime i n t e r v a l s ( de l ta , 8 ) = t o t a l b r e ak s ;

t im e i n t e r v a l s ( de l ta , 9 ) = c e s s a t i o n ;

end

Ult imates{ i , 2} = condensed ;

Ult imates{ i , 3} = time breaks ;

Ult imates{ i , 4} = t ime i n t e r v a l s ;

end

All Done{penny ,1} = Ult imates ;

penny = penny + 1 ;

c l e a r v a r s −except ' All Done ' ' po int s ' ' tango ' ' f o x t r o t ' 'penny '

end

end

%analyze All Done

%go through and analyze f o r each month f i r s t

data by month = ze ro s (20 ,7 ) ;

c i r c d a t a = c e l l (20 ,1 ) ;

%b i g c i r c = [3 4 5 8 ] ;

f o r i = 1:20

s e l e c t 1 = All Done{ i , 1 } ;

d a t a by c i r c = ze ro s (4 , 7 ) ;

f o r p = 1:10

%p = b i g c i r c ( hotshot ) ;

t ime saved = 0 ;

t ime be f o r e bu s t = 0 ;

num busts = 0 ;

no warnings = 0 ;

t ime saved no warn ings = 0 ;

checking = s e l e c t 1 {p , 4 } ;

l a s t = s i z e ( checking , 1 ) ;

f o r m = 1 : l a s t

i f checking (m, 3 ) == 0 && checking (m, 8 )== 0 ;

t ime saved = time saved + checking (m, 9 ) ;

e l s e i f checking (m, 3 ) > 0 && checking (m, 6 ) == 0

time saved = time saved + checking (m, 4 ) ;

end

i f checking (m, 6 ) == 1 && checking (m, 7 ) ˜= 1

num busts = num busts + 1 ;

end

no busts = sum( checking ( : , 8 )==0) ;

i f checking (m, 4 ) > 0 && checking (m, 5 ) > 0 && checking (m, 6 ) == 0

t ime be f o r e bu s t = t ime be f o r e bu s t + checking (m, 5 ) − checking (m, 4 ) ;
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end

i f checking (m, 3 ) == 0 && checking (m, 7 ) == 0

no warnings = no warnings + 1 ;

t ime saved no warn ings = t ime saved no warn ings + checking (m, 9 ) ;

end

end

da t a by c i r c (p , 1 ) = time saved ;

da t a by c i r c (p , 2 ) = num busts ;

d a t a by c i r c (p , 3 ) = no busts ;

d a t a by c i r c (p , 4 ) = t ime be f o r e bu s t ;

d a t a by c i r c (p , 5 ) = l a s t ;

d a t a by c i r c (p , 6 ) = no warnings ;

d a t a by c i r c (p , 7 ) = t ime saved no warn ings ;

end

c i r c d a t a { i , 1} = data by c i r c ;

data by month ( i , 1 ) = sum( da t a by c i r c ( : , 1 ) ) ;

data by month ( i , 2 ) = sum( da t a by c i r c ( : , 2 ) ) ;

data by month ( i , 3 ) = sum( da t a by c i r c ( : , 3 ) ) ;

data by month ( i , 4 ) = sum( da t a by c i r c ( : , 4 ) ) ;

data by month ( i , 5 ) = sum( da t a by c i r c ( : , 5 ) ) ;

data by month ( i , 6 ) = sum( da t a by c i r c ( : , 6 ) ) ;

data by month ( i , 7 ) = sum( da t a by c i r c ( : , 7 ) ) ;

end

f a i l u r e s = ze ro s (sum( data by month ( : , 2 ) ) ,12) ;

rc = 1 ;

f o r i = 1:20

s e l e c t 1 = All Done{ i , 1 } ;

f o r p = 1:10

checking = s e l e c t 1 {p , 4 } ;

l a s t = s i z e ( checking , 1 ) ;

f o r m = 1 : l a s t

i f checking (m, 6 ) == 1 && checking (m, 7 ) ˜= 1

f a i l u r e s ( rc , : ) = [ i p m checking (m, : ) ] ;

rc = rc + 1 ;

end

end

end

end

c i r c l e r e s u l t s = ze ro s (10 ,7 ) ;

run = ze ro s (1 , 7 ) ;

f o r p = 1:10

f o r i = 1:20

s e l e c t = c i r c d a t a { i , 1 } ;

run ( 1 , : ) = run ( 1 , : )+ s e l e c t (p , : ) ;

end

c i r c l e r e s u l t s (p , : ) = run ;

run = ze ro s (1 , 7 ) ;

end
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K. Descriptive Statistics for the Mean Distance from the
Center of Initial Flashes in a Lightning Storm
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(a) Mean Values for First 5 Flashes
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Figure 26: Histograms for the Mean Distance from the Center (NM) of the Initial
Flashes in a Lightning Storm

Table 17: Quantile Values for the Mean Distance from the Center (NM) of the Initial
Flashes in a Lightning Storm

Quantile
Mean Distance (NM) Mean Distance (NM)

First 5 Flashes First 10 Flashes

Minimum 0.375 0.633

25th Quartile 1.807 2.192

Median 2.774 3.154

75th Quartile 4.066 4.484

97.5 Percentile 7.469 8.167

Maximum 11.89 12.963
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Table 18: Summary Statistics for the Mean Distance from the Center (NM) of the
Initial Flashes in a Lightning Storm

Summary Statistics
Mean Distance (NM) Mean Distance (NM)

First 5 Flashes First 10 Flashes

Mean 3.125 3.526

Standard Deviation 1.735 1.837

Standard Error 0.051 0.054

Upper 95% CI 3.224 3.631

Lower 95% CI 3.026 3.421

Sample Count 1,178 1,178
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L. Weibull Distribution for Distance from Edge of Ellipse

Shape Estimate and 95% Confidence Interval:

k = .833 (.827, .839)

Scale Estimate and 95% Confidence Interval:

λ = 2.124 (2.093, 2.170)

Mean Estimate and 95% Confidence Interval:

µ = 2.36 (2.334, 2.388)

PDF:

f(x; k, λ) =
k

λ

(x
λ

)k−1
e−( x

λ
)k

f(x; .833, 2.124) = .392
( x

2.124

)−.167
e−( x

2.124
).833

CDF:

F (x; k, λ) = 1− e−( x
λ
)k

F (x; .833, 2.124) = 1− e−( x
2.124

).833
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Table 19: Cumulative Probability of Strike Using Weibull Distribution

Distance (NM) Probability of Strike

16 0.013%

15 0.020%

14 0.033%

13 0.053%

12 0.086%

11 0.140%

10 0.231%

9 0.385%

8 0.648%

7 1.10%

6 1.89%

5 3.31%

4 5.90%

3 10.79%

2 20.42%

1 40.98%
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Distance from Ellipse (NM)
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Figure 27: Example of Cumulative Probability of Strike Using Weibull Distribution
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