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Abstract

This dissertation serves as the culmination of three papers. “Counting the dec-
imation classes of binary vectors with relatively prime fixed-density” presents the
first non-exhaustive decimation class counting algorithm. “A Novel Approach to
Relatively Prime Fixed Density Bracelet Generation in Constant Amortized Time”
presents a novel lexicon for binary vectors based upon the Discrete Fourier Transform,
and develops a bracelet generation method based upon the same. “A Novel Legen-
dre Pair Generation Algorithm” expands upon the bracelet generation algorithm and
includes additional constraints imposed by Legendre Pairs. It further presents an
efficient sorting and comparison algorithm based upon symmetric functions, as well
as multiple unique Legendre Pairs.
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COCYCLIC HADAMARD MATRICES:

AN EFFICIENT SEARCH BASED ALGORITHM

I. Introduction

1.1 Motivation

James Joseph Sylvester developed the Sylvester matrices in 1867. Sylvester ma-

trices are square orthogonal matrices of order 2t consisting of ±1 elements. Jacques

Hadamard proved that such matrices existed for orders other than 2t in 1893, specif-

ically orders 12 and 20. It is conjectured that for any integer n, a Hadamard Matrix

of order 4n exists. Hadamard matrices have been extended further in recent years

to complex Hadamard matrices, which generalize the original design to include all

uni-modular values.

Hadamard matrices are widely applicable in the fields of Design Theory, Error

Correcting Code, and Cryptography, as well as many others [9] [17] [18]. Hadamard

matrices have advanced the field of Experimental Design in both design and inspec-

tion. In 1937, the “Fast Hadamard Transform” was developed to investigate con-

tributing main factors in factorial experiments [9]. Hadamard matrices are used in

2-level experimental designs to develop orthogonal arrays of strengths two or three.

The full factorial design is a type Hadamard design; specifically a Sylvester matrix.

Signals which operate under the assumption of finite power, periodicity, and dis-

crete time also owe a great deal to Hadamard matrices. These signals may be ex-

pressed as linear combinations of the discrete power levels over time. Thus, there

exists a matrix, not necessarily real, which defines the signal pattern. These matrices
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are orthogonal with uni-modular elements, satisfying the conditions for a complex

Hadamard matrix. Therefore, a signal’s spectrum is trivially calculated via multiply-

ing the signal by a complex Hadamard matrix. Coined as Walsh functions in 1923,

these transformations were foundational in the era of binary computers. Sequence

ordered Hadamard matrices of order 2t are now known as Walsh-Hadamard matrices.

They provide the simplest inversion form for spectral calculations.

Greater information could be gleamed from the amplitude and frequency of a

signal using Discrete Fourier Transforms (DFT) as signals transitioned from analogue

to digital. However, the calculations were originally slow and cumbersome. The Fast

Hadamard Transform (FHT), an extension of the Walsh Hadamard Transform, gave

digital signal processing the boost it required. Sylvester matrices allow for sparse

calculations as they are easily decomposed into products of Kronecker multiplied

matrices and are necessarily powers of 2. The first hardware designed using FHT is

the Green machine, named after R. R. Green. It decoded signals transmitted by the

1969 Mariner spacecraft on its mission to Mars [9].

An extension of signals processing is spectral analysis. Let A represent a matrix

of signal masks in the regression model Y = Ax + ε. The variance of ε is minimized

if and only if A is a Hadamard matrix. Errors to the calculated spectral code are

expected to occur. This noise may be injected at any point of signal transmission,

such as machine discrepancies, scattering from obstacles, and environmental phenom-

ena. The simplest solution is multiple transmissions of the same data, which allows

for implementation of various highly reliable patching schema to be implemented.

In cases such as space probes like the Mariner, power requirements prohibit signal

repetitions. Pre-transmission processing allows for signal redundancy with minimal

increase to signal in these cases [9]. The Mariner used such an encoding to trans-

mit images back to earth. It has been shown that the optimal encoding for such a

2



signal is one in which the generating matrix defining the linear encoding is self-dual,

or equals its orthogonal projection. This is an inherent property of all symmetric

Hadamard matrices. Hamming Codes are a specific type of symmetric Hadamard

matrices which satisfy a set of other criterion such that all “codewords” are equally

likely to be transmitted, minimizing the maximum and average error [9].

An extension of these error correction codes were the Hadamard codes. Juhani

Virtakallio and Marcel Golay independently constructed triple error correcting codes

in 1947 and 1949 respectively. These codes are known as Golay codes [2]. The Reed

Muller codes used on Mariner were developed in 1954 and provided greater flexibility

in the number of errors which could be corrected per codeword. Through 1981, many

of the probes launched relied upon such Hadamard codes. They are now being consid-

ered for application in optical communications due to an “extremely fast maximum

likelihood decoding algorithm” [9]. Additional advancements in telecommunications

include signal correlation and timing.

Just as investigation into Hadamard Matrices propelled telecommunications through

the late 20th century, investigations into the Hadamard Conjecture have yielded ad-

vancements in various theoretical fields [17]. One such example of these advancements

is the use of Supplementary Difference Sets (SDS) in the solution of balanced Power

Spectral Densities (PSD) [6]. Fletcher et al. [6] employed DFT to locate Legendre

Pairs (LP),which requires supplementary PSD. The resultant matrix generated holds

two circulant cores, one associated with each Legendre Sequence.

This approach of using circulant cores traces its roots back to a generation method

known as Paley Constructions, developed by Raymond Paley in 1933, which employs

Jacobsthal matrices to develop single circulant core Hadamard Matrices. Related ad-

vancements from the generation of this construction are Paley Graphs. These graphs

have the powerful properties of being Strongly Regular and Self-Complementary, and

3



have shown significant applicability in the area of network design and optimization.

1.2 Research Contribution

The smallest unresolved case for existence of a Hadamard Matrix containing two

circulant cores is order 160, or circulant core size 77 [6]. Chiarandini et al. [3] noticed

Fletcher et al. [6] inaccurately reported success on size 57 and solved it therein, but

did not resolve any further cases. A primary obstacle in solving for these matrices

lies in the nature of the decision space.

Currently, no method other than exhaustive generation exists for determining the

number of decimation classes for a given core size, a principle concept behind LP.

It is the author’s opinion that the first step towards generation is counting. Such a

method is provided herein.

Efficient generation of vectors constitutes the most expedient search method for

locating LP to date. Constraint satisfaction problems on binary spaces are themselves

search algorithms which iteratively step through the space, generating resident vectors

based upon their underlying search method. Features of LPs are exploited in the

development of an efficient generation algorithm which focuses on decimation class

representatives with greatest chance of having a pair.

1.3 Organization of Prospectus

This dissertation is comprised of three papers. Chapter II provides theoretical and

applied advancements in the area of counting decimation classes. Chapter III provides

a novel approach of generating vectors representing circulant shifts and reversals

which lends itself to enforcing DFT-based constraints. Chapter IV expands this

novel approach to enforcing said constraints as well as implementing an effective, yet

ill-defined constraint reducing decimation class replicates. Chapter IV also provides

4



a novel, discrete sorting and comparison algorithm to efficiently locate LP while

generating representative vectors. These papers are undergoing revisions prior to

publication in refereed journals, however content is expected to remain unchanged.

Chapter V provides a summary of the achievements related to each chapter, as well

as an evaluation of the initial research goals.

5



II. Counting the decimation classes of binary vectors with
relatively prime fixed-density [21]

2.1 Introduction

The Hadamard conjecture states that a Hadamard matrix of order 4k (a 4k × 4k

matrix of ±1s with orthogonal columns) exists for all k ∈ Z+. The following definition

can be used to construct Hadamard matrices.

Definition 2.1.1 A pair of vectors u,v ∈ {0, 1}` form a Legendre pair (LP) of length

` if

`−1∑
i=0

ui =
`−1∑
i=0

vi =
`+ 1

2
and Pu(t) + Pv(t) =

`+ 1

2
∀ t ∈ {1, . . . , `− 1}

or

`−1∑
i=0

ui =
`−1∑
i=0

vi =
`− 1

2
and Pu(t) + Pv(t) =

`− 3

2
∀ t ∈ {1, . . . , `− 1},

where Pu(t) =
∑`−1

i=0 uiui+t (mod `).

It is well known that a Hadamard matrix of order 2`+ 2 can be constructed by using

an LP of length ` [6]. Hence, proving that an LP exists for all odd ` proves the

Hadamard conjecture.

Each vector in the paper is assumed to be indexed by the ring elements Z`. Let

Z∗` = {j | (j, `) = 1} be the multiplicative group of Z`. A circulant shift of a vector

v by j ∈ Z`, denoted by cj(v), is the transformation such that (cj(v))i = vi−j (mod `).

Similarly, a decimation of a vector v by j ∈ Z∗` , denoted by dj(v), is the transforma-

tion such that (dj(v))i = vi∗j (mod `).

If two vectors u and v constitute an LP, a simultaneous circulant shift on both

6



vectors preserves the LP property [6]. Further, u and v constitute an LP if and only

if dj(u) and dj(v) are an LP [6].

A necklace is an equivalence class of vectors of length ` under circulant shifts,

whereas a bracelet is an equivalence class under circulant shifts and decimation by

−1 (reversals) [4, 15]. The decimation class of a vector is the orbit of the vector

under circulant shifts and decimations [6]. Thus, the search for an LP is simplified

by searching only across decimation class representatives. Throughout the paper, we

use the notation Dv, Bv, Uv for the decimation class, bracelet and necklace that v

belongs to.

Similar to the case of LPs, Djokovic et al. [4] reduced an intricate search for Golay

Pairs among all vectors to that among charm bracelets. A charm bracelet is defined

therein as the equivalence class of vectors of length ` under the action of the group

of affine transformations

j → a+ bj (mod `)

on the indices j ∈ Z`, where (b, `) = 1. This definition is equivalent to that of

decimation classes.

The density of a vector v ∈ {0, 1}` is defined to be δ =
∑`−1

i=0 vi. There is interest

in the unique generation of decimation classes with fixed density due to its application

in searching for LPs and Golay Pairs. Fletcher et al. [6] exhaustively generated all

vectors of odd lengths ` ≤ 47 with density (` + 1)/2. The number of corresponding

decimation classes was determined as a result of this search. The list of the number of

decimation classes with density (`+1)/2 has not been expanded upon since Fletcher et

al. [6] due to problem complexity associated with exhaustive generation. This paper

provides the a method for determining the number of decimation class representatives

for vectors of odd length, `, and fixed density, δ, such that δ ∈ Z`.

In Section 2.2, an equation to count necklaces and bracelets is provided. This

7



is equivalent to a special case of a known general equation. Section 2.3 expands the

Section 2.2 concepts to decimation classes. Section 2.4 provides a method for counting

decimation classes, an example for clarity, and an updated list of decimation class

counts attained utilizing the technique.

2.2 Counting Necklaces and Bracelets

Sawada et al. [15] provide the following equation for determining the number of

necklaces N(`, δ) for a vector of length ` with density δ:

N(`, δ) =
1

`

∑
j|(`,δ)

φ(j)

( `
j

δ
j

)
(1)

Equation (1) is simplified under the case of (δ, `) = 1 to:

N =

(
`

δ

)
1

`
.

Thus, each necklace in this paper is guaranteed to contain ` vectors.

Since each necklace contains ` vectors, and each bracelet contains at most two

necklaces, each bracelet contains at most 2` vectors. A vector is called symmetric if

there exists some j ∈ Z` such that:

vj+k (mod `) = vj−k (mod `) ∀ k ∈ Z`

A necklace is defined to be symmetric if it contains a symmetric vector. It follows

that if a necklace is symmetric then each vector in the necklace is symmetric. A

bracelet then contains a single necklace if and only if that necklace is symmetric.

8



Lemma 2.2.1 The number of symmetric vectors of length ` and density δ is

η =

(b `
2
c
b δ

2
c

)

Since η denotes the number of symmetric vectors, the number of bracelets is

γ =

(
`
δ

)
2`

+
η

2
.

2.3 Multipliers

The following definitions of a multiplier of a set and a vector are from Leung [12].

Definition 2.3.1 An integer t ∈ Z` is called a multiplier of a set D ⊆ Z` if

tD = D + g (mod `) for some g ∈ Z`,

where

tD (mod `) = {td (mod `) | d ∈ D},

and

D + g (mod `) = {d+ g (mod `) | d ∈ D}.

Definition 2.3.2 An integer t ∈ Z∗` is called a multiplier of a vector v ∈ {0, 1}` if t

is a multiplier of the set Iv = {i | vi = 1}.

It follows from the definitions of multipliers that t is a multiplier of v if and only

if dt(v) ∈ Uv.

Lemma 2.3.3 If t ∈ Z∗` is a multiplier of v ∈ {0, 1}` then t is a multiplier of every

vector in the necklace Uv containing v.

9



Proof 1 Let t be a multiplier of v and Iv be as in Definition 2.3.1, then

Idt(v) = tIv = Iv + g (mod `) for some g ∈ Z`.

Observe that Icj(v) = Iv + j (mod `). Then

Idt(cj(v)) = t(Iv + j) = tIv + tj = (Iv + j) + ((t− 1)j + g) (mod `) for each j ∈ Z`.

Let g′ = ((t−1)j+g)(mod `). Then Idt(cj(v)) = Icj(v) +g′ and t is a multiplier of cj(v).

�

By Lemma 2.3.3, we can define t to be a multiplier of a necklace Uv if t is a multiplier

of a vector in Uv. Then by Definition 2.3.2, t is a multiplier of a necklace Uv if and

only if t is a multiplier of a set Iv of indices, where Iv is as in Definition 2.3.2. It is

easy to verify that the set of all multipliers of a set Iv is a subgroup of Z∗` .

Lemma 2.3.4 Let StabUv be the set of all multipliers t ∈ Z∗` of a vector v ∈ {0, 1}`.

The group Z∗` acts on the set of necklaces in {0, 1}`, where for each t ∈ Z∗`

tUv = Udt(v), (2)

and the stabilizer group of Uv under this action is StabUv .

Proof 2 Let v1, v2 ∈ Uv1. Then there exists j ∈ Z` such that Iv1 = Iv2 + j (mod `),

and consequently

Idt(v1) = tIv1 = tIv2 + tj = Idt(v1) + tj (mod `).

Hence, dt(v1), dt(v2) ∈ tUv = Udt(v1). It follows that the action in equation (2) is well

defined. By the definition of a multiplier, StabUv = {t ∈ Z`∗ | tUv = Udt(v) = Uv}. �
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The following lemma shows that g in Definition 2.3.1 is uniquely determined by t if

|Iv| ∈ Z∗` , where |Iv| is the number of elements in Iv, or equivalently |Iv| = δ.

Lemma 2.3.5 Let t ∈ Z∗` , Iv ⊆ Z` and tIv = Iv+g for some g ∈ Z`. Let S =
∑

j∈Iv j

and |Iv| ∈ Z∗` . Then g = |Iv|−1(t− 1)S.

Proof 3 The set equality tIv = Iv+g in Z` implies that tS = S+|Iv|g in Z` by taking

sums on both sets. Now, it is possible to get the unique solution g = |Iv|−1(t− 1)S as

|Iv| is invertible in Z`. �

Theorem 2.3.6 Let Iv ⊆ Z` such that |Iv| ∈ Z∗` and t ∈ Z∗` be a multiplier of Iv.

Then there exists some α ∈ Z` that only depends on Iv such that t(Iv + α) = Iv + α.

Proof 4 By Lemma 2.3.5, tIv = Iv + g, where g = |Iv|−1(t− 1)S. Then

t(Iv + α) = tIv + tα = Iv + |Iv|−1(t− 1)S + tα,

where S =
∑

j∈Iv j. Then t(Iv + α) = Iv + α if and only if

Iv + α = Iv + |Iv|−1(t− 1)S + tα (3)

Then equation (3) holds if and only if

α = |Iv|−1(t− 1)S + tα (4)

and equation (4) has α = −|Iv|−1S ∈ Z` as a solution. �

Given the group H of all multipliers of a set Iv ⊂ Z` the following theorem shows the

structure of Iv.
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Theorem 2.3.7 Let H E Z∗` be the group of all multipliers of a set Iv ⊂ Z` and

S =
∑

j∈Iv j. Then

Iv − |Iv|−1S = s1H ∪ s2H ∪ · · · ∪ srH (5)

for some si ∈ Z`, i ∈ 1, . . . , r, where the union in equation (5) is disjoint.

Proof 5 By Theorem 2.3.6

t(Iv − |Iv|−1S) = Iv − |Iv|−1S for all t ∈ H,

and H acts on the elements of Iv − |Iv|−1S. Then equation (5) is the decomposition

of Iv into disjoint union of orbits under the action of H. �

Next, we determine decimation classes Dv by determining necklaces Uv with mul-

tiplier group StabUv = H for each H E Z∗` . Define a ring coset of a subgroup H E Z∗`

to be sH where s ∈ Z`. By Lemma 2.3.4 and Theorem 2.3.7, finding each necklace

Uv with multiplier group StabUv = H is equivalent to finding each collection of ring

cosets of H whose combined size is |Iv|.

Lemma 2.3.8 If H E Z∗` under the operation of multiplication, and s ∈ Z`, then

|sH| divides |H|.

Proof 6 The group H acts on the elements of sH by multiplication, where for each

h1, h2 ∈ H, (h1h2)s = h1(h2s). Let S be the orbit sH under this action and P = {h ∈

H | hs = s}. Then P E H, |P | divides |H|, and |sH| = |H|/|P |. Therefore, |sH|

divides |H|. �

Let v ∈ {0, 1}` with multiplier group H E Z∗` be such that
∑`−1

i=0 vi = δ. By

12



Theorem 2.3.7, we can assume that

Iv = s1H ∪ s2H ∪ · · · ∪ srH.

Let

xi =


1 if vj = 1 for all j ∈ siH,

0 otherwise,

and mi = |siH| for i ∈ {1, . . . , q} such that
⋃q
i=1 sqH = Z` is a disjoint union.

Then by Theorem 2.3.7, the number of solutions to the binary integer linear program

(BILP)

min 0

subject to:
∑q

i=1mixi = δ,

x ∈ {0, 1}`

(6)

is equal to the number of all possible Iv with multiplier group H such that δ = |Iv|.

BILP (6) is a formulation of a subset sum problem (SSP). Solving BILP (6) is known

to be NP-complete [1]. Finding all solutions of BILP (6) is NP-hard, and potentially

yields multiple j for some v such that Icj(v) satisfies Theorem 2.3.7 . The number of

repetitions of solutions corresponding to a single necklace can be accounted for by a

constant rate for each H E Z∗` .

Theorem 2.3.9 Let 0 < n < ` be the maximal divisor of ` and t = cn + 1 for some

c ∈ Z`. Let z denote the number of solutions to BILP 6. The number of necklace

classes with multiplier t is z/n.

Proof 7 Let Iv be some set with multiplier t = cn + 1 such that n is the maximal

divisor of ` satisfying the equation. Without loss of generality, let Iv be such that

tIv = Iv by Theorem 2.3.7. Then t(Iv + k) = Iv + tk for any k ∈ Z`. Then the
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difference in elements of Iv + k and t(Iv + k) is (t − 1)k. It suffices to show there

exists n solutions of the form t(Iv + y) = Iv + y.

Since t = cn+ 1 and n is the maximal such divisor, then (t− 1, `) = n. It follows

|t− 1| = `/n under addition. Let y = j(`/n) + 1, then

ty − y = cn

(
j`

n
+ 1

)
= jc` = 0(mod `) (7)

Note |`/n| = n under addition. Then t(Iv + y) = Iv + y for all y = j(`/n) + 1 such

that j ∈ Z`/n. Therefore, there exists n solutions of the form t(Iv + y) = Iv + y. �

Corollary 2.3.10 Let H be a multiplier group generated by elements t1, t2, . . . , tx.

Let n < ` be the maximal divisor of ` such that ti = cin+ 1 for some ci ∈ Z`, for all

i ∈ {1, 2, . . . , x}. Let z denote the number of solutions to BILP 6. The number of

necklaces with multiplier group H is z/n.

Corollary 2.3.10 follows directly from Theorem 2.3.9. Theorem 2.3.9 also implies

if ` is prime, then n = 1 and each feasible coset combination represents a unique

necklace.

Only the number of solutions to each SSP are required for the purpose of count-

ing decimation classes. By Lemma 2.3.8, for each multiplier group, H, there exists

|Z∗` |/|H| cosets of size |H|. Further, all ring cosets will have size dividing |H|. It

follows there will be significant duplicity in SSP set values. The number of solutions

may be attained more efficiently by determining only the solutions which are unique

up to content, as well as their duplicity. We call this adaptation the Unique Subset

Sum Problem, U-SSP.

Let CH be the set of sizes of ring cosets of multiplier group H sorted in ascending

order. For any ordered solution set P ⊂ CH , the U-SSP applies the additional

constraint, pi ≤ pi+1 for pi ∈ P . Each pi ∈ P corresponds to some mjxj in BILP 6
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such that xj = 1. Such ring-coset combinations are portrayed in Algorithm 1 via

recursion using the vector of sorted, unique elements of CH , denoted QH , and their

corresponding duplicity in CH , denoted RH . At each stage of recursion, the desired

sum is µ and the index of QH being added is k.

The number of solutions at each recursion of Algorithm 1 is multiplied by nchoosek(RH(k), j).

This operation extends the number of unique solutions to the number of SSP solu-

tions. Colloquially, this is understood as choosing the number of duplicates of each

element used within the U-SSP solution from the number of duplicates available.

Algorithm 1 Unique SSP Solution Method

1: procedure U-SSP(CH , δ)
2: QH = unique(CH)
3: m = length(QH)
4: RH = zeros(m, 1)
5: for (j = 0; j < m; j + +) do
6: RH(j) = sum(CH == QH(j))

return z=Recursion(QH , RH , δ, 0);

7:

8: procedure Recursion(QH ,RH ,µ, k)
9: sols=zeros(RH(k), 1)

10: for (j = 0; j < RH(k); j + +) do
11: ν ′ = µ− j ∗QH(k)
12: if ν == 0 then
13: sols(j) = nchoosek(RH(k), j)
14: break
15: if ν < 0 then
16: break
17: sols(j) = Recursion(QH , RH , ν, k + 1)
18: sols(j) = sols(j)*nchoosek(RH(k), j)

return sum(sols);

Recall φ (`) is the largest possible orbit size of a decimation class with respect to

necklaces and occurs for necklaces with no multipliers. The most well known orbit

size less than φ(`) is φ (`) /2, and always exists by Lemma 2.2.1. The trivially smallest

orbit size is 1, and is achieved only by necklaces with the property StabUv = Z∗` . The
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relations between multiplier groups and orbit sizes is exposed from these two cases.

Theorem 2.3.11 If Uv is a necklace with multiplier group StabUv E Z∗` , the size of

the orbit of Uv is |OrbUv | = φ (`) /|StabUv|.

2.4 Methodology for Determining The Number of Decimation Classes

The following method determines the number of decimation classes of vectors of

odd length ` and density (`+ 1)/2.

Method 1 (Count) Input: `, δ.

1. Construct Subgroup Lattice for Z∗` .

2. For each multiplier subgroup, generate associated ring cosets.

3. Solve U-SSP for number of SSP solutions.

4. Modify number of SSP solutions by Theorem 2.3.9.

5. Iteratively discount necklaces from covering multiplier groups.

6. Divide resulting necklace count by associated orbit size.

7. Sum decimation class counts associated with each multiplier group.

Output: The number of decimation classes.

The subgroup lattice is a network representation of subgroup relations and dependen-

cies. While it is known NP, many efficient solutions methods have been developed.

In Z∗` , any subgroup may be represented by a minimal set of generators. The deter-

mination of ring cosets for each multiplier subgroup directly feeds the solution of the

U-SSP as shown by Algorithm 1.
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As noted, the inverse problem of constructing vectors with a given multiplier group

yields vectors whose multiplier group covers the desired one. By removing necklaces

associated with covering multiplier groups, the number of necklaces which remain is

the number of necklaces containing exactly the associated multiplier subgroup. The

remaining steps reduce necklace counts to decimation counts via Theorem 2.3.11 and

sums across all multiplier groups for the total number of decimation classes.

Example 1 (` = 15)

A simple example of Method 1 is provided using Z15 and δ = (` + 1)/2. This

example assumes the completion of Steps 1 through 4, and begins with Step 5. Since

` = 15, then φ(`) = 8.

Define StabUv ≤ Z∗` to be the subgroup of multipliers and |StabUv | the cardinality of

the subgroup. Then |OrbUv| is the number of necklaces contained within the respective

decimation class, z is the number of solutions returned by an SSP algorithm, and N

is the number of unique necklaces satisfying each respective SSP. Table 1 provides the

various values associated with each unique, proper subgroup of multipliers.

Table 1. Method 1 Steps 1-4

StabUv |StabUv | |OrbUv | z Uv

〈2, 7〉 8 1 1 1
〈4, 11〉 4 2 7 7
〈2〉 4 2 3 3
〈7〉 4 2 3 1
〈4〉 2 4 75 25
〈11〉 2 4 155 31
〈14〉 2 4 35 35

Figure 1 provides the lattice of subgroups for the multiplicative group, Z∗15. Tables

2 and 3 remove necklace counts, N , from the top down according to this lattice. In

the right most column of Table 2, Change notes how N is altered with respect to

nested subgroups. That is if H E K E G, the necklaces with multiplier group
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Figure 1. Z∗
15 Subgroup Lattice

G are discounted from those with multiplier groups H and K, then necklaces with

multiplier group K are discounted from those with multiplier group H. This process

of discounting necklaces must proceed iteratively so that each necklace is removed

from a subsequent set only once.

Table 2. Method 1 Step 5 Part 1

StabUv |StabUv | |OrbUv | N Change
〈2, 7〉 8 1 1 X
〈4, 11〉 4 2 6 −〈2, 7〉
〈2〉 4 2 2 −〈2, 7〉
〈7〉 4 2 0 −〈2, 7〉
〈4〉 2 4 24 −〈2, 7〉
〈11〉 2 4 30 −〈2, 7〉
〈14〉 2 4 34 −〈2, 7〉

When all necklaces have been discounted, N is the number of necklaces with ex-

actly the prescribed multiplier group. Classes then denotes the number of decimation

classes which have exactly the prescribed multiplier group. Summing within the var-

ious |OrbUv |-values yields Table 4, sub-table “Exhaustive Search”. Note the number

of classes associated with |OrbUv | = 8 is a result of discounting all N from the total
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Table 3. Method 1 Step 5 Part 2

StabUv |StabUv | |OrbUv | N Change
〈2, 7〉 8 1 1 X
〈4, 11〉 4 2 6 X
〈2〉 4 2 2 X
〈7〉 4 2 0 X
〈4〉 2 4 16 −〈4, 11〉 − 〈2〉 − 〈7〉
〈11〉 2 4 24 −〈4, 11〉
〈14〉 2 4 28 −〈4, 11〉

number of necklaces, and then dividing by φ(`) = 8.

Table 4. Method 1 Conclusion

Generated Exhaustive Search
StabUv |StabUv | |OrbUv | N Classes
〈2, 7〉 8 1 1 1
〈4, 11〉 4 2 6 3
〈2〉 4 2 2 1
〈7〉 4 2 0 0
〈4〉 2 4 16 4
〈11〉 2 4 24 6
〈14〉 2 4 28 7

|OrbUv | Classes
8 44
4 17
2 4
1 1

The total number of decimation classes for ` = 15 is 66. This result comports

with that determined by Fletcher et al. [6] via exhaustive generation, as well as via a

supplementary exhaustive generation to confirm the various decimation class counts

for each multiplier subgroup.

2.5 Decimation Classes Findings

Table 5 reports the number of decimation classes for odd-length vectors up to

` = 121 and density δ = (`+ 1)/2, as identified using Method 1. Reported values for

vectors of length up to ` = 47 coincide with the results reported by Fletcher et al. [6].

All calculations for this chapter were conducted in MatLab 2016a on an HP Laptop

having an Intel Core I7-6700HQ processor and a dual 2.60 GHz speed and 32.0GB
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of RAM. Of note, the number of decimation classes associated with vector lengths

greater than 121 are not reported, as these values often exceed the default inf value

within the floating point environment.

Table 5. Decimation Classes

` Count ` Count
3 1 63 4.04017707368736e+ 14
5 1 65 1.156959771804840e+ 15
7 2 67 3.217214114855414e+ 15
9 4 69 1.847600616000260e+ 16

11 6 71 4.451836427778403e+ 16
13 14 73 1.661083110408485e+ 17
15 66 75 1.148770188348778e+ 18
17 95 77 2.945564382817068e+ 18
19 280 79 8.723402202550255e+ 18
21 1464 81 4.855790819562310e+ 19
23 2694 83 1.233404706330126e+ 20
25 10452 85 6.100692175209704e+ 20
27 41410 87 2.693812140345454e+ 21
29 95640 89 6.628410449944327e+ 21
31 323396 91 3.134885908440623e+ 22
33 1770963 93 1.456721453499772e+ 23
35 5405026 95 4.703996355233238e+ 23
37 13269146 97 1.367998940022933e+ 24
39 73663402 99 8.492537419668309e+ 24
41 164107650 101 1.978261657756288e+ 25
43 582538732 103 7.534103598543686e+ 25
45 3811895344 105 6.222743114129790e+ 26
47 7457847082 107 1.095828975997956e+ 27
49 30712068524 109 4.184812203962550e+ 27
51 151938788640 111 2.443631411997996e+ 28
53 353218528324 113 6.118265114147216e+ 28
55 1738341231644 115 3.034199188270034e+ 29
57 7326366290632 117 1.445673059571142e+ 30
59 17280039555348 119 4.228593699245602e+ 30
61 63583110959728 121 1.439864513269201e+ 31
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2.6 Discussion

In this paper, the first equation for counting bracelets under the condition of

vectors of length, `, and relatively prime fixed density δ is presented. The concepts

underlying this equation are expanded and a previously unknown method for count-

ing decimation classes without generation is introduced. A greatly expanded list of

decimation class counts for ` ≤ 121 and δ = (`+1)/2 is provided as a result. The next

step is to expand this counting procedure to the conditions of vectors with arbitrary

fixed density or non-binary vectors.
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III. A Novel Approach to Relatively Prime Fixed Density
Bracelet Generation in Constant Amortized Time [19]

3.1 Introduction

The generation of vectors which are unique up to isomorphisms is fundamental

to many modern applications including: cryptography, experimental design, software

design, and transmission encoding/decoding. Lists of such vectors are studied to gain

insight and determine exploitable efficiencies or natural patterns.

Algorithms have been developed to this end for decades. A specific automorphism

of interest is that of circulant shifts.

Definition 3.1.1 A circulant shift of a vector v, denoted cj(v) is a transformation,

such that (cj(v))i = vi−j.

A necklace is an equivalence class on vectors of fixed length ` under circulant

shifts. A Lyndon Word is the lexicographically uniquely smallest vector within a

necklace. The computational complexity goal of necklace generation algorithms has

long been constant amortized time (CAT), or “the use of constant computations

per object” [14]. Ruskey et al. [14] developed an asymptotically constant amortized

algorithm for k-ary necklaces with a fixed number of zeros. Four years later, Sawada et

al. [16] focused the problem to that of necklaces with fixed content and developed an

algorithm he proved to be CAT. Sawada et al. [15] focused further to binary necklaces

with fixed density and developed a CAT algorithm for necklaces and Lyndon Words.

All algorithms developed for the purpose of generating necklaces or bracelets have

obeyed the basic constraints of discrete mathematics. This trend ensures only discrete

solutions are considered feasible at a given generation stage. However, considering a

discrete problem only in terms of discrete values eliminates the heuristic benefits of

approximations. Such approximations are exploited here.
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Section 3.2 provides a cursory background of the most efficient necklace and

bracelet generation methods to date. Section 3.3 presents a novel lexicon based

upon the Discrete Fourier Transform (DFT), an approximating method for recursive

feasibility. Section 3.5 presents the algorithm developed to exploit each. Section 3.4

develops the constraints required for recursive enforcement of vector generation. Sec-

tion 3.6 begins with a proof of CAT with respect to density or with respect to vector

length when density is established as a ratio of such. The section then provides an

applied comparison of the novel algorithm to the most efficient algorithms, Sawada et

al.’s [15] binary fixed density necklace generation and Karim et al.’s [11] fixed content

bracelet generation.

3.2 Background

All algorithms mentioned herein, and indeed all efficient algorithms found by

the authors, utilize a standard tree-branching schema for necklace generation. This

schema is recursively implemented, and is deterministic as each vector is a leaf in only

one path. The efficiency of this method is achieved by generating constraints which

fathom or eliminate branches as quickly as possible while ensuring no vector on the

branch is a representative.

Sawada et al.’s [16] fixed content necklace generation algorithm utilizes “pre-

necklaces” to hasten this fathoming. A vector, v, of length j < ` is a “prenecklace”

if there exists some vector, u, of length k = `− j such that the catenation of v and

u is a necklace representative. Sawada et al. [16] provide Corollary 3.2.1 for k-ary

necklaces:

Corollary 3.2.1 If α = a1a2a3...an is a Lyndon Word, then αb is a prenecklace for

all a1 ≤ b ≤ k − 1.
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It follows from Corollary 3.2.1 that if a partially constructed vector of length

j is a Lyndon Word, then its subsequent branch will have at least one necklace

representative. Sawada et al. [16] use this corollary as well as other features of

necklaces to determine if a given element may be appended to a partially constructed

prefix vector. Among these are the tracking of available content remaining to be

appended and simple rules such as first element always being 0, the first “block” of

0’s being maximally sized, and the final element never being a 0. Sawada et al. [16]

notes that a simple implementation of these features yields linear amortized time with

respect to k. This O(k) complexity is a result of various checks required when there

exists a potential ambiguity of necklace segments.

Sawada et al. [16] overcome this by comparing individual elements when an am-

biguity occurs. In the best case, there exists no ambiguities. In the worst case, a

vector of length ` can have up to `/2 ambiguities. Ambiguities which persist beyond

the final recursive stage must then be checked, resulting in an O(`) computation for

each such ambiguity. Ambiguities in general are proven to be bounded above, and

the bounding is sufficiently small to achieve CAT if the number of elements valued

at k − 1 is greater than all others [16].

Bracelets are a similar construct to necklaces in that they are an equivalence class

on vectors of fixed length, `, under circulant shifts and reversals. Karim et al. [11]

developed an algorithm for fixed content bracelets which they proved to be CAT.

Karim et al.’s [11] algorithm is based heavily on Sawada et al.’s [16] fixed content

necklace generation algorithm. Much of the generation content is similar as a result.

The greatest difference is an additional recursive check for prefix vector reversals.

Given a prefix vector v = a0a1a2...at, a reversal ambiguity exists if and only if

ai = at−i ∀ i ≤ t/2. This is a direct result of the definition of a bracelet representative.

Karim et al. [11] iteratively check if a prefix vector is also a Lyndon Word. When
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the prefix vector then achieves length `, a reduced check of remaining ambiguities

is employed which only compares indices after the longest Lyndon Word prefix. In

the worst case, a Lyndon prefix may be of length 2, resulting in an O(`) ambiguity

check for removal. These occurrences are proven bounded, and similar to Sawada et

al. [16], is CAT provided two conditions are satisfied.

The first condition is not listed by Karim et al. [11] but comes as a direct result

of the bracelet generation algorithm implementing Sawada et al.’s [16] necklace gen-

eration algorithm. That is the number of elements valued at k − 1 is greater than

all others. The second condition requires all run length encodings of prenecklaces are

preserved. This condition is interesting in that it displays a trade-off of computational

complexity with memory requirements.

3.3 Redefining The Binary Lexicon

The usual binary lexicon is defined by 0 < 1. This lexicon is intuitive due to R

being single dimensional and readily expandable beyond the binary restriction. A

substantial number of basic necklace “rules” have been developed for this lexicon as a

direct result of its dominant use [14][16][15]. This lexicon has an inherent drawback.

Confirming a required vector is a necklace or bracelet representative is O(`2).

Discrete, periodic sequences may be interpreted via Fourier Analysis or more

specifically the DFT. For conciseness, let ω = e2πi/`. The DFT of a constant vector

is computed as [5]:

µj = Σ`−1
k=0ω

jkvk ∀ 0 ≤ j < ` (1)

Each µj holds key information which aids in the interpretation of originating vector

such as amplitude and phase, thereby decomposing a periodic sequence of values into

approximating waves. Since ω is a primitive root of unity, then |ωk| = 1 for all k [10].
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Since ωk = e2πik/`, any circulant shift applied to v results in a phase change on each

µj. This phase change is necessarily a multiple of 2π/` [10].

Another key feature of DFT is the inherent symmetry across the real line. This

is represented via conjugates as µj = µ`−j [5]. It follows that |µj| = |µ`−j|.

Consider the complex valued DFT of a necklace defined by

Ψ = {µ0, µ1, µ2, ..., µ`−1} (2)

Ψ achieves a constant order improvement with respect to memory and each Ψ uniquely

defines a vector. A lexicon defined upon Ψ then defines a lexicon on v.

Definition 3.3.1 Let µj = Σ`−1
k=0ω

jkvk and µj = |µj|eiθj . Then v is a necklace repre-

sentative if and only if 0 ≤ θ1 ≤ θj ∀ j ∈ {2, . . . , `− 1}.

All angles shall be considered in radians and bounded [0, 2π) for consistency.

Definition 3.3.1 exposes an immediate condition for a vector to be a necklace repre-

sentative.

Lemma 3.3.2 Let v be a binary vector of length ` and density d with first phase θ1.

If θ1 < 2π/`, then v is a necklace representative.

Reversal of a vector v yields a reversal of Ψ [6]. As noted previously, this reversal

coincides with conjugations on Ψ. Let θ1(v) denote the first phase component of

v, and define δθ = θ1(c1(v))− θ1(v) as the difference in phase. It follows from the

newly defined lexicon that v is a bracelet representative if and only if δθ − θ1 ≤ θ1,

or equivalently δθ ≤ 2θ1.

Lemma 3.3.3 Let v be a binary vector of length ` and density d with first phase θ1.

If 0 < θ1 ≤ π/`, then v is a bracelet representative. Further, if ` is prime, then v is

a bracelet representative if and only if 0 ≤ θ1 ≤ π/`
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Note Lemma 3.3.3 is conditioned based upon ` being prime. When ` is prime, a

circulant shift on v rotates all DFT components by 2π/`. However, when ` is not

prime, then the non-relatively prime components of the DFT may be rotated by some

multiple of 2π/`. In such a case, it is possible to construct a non-symmetric vector

with first DFT component having 0 argument. Its reversal would then be a distinct

vector also having 0 argument.

These definitions are well defined as a derived representative is necessarily unique

for each bracelet. Verification of smallest angle as defined may still require O(log(`))

for general binary vectors of fixed density. If a necklace has no Lyndon Word, there

exists some nontrivial 1 < j < ` such that v = cj(v). The necklace’s orbit size

is necessarily a divisor of ` as a result and the phase change associated with each

circulant shift is δθ = 2πj/`. The O(log(`)) check is then the determination of

j|(d, `), where d is the fixed density and (d, `) denotes the greatest common divisor

of d and `.

Theorem 3.3.4 Let v be a binary vector of length ` and density d. If the necklace

containing v is known to contain a Lyndon Word, then v can be tested as the Lyndon

Word in constant order complexity.

Theorem 3.3.4 follows directly from Lemma 3.3.2 in that a necklace containing

a Lyndon Word is guaranteed to have ` distinct circulant shifts. There then ex-

ists ` unique first phase angles which will be evenly spaced and lie wholly in the

range [0, 2π). Further, the Lyndon Word may be constructed in O(`) by applying the

−bθ1c = 2π−dθ1e circulant shift. When ` is prime, Theorem 3.3.4 is trivially expand-

able to verify bracelet representative status in constant order complexity. Otherwise

vectors having 0 argument require an O(`) check for symmetry.
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3.4 Formulating Constraints

A recursive branching formulation remains preferable as it extends elegantly and

guarantees each unique vector is attainable from one and only one path. As such,

the method must be adaptable to a partially constructed vector, or prefix vector.

The DFT of a prefix vector of length r can be considered as the DFT of said prefix

catenated with a zero vector of length `−r. As the first component which defines the

conditions for necklace representative, the corresponding calculations are simplified

to:

µ1 = Σr
j=0ω

jvj (3)

Many constraints employed by Sawada et al. [16] and Karim et al. [11] are invalid

for the newly defined lexicon. For example, it is no longer guaranteed that the first

element will be a zero or the last a one. Recursive verifications are also complicated

in that leaving the desired phase range at some iterative step does not preclude the

possibility of returning within the range. Rather, a non-necklace prefix may pair with

a non-necklace suffix such that the resultant vector is a necklace representative.

The recursive problem is to then determine if there exists some suffix vector u

which can be paired with prefix v such that the DFT lies within the desired range,

defined here as 0 ≤ θ1 ≤ Θ. This yields two linear constraints defined parametrically

via polar coordinates as:

zL(r) = r ; zU(r) = reiΘ ; r ∈ R+ (4)

where zL and zU denote lower and upper bounds, respectively. These constraints

necessarily intersect at the origin. Lemma 3.4.1 provides a succinct description of the

generation condition which translates the angular definition of representatives into
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recursive linear constraints.

Lemma 3.4.1 Let µ be a binary combinations of integer powers of ω, and denote the

set of those powers as W. Then µ is a “prefix” if and only if there exists some ν ∈ C

such that ν is the binary combination of Wc and ν exists within the constraints:

zL(r) = r − µ ; zU(r) = reiΘ − µ (5)

There then exists the issue of determining when such a suffix, ν, exists. Recall `

and d are the length and density of all generated vectors. Let v be a prefix vector of

length n < ` consuming s < d possible units. Then a corresponding suffix vector u

of length m = `−n must consume exactly t = d− s units. Further assume that W is

a geometrically contiguous set of powers of ω covered by v. The complementary set

of powers Wc is also contiguous and necessarily covers the suffix u. Without loss of

generality, it is assumed:

W = {0, 1, ..., n} ; Wc = {n+ 1, ..., `− 1} (6)

Consider the interpretation of ν’s existence as a constraint satisfaction problem

with binary decision variables xj presented in Table 6. Determination of ν via binary

combinations is O(2`) and undesirable as such. Phase calculations also imply the

use of a sign preserving trigonometric function such as the “2-argument arctangent”,

atan2.

1: atan2(Im(ν + µ),Re(ν + µ)) < Θ
2: −Im(ν) ≤ Im(µ)
3: ν = Σj∈Wcxjω

j

4: Σj∈Wcxj = t
5: xj ∈ {0, 1} ≤ 1 ∀ j ∈Wc

Table 6. Direct Constraint Implementation
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These phase calculations are preemptively subverted by Equation 5 as Θ is con-

sidered a known constant. Equation 7 removes the inverse tangent function by cal-

culating the slope from two points. As expected, the result is the constant, tan(Θ).

Im(eiΘ)

Re(eiΘ)
=

sin(Θ)

cos(Θ)
= tan(Θ) (7)

Algebraic manipulation of the phase constraint then yields the equivalent linear con-

straint:

Im(ν)− tan(Θ)Re(ν) < tan(Θ)Re(µ)− Im(µ) (8)

The continuous relaxation then yields the linear constraints outlined in Table 7.

1: Im(ν)− tan(Θ)Re(ν) < tan(Θ)Re(µ)− Im(µ)
2: −Im(ν) ≤ Im(µ)
3: ν = Σj∈Wcxjω

j

4: 0 ≤ xj ≤ 1 ∀ j ∈Wc

Table 7. Linearized and Relaxed Constraint Implementation

For ease of reference, the feasible region shall be defined as RL ∩RU where:

RL = {z : Im(z) ≥ −Im(µ)} (9)

RU = {z : Im(z)− tan(Θ)Re(z) < tan(Θ)Re(µ)− Im(µ)} (10)

are a lower bounding ray and an upper bounding ray respectively which intersect at

−µ. Linear constraint satisfaction problems are solvable in polynomial time. How-

ever, constant order complexity must be achieved as these constraints are to be sat-

isfied at each recursive step. Herein lies the need for the added information afforded

by fixed density.

Let τ = [0m−t,1t], then [v, τ ] satisfies the binary density constraint. Further, τ
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is such that

rO = |
(
Σj∈Wcωjτ j

)
− µ|

is maximal among all possible suffixes. Other maximally distanced values correspond

to circulant shifts of τ maintaining the form [0m−t−q,1t,0q]. This region may be

parameterized as:

FO = {z : |z| ≤ rO} (11)

There exists an inverse problem accompanying binary vectors; that of beginning

with a vector full of units and selecting which elements to make zero. The “origin”

of this inverse problem is:

Γ =
(
Σj∈Wcωj

)
− µ (12)

A suffix vector under the inverse interpretation must then select where to place

m− t zeros. The vector τ is such that

rΓ = |
(
Σj∈Wcωjτ j

)
− Γ| = |µ−

(
Σj∈Wcωj(1− τ j)

)
(13)

is maximal among all possible suffixes. Other maximally distanced values correspond

to circulant shifts of τ maintaining the form [1t−q,0m−t,1q]. This region may be

parameterized as:

FΓ = {z : |z − Γ| ≤ rΓ} (14)

Therefore, the original problem and the inverse problem are bounded by circulant

shifts of τ , and all other feasible suffix vectors, binary or continuous, must correspond

to some complex value within this region.

Theorem 3.4.2 Let v be the binary representation of set W and FO, FΓ be as defined.

Vector u is a suffix of v if and only if the corresponding first DFT component of u
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exists within the region FΓ ∩ FO.

The region (FΓ∩FO)’s binary point density near the center is significantly greater

than at the boundaries. However, “void” regions exist near the borders, which

are valid within the continuous relaxation but permit no binary points. Let V =

{V1, V2, ...Vk} denote the set of such regions.

Let λ1 and λ2 be binary vectors such that λ2 = c1(λ1) = cj(τ ). Then the

complex representatives of λ1 and λ2, denoted as z1 and z2 respectively, exist on the

same border. Further, they are “neighbors” with respect to binary points existing on

the border. The void space, Vj, existing between z1 and z2 can be characterized by

its border points.

Without loss of generality, assume λ1 = [1x,0,1y] and λ1 = [1x+1,0,1y−1]. The

border points of V are then all points of the form [1x,0, 11,0,1y−1]. It follows that

Vj can be defined via a center point and the corresponding `th roots of unity. Since

all roots of unity have modulo 1, each member of V is necessarily a disk of radius 1

centered around the complex representation of γ = λ1

⊙
λ2 where

⊙
denotes the

Hadamard or element-wise product.

Figure 2 provides an example with ` = 27, t = 6, and over the set {ω14, ..., ω26}.

In Figure 2, all circled points denote circulant shifts of τ . Circle “Void” denotes a

void space, Vj ∈ V, chosen arbitrarily for visual representation. The number of void

spaces is proportional to the number of units available to the suffix, and thus to vector

density.

Notice in Figure 2, “Void” intersects with FΓ. Except in trivial cases, each void

can intersect one and only one circular border. The region Vj ∩ FΓ corresponds to

non-binary vectors obeying the constraint:

|vj| ≤ 1 (15)
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Figure 2. Feasible Subspace Example

These voids need not be accounted for in two specific cases which correspond to

the trivial suffixes. These are if the suffix’s binary representation is a vector of units

or a vector of zeros. These cases need not implement the region feasibility checks in

algorithmic implementation due to a more traditional shortcut presented by Sawada

et al. [16]. Namely, if all remaining vector indices must be a given element, assign

the element and verify conditions are satisfied.

The feasibility constraints which may fathom a branch are defined by the existence

of a feasible region bounded by the specified circles and rays. That is, a branch

contains no suffices which yield representatives if:

(FΓ ∩ FO) ∩ (RL ∩RU) = ∅ (16)

This intersection of two disks and two rays is guaranteed convex. Thus, there ex-

ists some method of constant order to determine its existence. One such method is

presented herein.
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3.5 Algorithm

This section contains a pseudo algorithm for implementation. Much of this al-

gorithm is inspired by Sawada et al.’s [15] algorithm with key difference being the

redefined lexicon and use of a continuous feasibility region.

Stage one of the algorithm is the initialization of global variables. This initial-

ization is O(`), but is conducted only once for O(`!) objects and therefore does not

impact the amortized time. The variables used in Algorithm 2 are: the vector length

`, the first primitive `th root of unity, ω, all `th roots of unity, Ω, and summation of

all `th roots of unity greater than current index, Φ.

Algorithm 2 Global Initialization

1: procedure InitializeGlobals( )
2: ω = e2πi/`

3: Ω`−1 = ω`−1

4: Φ`−1 = Ω`−1

5: for (int j = `− 2 ; j >= 0 ; j) do
6: Ωj = ωj

7: Φj = Φj+1 + Ωj

8: endFor
9: return

Algorithm 2 sums powers of ω in reverse order to facilitate a forward vector

construction schema. This allows for immediate retrieval of required sum in constant

time based solely upon current recursive layer. Φ is also used to determine the

complex representative of τ , a vector suffix where the boundaries of FΓ and FO

intersect. This initialization has a second added effect of exploiting precision error.

This exploitation allows an inclusive lower bound of 0 argument applied to even non-

prime ` while maintaining uniqueness of bracelets contrary to Lemma 3.3.3. Rather,

if the sum of global variables places one necklace representative of a non-symmetric

vector at argument 0 + ε, then its reversal will necessarily be calculated to 0− ε and

be discarded.
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Algorithm 3 Feasible Region Exists

1: procedure CheckFeasMu(complex µ1, int layer, int numOnes)
2: complex γ = Φlayer

3: complex τ = Φ`−numOnesRem
4: double rO = dist(τ ,0)
5: double rΓ = dist(τ ,γ)
6: complex ν=-µ1

7: if dist(ν,γ)≤rΓ && dist(ν,0)≤ rO then
8: return true
9: endIf

10: complex τR = ReflectPointAcrossLine(Im(γ)/Re(γ),τ )
11: complex fO = (τ + τR)/2
12: double slope = (Im(fO-ν)/Re(fO-ν));
13: if Im(fO)>tan(Θ)(Re(fO)-Re(ν))+Im(ν) then
14: bool pass = FeasInt(ν,tan(Θ),fO,τ ,γ,rΓ,rO)
15: return pass

16: endIf
17: if Im(fO)<Im(ν) then
18: bool pass = FeasInt(ν,0,fO,τ ,γ,rΓ,rO)
19: return pass

20: endIf
return true
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Algorithm 3 begins with two simple checks: if the intersection of the rays, denoted

as point ν, exists within FΓ ∩ FO, or if the center of FΓ ∩ FO exists within the rays.

Algorithm 3 incorporates the function “ReflectPointAcrossLine” in which a slope

and a point are submitted as inputs. This function reflects point τ across the line

connecting points −µ1 and Γ as calculated in Equation 12. Algorithm 3 invokes

Algorithm 4 for cases when neither of the aforementioned points existed within the

respective region.

Algorithm 4 first constructs a relaxed circle around FΓ ∩ FO to determine if any

intersection point exists. If such a point does not exist, no point in FΓ ∩FO can exist

within the rays. If such a point does exist, the boundary circles of FΓ and FO are

intersected with the violated ray. If the intersections provide a nonempty range along

the ray, a feasible region exists. The calling recursions are similar to that of Sawada

et al.’s [16]. Algorithm 5 provides a condensed interpretation for completeness.

3.6 Proof of CAT

Theorem 3.6.1 The algorithm presented in this paper is CAT with respect to a fixed

density, d, or if d is set proportionally to length, `, for all (d, `) = 1.

Proof 8 Given each feasibility check is constant order complexity, O(1), and the final

check is O(1), it suffices to prove that the number of vectors submitted for the final

check are O(1) amortized. Each feasible space of the form FΓ ∩ FO is constructed via

the sum of remaining roots of unity, Γ, and the sum of roots of unity for remaining

density, t < d. Recall the space RL ∩RU is constructed via angular restrictions which

translate during the recursion process.

If no units have been applied and no indices of the vector v have been set, the

density remaining is the full density and Γ = 0. Since Γ and the origin are co-located,

the region FΓ ∩ FO = FO. It follows that all boundary points of the form cj(τ ) must
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Algorithm 4 Boundaries Intersect

1: procedure FeasInt(complex ν, double slope, complex fO,...)
2: (...,complex τ ,complex γ, double rΓ, double rO)
3: complex [crossAt1,crossAt2] =
4: = CircleIntersectLine(fO,dist(fO,τ ),ν,slope)
5: if max(Re(crossAt1),Re(crossAt2))≥ Re(ν) then
6: complex [crossAtG1,crossAtG2] =
7: = CircleIntersectLine(γ,rΓ,ν,slope)
8: complex [leftBound, rightBound] =
9: = TightenRealcrossAtG1,crossAtG2,ν,inf)

10: complex [crossAtO1,crossAtO2] =
11: = CircleIntersectLine(0,rO,ν,slope)
12: complex [leftBound, rightBound] =
13: = TightenReal(crossAtO1,crossAtO2,leftBound,rightBound)
14: if Re(rightBound)>Re(leftBound) then
15: return true
16: else
17: return false
18: endIf
19: else
20: return false
21: endIf

37



Algorithm 5 Primary Recursion

1: procedure AddElement(int Vect[L], complex µ1, int layer,...)
2: (...,int numZersRem, int numOnesRem)
3: if numZersRem>0 then
4: AddZero(Vect,µ1,layer,numZersRem,numOnesRem)

5: endIf
6: if numOnesRem>0 then
7: AddOne(Vect,µ1,layer,numzersRem,numOnesRem)

8: endIf return
9: procedure AddZero(int Vect[L], complex µ1, int layer,...)

10: (...,int numZersRem, int numOnesRem)
11: if numOnesRem==0 then
12: SubmitVect(Vect,µ1)

13: endIf
14: layer++
15: bool feas=CheckFeasMu(µ1,layer,numOnesRem)
16: if !feas then return
17: AddElement(Vect,µ1,layer,numZersRem-1,numOnesRem)
18: return
19: procedure AddOne(int Vect[L], complex µ1, int layer,...)
20: (...,int numZersRem, int numOnesRem)
21: if numOnesRem==0 then
22: µ1+ = Φ`−numOnesRem
23: for j = `− numOnesRem;j < `,j++ do
24: Vect[j]=1;

25: endFor
26: SubmitVect(Vect,µ1)

27: endIf
28: layer++
29: numOnesRem–
30: µ1+= Ωlayer

31: V ectlayer = 1
32: bool feas=CheckFeasMu(µ1,layer,numOnesRem)
33: if { then!feas} return

34: AddElement(Vect,µ1,layer,numZersRem-1,numOnesRem)
35: return
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lie on the circle bounding FO. Let Vi denote a void. The space attainable region

characterized by the circular approximating space without the void spaces, FO ∩i V c
i ,

must have rotational symmetry. Since (d, `) = 1, the rotational symmetry must have

period 2π/`.

Let V0 be the void neighbored by two points with vector representation λ1 and λ1

where λ1 = c1(λ2) = cj(τ ). Recall V0 may be characterized as a disk of radius 1

centered around the complex representation of γ = λ1

⊙
λ2.

Case 1: Let d be odd and V0 the void existing within the region RL ∩RU . Since d

is odd, there exists one and only j ∈ Z` such that λ1 = cj(τ ) = τ̄ . The DFT of this

vector necessarily borders V0. Since FO ∩i V c
i has rotational symmetry of period 2π/`

and θ = π/`, at most half of the area of V0 exists in the region FO ∩ RU ∩ RL. The

overlapped void space, denoted I, is then characterized by:

I = V0 ∩RU ∩ FO (17)

Let x and y denote the real and imaginary component of a complex value respec-

tively, and recall tan(Θ) denotes the slope of the ray bounding RU . The constraining

equations bordering I, provided in respective order as the definition of I, are:

(x− Re(γ))2 + (y − Im(γ))2 ≤ 1 (18)

− tan(Θ)x+ y ≤ 0 (19)

x2 + y2 ≤ |Σj = 0d−1ωj|2 (20)

The radius of the circle bounding FO is r = |Σd−1
j=0ω

j|. The area of FO ∩RL ∩RU is

then r2π/`. Since the boundary of V0 intersects the boundary of FO and the bounding

line of RU intersects γ, no more than π of V0’s is area included within FO ∩RL∩RU .
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The ratio of areas is then:

Area(V0)

Area(FO ∩RU ∩RL)
<

`

|Σd−1
j=0ω

j|2
(21)

Case 2: Let d be even and V0 the void existing within the region RL ∩ RU . Since

d is even and (d, `) = 1, then ` is odd and there exists one and only one vector

λ1 = cj(τ ) which is symmetric across the index `+1
2

. The center of V0, denoted γ, is

real valued and intersects the bounding line of RL. By problem symmetry, the ratio

of areas holds:

Area(V0)

Area(FO ∩RU ∩RL)
<

`

|Σd−1
j=0ω

j|2
(22)

Therefore, if d increases proportionally with ` or if ` is held constant and d in-

creases such that r increases, the ratio of area in the feasible region consumed by voids

converges to zero and is bounded above by the smallest ` instance. �

The trivial densities were excluded from this proof as there is no concept of area.

If d = {0, `}, there exists one and only one vector and the complex space is a single

point at origin. If d = {1, ` − 1}, the relaxed feasible region is a circle instead of a

disk and permits only one representative. Generation is O(1) in either case.

3.7 Concluding Remarks

This paper provides a novel interpretation of necklace and bracelet representa-

tives based upon a DFT-centric lexicon. This lexicon constructs a new method for

interpreting binary structures with the requisite equivalence relations. The use of

continuous relaxations and DFT is a stark deviation from the dominant generation

method for binary sequences. The presented algorithm for representative generation

is CAT, as is that developed by Sawada et al. [16] and Karim et al. [11]. However,

the current geometric calculations involved within each step are approximately 816
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times more expensive than those employed with traditional lexicons based upon com-

putational tests. This leaves significant room for improvement or optimization along

with various interesting areas for future research such as:

• Enforcement of void spaces in constant time

• Extension to decimation classes presented by Fletcher et al. [6]

• The use of cool-lex recursion method presented by Ruskey et al. [13]
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IV. A Novel Legendre Pair Generation Algorithm [20]

4.1 Introduction

In 1998, Gysin et al. [7] derived a means by which Legendre Pairs (LP) construct

Hadamard Matrices, known as Cocyclic Hadamard Matrices. In 2001, Fletcher et

al. [6] identified connections to Discrete Fourier Transforms (DFT) via the Wiener-

Khinchin theorem and exploited a number of properties therein. Efforts have since

focused reducing generation time either via multi-threading or reducing the number

of generated vectors. All have done so with respect to the traditional binary lexicon

(see [3][4]).

Turner et al. [19] developed a DFT focused lexicon for comparing binary vectors

with fixed density relatively prime to vector length. This paper presents an algorithm

which exploits that lexicon to locate LP. Section 4.2 provides pertinent background

defining the operations, terminology, and current state of the art. Section 4.3 details

the space reductions and additional constraints applied to Turner et al.’s [19] bracelet

generation algorithm which exploits LP constraints. Section 4.4 provides the sort-

ing methodology and addresses the reduced computational complexity achieved by

integrating generation and sorting algorithms. Section 4.5 lists the newly discovered

LP associated with various odd vector lengths and associated performance, as well as

new LP discovered during algorithm development.

4.2 Background

Let Z∗` = {j | (j, `) = 1} be the multiplicative group of Z`. Let a circulant shift

of a vector v by j ∈ Z`, denoted by cj(v), and a decimation of a vector v by

j ∈ Z∗` , denoted by dj(v), be the transformations such that (cj(v))i = vi−j and

(dj(v))i = vi∗j (mod `). A necklace is an equivalence class of vectors of length ` under
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circulant shifts, whereas a bracelet is an equivalence class under circulant shifts and

decimation by −1 (reversals) [4, 15]. The decimation class of a vector of length `

is the orbit of the vector under circulant shifts and decimation by j’s such that j is

relatively prime to ` [6].

In 1998, Gysin et al. [7] derived a means by which LP can construct Hadamard

Matrices, known as Cocyclic Hadamard Matrices. This construction method relies

on circulant matrices in which each row is a successive circulant shift of a defining

vector. LP are generally defined with respect to vectors composed of positive and

negative 1’s.

Definition 4.2.1 Two ± vectors u and v are a Legendre Pair if and only if they are

of odd length `, Σ`
iui = Σ`

ivi = 1, and Σ`
iuiui+j + vivi+j = −2 ∀ j 6= 0.

Gysin et al. [7] proved the following construct is a Hadamard Matrix:

Definition 4.2.2 Let A and B be circulant matrices defined by ± LP vectors a and

b. The following matrix is a Cocylic Hadamard Matrix [7]:



−1 1 1 1

1 1 1 -1

1 1 A B

1 -1 BT −AT


Gysin et al. [7] identified the relation between LP and periodic autocorrelation

function.

Definition 4.2.3 The periodic autocorrelation function (PAF) of a vector v is Pv,

such that Pv(j) = Σ`−1
i=0vivi+j = cj(v)′v.
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Theorem 4.2.4 Let u, v be binary vectors of length `. Then u and v are LP if and

only if

Pu(j) + Pv(j) =
`+ 1

2
∀ j 6= 0

Let µ be the DFT of vector v. A decimation of v by amount j results in a

decimations of the Power Spectral Density (PSD) of v by amount j−1. The PSD

vector is denoted herein as |µ|2 where |µ1|2 = µ1µ1. Since PSD are symmetric about

the index `+1
2

, any vector which is decimated by −1 will exhibit the same PSD [6].

The Weiner-Khinchin theorem states that the PAF of a vector is the inverse DFT

of the vector’s PSD. Fletcher et al. [6] used this to translate the conditions of LP

from PAF into PSD.

Definition 4.2.5 Let u, v be binary vectors of length `, with ν and µ their respective

DFTs. Then u and v are LP if and only if

|νj|2 + |µj|2 =
`+ 1

2
∀ j 6= 0

Since PAF are invariant under circulant shifts of the underlying vector, it follows

each PAF may be generated by a single vector representing all circulant shifts and

decimations of −1, or a bracelet representative [4]. Fletcher et al. [6] determined the

PSD is the same for all vectors within the same decimation class, up to a decimation

itself. It follows that PAF are as well.

Fletcher et al. [6] utilized these properties retrospectively due to the difficulty of

generating decimation classes. It was discovered therein that the number of individ-

ually feasible decimation classes, with respect to PSD restrictions, grew at a signifi-

cantly slower rate than the number of decimation classes. Of these, even fewer con-

stituted a compatible pair. Fletcher et al [6] determined this via exhaustive searches

of the fixed density decision space for all ` ≤ 47, where ` denotes the size of each
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circulant core.

Existing Methods

In 2008, Chiarandini et al. et al. [3] utilized a multi-threaded TABU search which

moved across the fixed density vector space via simultaneous activation and deactiva-

tion of two distinct indices. The heuristic treated the two vectors as a single decision

vector, and sought to minimize deviation from Theorem 4.2.4. Global minimum could

only be achieved when the decision vector constituted an LP.

Chiarandini et al.[3] varied TABU list lengths ranging from 0.5` to 20`, and each

length was repeated for 60 runs. Each run was permitted 106 seconds (277.8 hours) on

a SHARCnet high performance cluster, and each iteration was permitted a stagnation

limit of 105 (27.78 hours) before resetting the search. At each iteration, the best non-

TABU solution was selected.

A solution to ` = 57 was achieved on the smallest such TABU length of 0.5`.

From this, it can be inferred that the run time of this heuristic to solve ` = 57

was approximately 105 computer hours (11.42 computer years). Chiarandini et al.’s

[3] method does not allow for reduction of vectors to bracelet or decimation class

representatives.

In 2015, Dokovic et al. [4] employed decimation classes to search for periodic

Golay pairs. A Golay pair is a set of two vectors, u, v, such that the PSD sum to

the constant, 2`. In this sense, a Golay pair and LP are similar in definition, varying

only by said constant and vector composition.

Dokovic et al.’s [4] algorithm is based upon the fixed-content algorithm developed

by Sawada et al. [16]. It appends a new check to determine if the generated vector is

lexicographically smaller than all decimations and all circulant shifts of said decima-

tions. This check is O(`2φ(`)) where φ(`) is Euler’s Totient number, but is claimed
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as O(`3) for simplicity [4].

Dokovic et al.’s [4] algorithm does not include efficiencies to reduce the number

of comparisons made among decimation class representatives. Thus the number of

comparisons to be conducted each time a representative is generated increases linearly

with the number of representatives. This approach is untennable given the number

of representatives increases combinatorically

4.3 Constrained Bracelet Generation

Turner et al. [19] constructed a lexicon based upon the argument of a vector’s

first DFT component. Under the new lexicon, a vector is a bracelet representative

if and only if the argument of its first DFT component is within the range [0, 2π/`].

This provided a single value determination of representative status whereas preceding

applications of a binary lexicon required O(`) comparisons. Turner et al.’s [19] method

then lends itself to further restrictions on a vector’s DFT.

Lemma 4.3.1 If v ∈ {0, 1}` for some ` ∈ Z+/{0}, then

Σ`−1
j=0|µj|2 = `Σ`−1

j=0vj

where |µj|2 is the jth power spectral density of v

Proof 9 Let f = Σ`−1
j=0vj. The kth index of the Discrete Fourier Transform of v is
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defined as µk = Σ`
j=0e

2πijk/`vj, where i =
√
−1. By definition, |µk|2 = µkµk = µkµ`−k.

Σ`−1
k=0|µk|2 = Σ`−1

k=0(Σ`−1
j=0e

2πijk/`vj)(Σ
`−1
j=0e

2πij(−k)/`vj)

= Σ`−1
k=0

[
(Σ`−1

j=0e
2πijk/`e2πij(−k)/`vj) + (Σj 6=he

2πijk/`e2πih(−k)/`vjvh)
]

= Σ`−1
k=0

[
(Σ`−1

j=0vj) + (Σj 6=he
2πi(j−h)k/`vjvh)

]
= Σ`−1

k=0

[
f + (Σj 6=he

2πi(j−h)k/`vjvh)
]

= `f + Σj 6=h
(
Σ`−1
k=0e

2πi(j−h)k/`
)
vjvh

= `f + Σj 6=h(0)vjvh

= `Σ`−1
j=0vj

�

Lemma 4.3.1 generalizes the well known result that Σ`−1
j=0|µj|2 = `(`+1)

2
when

Σ`−1
j=0vj = `+1

2
. Note Z+ is used here to denote all non-negative integers, and Z+/{0}

denotes strictly positive integers. Lemma 4.3.2 employs a similar proof to expose

further PSD summation structure, but is only restricted to integer vectors.

Lemma 4.3.2 If v ∈ Z(nδ) for some n, δ ∈ Z+/{0}, then

Σδ−1
j=0|µjn|2 = δΣn−1

x=0αxδ

where |µj|2 is the jth power spectral density of v, and αj is the jth periodic autocor-

relation of v.

Proof 10

Σδ−1
k=0|µkn|2 = Σδ−1

k=0(Σ
(nδ)−1
j=0 e2πijkn/(nδ)vj)(Σ

(nδ)−1
j=0 e2πij(−kn)/(nδ)vj)

= Σδ−1
k=0Σ

(nδ)−1
j=0 Σ

(nδ)−1
h=0 e2πi(j−h)k/δvjvh

Note for each h ∈ Z` and j ∈ Z`, there exists a unique x < n and y < δ such that
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j = h+ xδ + y.

Σδ−1
k=0|µkn|2 = Σδ−1

k=0Σn−1
x=0Σδ−1

y=0Σ
(nδ)−1
h=0 e2πi(h+xδ+y−h)k/δvh+xδ+yvh

= Σδ−1
k=0Σn−1

x=0Σδ−1
y=0Σ

(nδ)−1
h=0 e2πiyk/δvh+xδ+yvh

Let αxδ+y = Σ
(nδ)−1
h=0 vh+xδ+yvh. By definition, αxδ+y is the (xδ + y)th periodic au-

tocorrelation of v.

Σδ−1
k=0|µkn|2 = Σδ−1

k=0Σn−1
x=0Σδ−1

y=0e
2πiyk/δαxδ+y

= Σn−1
x=0Σδ−1

y=0Σδ−1
k=0e

2πiyk/δαxδ+y

= Σn−1
x=0

([
Σδ−1
k=01αxδ

]
+
[
Σδ−1
y=1Σδ−1

k=0e
2πiyk/δαxδ+y

])
= δΣn−1

x=0αxδ

�

Theorem 4.3.3 Let v ∈ Z(nδ)
2 such that Σnδ

j=0vj = f ∈ Z+ where n and δ are pos-

itive odd integers. For each (f, δ) combination there exists a unique c such that

Σ
(δ−1)/2
j=1 |µjn|2 = aδ + c for all odd n, where |µj|2 is the jth power spectral density

of v. Furthermore, c is the unique integer given by the equation

c =
kδ − (f (mod δ))2

2

where f (mod δ) denotes f modulo δ and k is an integer satisfying:

(f (mod δ))2

δ
< k <

(f (mod δ))2

δ
+ 2

Proof of Theorem 4.3.3 begins by showing all such c must be of the form c =

kδ−(f (mod δ))2

2
for some integer k, and then exploits bounds on c to prove the unique-

ness of k.
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Proof 11 By Lemma 4.3.2, Σδ−1
j=0|µjn|2 = aδ for some a ∈ Z+/{0}.

Since v is binary, then |µnδ|2 = (f)2 and |µj|2 = |µnδ−j|2 ∀ j ∈ Znδ, then

Σδ−1
j=0|µjn|2 = (f)2 + 2Σ

(δ−1)/2
j=1 |µjn|2

By Lemmas 4.3.1 and 4.3.2 respectively, define

k1δ = Σδ−1
j=0|µjn|2 ; k3δ + c = Σ

(δ−1)/2
j=1 |µjn|2

Let k = (k1 − k2 − 2k3) where k2δ + (f (mod δ))2 = (f)2. It follows that:

k1δ = Σδ−1
j=0|µjn|2

k1δ = f 2 + 2Σ
(δ−1)/2
j=1 |µjn|2

(k1 − k2)δ = (f (mod δ))2 + 2Σ
(δ−1)/2
j=1 |µjn|2

(k1 − k2 − 2k3)δ = (f (mod δ))2 + 2c

kδ = (f (mod δ))2 + 2c

Thus, c = kδ−(f (mod δ))2

2
. �

0 ≤ c < δ

0 ≤ kδ−(f (mod δ))2

2
< δ

0 ≤ kδ − (f (mod δ))2 < 2δ

(f (mod δ))2 ≤ kδ < 2δ + (f (mod δ))2

(f (mod δ))2

δ
≤ k < (f (mod δ))2

δ
+ 2

Since k ∈ Z+, there exists at most two solutions. Assume

c =
kδ − (f (mod δ))2

2
∈ Z
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If c is not unique, then

(k ± 1)δ − (f (mod δ))2

2

must be integer. Notice

(k ± 1)δ − (f (mod δ))2

2
= c± δ

2

Since δ is odd, then δ/2 cannot be integer. Therefore c is unique for each (f, δ).

�

Corollary 4.3.4 For each odd δ, there exists a unique integer c such that Σ
(δ−1)/2
j=1 |µjn|2 =

aδ+ c for all odd n, where |µj|2 is the jth power spectral density of vector v ∈ {0, 1}nδ

and Σnδ
j=0vj = nδ+1

2
. Furthermore, c is the integer satisfying the equation

c =
kδ

2
− (δ + 1)2

8

for integer k satisfying

(δ + 1)2

4δ
< k <

(δ + 1)2

4δ
+ 2

Proof 12 Since n is odd , then

nδ + 1

2
(mod δ) =

(n+ 1)δ − δ + 1

2
(mod δ) = −δ − 1

2
(mod δ) =

δ + 1

2

Since modulo is a linear operator, then

(
nδ + 1

2

)2

(mod δ) =

(
δ + 1

2

)2

By Theorem 4.3.3, since
(
nd+1

2

)
(mod δ) = δ+1

2
for all odd n, then

c =
kδ

2
− (δ + 1)2

8
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(δ + 1)2

4δ
< k <

(δ + 1)2

4δ
+ 2

�

Theorem 4.3.3 provides considerable structure regarding the summation of non-

relatively prime indices of the PSD vector. Corollary 4.3.4 strengthens such structure

for vectors under consideration for LP. Since Σ`−1
j=0|µj|2 = `(`+1)

2
, then

Σjcj ≤ Σ{r|(r,`)=1}|µr|2 ≤
(
φ(`)

2

)(
`+ 1

2

)
− Σjcj (1)

where cj are the constant modulus associated with each distinct prime factor of `,

and {r|(r, `) = 1} denotes all integers, r < `, relatively prime to `.

Recall the PSD test provided by Fletcher [6] restricts the nontrivial PSD com-

ponents to be strictly less than `+1
2

. Supplemental components of the DFT are not

required to fall within a given triangular region as decimating a bracelet is not guar-

anteed to yield a bracelet. However, those components must obey radial constraints.

Theorem 4.3.5 Let Aj denote the attainable region of DFT component j with fixed

prefix, and Cj denote a circle centered at the origin with radius rj. If Aj ∩ Cj = ∅, a

feasible suffix does not exist.

Theorem 4.3.5 allows for a radius unique to each component of the DFT. A simple

approach is to employ rj =
√

`+1
2

, thus enforcing the PSD test [6].

By Equation 1, every PSD vector under consideration here contains at least one

relatively prime component with value no greater than `+1
4

. The first PSD of a bracelet

representative may be approximated by the real component since the argument is

bounded [0, 2π/`]. The real component is used as a linear approximation as the

corresponding PSD relaxation is tangential to the feasible region at the argument’s

lower bound of 0, but does not eliminate any portion of the quadratically bounded
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feasible region.

RR = {µ : Re(µ) ≤
√

(`+ 1)/4} (2)

The following constraints are derived from Turner et al.’s [19] definition of bracelet.

RB = {µ : Im(µ) ≥ 0} (3)

RT = {µ : Im(µ) ≤ Re(µ) tan(2π/`)} (4)

Equations 2, 3, and 4 bound a closed, non-empty triangular region of the complex

plane. This bounded region tightens the unbounded feasible region defined by Turner

et al. [19] via the linear constraint given in equation 2.

4.4 Sorting Algorithm

The constrained generation of bracelets is only half the problem as representative

vectors must be efficiently compared to locate an LP. Previous efforts at comparing

vectors have either attempted to circumvent this problem by generating the pairs

simultaneously [3], or accepted full comparisons without overt simplification [4][6].

Comparing vectors’ PAFs is the preferred method for determining if they are LP

as all PAF values are necessarily integer. Such a comparison is O(`). However, the

number of LP is relatively small as compared to the number of feasible decimation

classes. As such, it is prudent to extract a number of highly discriminatory constant

order comparisons by which to classify representatives.

Definition 4.4.1 The correlation energy of a vector v is defined as

ρv = Σ
(`−1)/2
j=1 (|µj|2)2 (5)
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Definition 4.4.1 differs from the traditional definition (see [8]) which sums over all

indices. Since PSD are symmetric and the 0th index is a constant, then no information

is lost with the reduced calculations. Hollon et al. [8] noted correlation energy is

equivalent for vectors constituting an LP, but did not provide reference or proof

thereof. It is then proven here for completeness.

Theorem 4.4.2 If u and v are Legendre Pairs, then ρv = ρu where ρv and ρu denote

the correlation energy of v and u respectively.

Proof 13 Since v and u are LP, then |µj|2 + |νj|2 = `+1
2

for all j > 0. Since

Σ
(`−1)/2
j=1 |µj|2 = Σ

(`−1)/2
j=1 |νj|2 =

`2 − 1

4

for all vectors of fixed density `+1
2

, then

(|ν|2)
′
(|ν|2) =

(
`+1

2
− (|µ|2)

)2

= (`− 1)
(
`+1

2

)2
+ (|µ|2)

′
(|µ|2)− 2 (|µ|2)

′
1 `+1

2

= (`− 1)
(
`+1

2

)2
+ (|µ|2)

′
(|µ|2)− `2−1

2
`+1

2

= (|µ|2)
′
(|µ|2)

Therefore, (|µ|2)
′
(|µ|2) = (|ν|2)

′
(|ν|2). �

Another symmetric function linking LP is derivable from Theorem 4.3.3. Corollary

4.4.3 determines a required equality on the multipliers associated with divisors of LP.

Corollary 4.4.3 Let |ν|2 and |µ|2 be the PSD of vectors u and v of odd length ell,

and cj be the unique integer for each nontrivial δj|` such that for some non-negative

integers aj and bj

Σ
(δ−1)/2
j=1 |µjn|2 = ajδj + cj
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Σ
(δ−1)/2
j=1 |νjn|2 = bjδj + cj

If u and v are a Legendre Pair, then for each δj|`,

aj + bj =
1

δj

(
(`+ 1)(δ − 1)

4
− 2cj

)

Proof 14 Since u and v are Legendre Pairs, then

Σ
(δ−1)/2
j=1 |µjn|2 + |νjn|2 =

(
`+ 1

2

)(
δj − 1

2

)
= (aj + bj)δj + 2cj

�

Let Pv denote the PAF of v. Since Pv(j) + Pu(j) = `+1
2

and `+1
2
> Pv(j) > 0, a

maximum relatively prime element of Pv must complement the minimum relatively

prime element of Pu. Further, the number of indices achieving these extremes must

be complementary.

This constraint applies to every non-trivial divisor of ` as well. Since the number

of divisors of a value is approximately constant for sufficiently large n, then sorting

based upon divisors is approximately constant order. Table 8 provides the selected

sorting order.

Table 8. Sorting Criterion

1) Correlation Energy
2) Maximum Relatively Prime PAF
3) Minimum Relatively Prime PAF
4) Number Achieving Maximum
5) Number Achieving Minimum
6) For each δj|`:

6.1) Associated Multiplier (Corollary 4.4.3)
6.2) Maximum PAF
6.3) Minimum PAF
6.4) Number Achieving Maximum
6.5) Number Achieving Minimum
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Vectors are “sorted” rather than “compared” based upon these criterion as the

former implies repositories and is more efficient when handling a large quantity of

data. The majority of comparisons are inherent to the sorting process, but need not

be completed once assigned to a storage location regardless of the size of the linked

repository. As such, the full LP comparison need only be conducted when a new

vector is added to a repository and the linked repository is non-empty.

Assuming the linked repository is non-empty, the relatively prime indices of all

such maximal and minimal elements constitute a set to search over. Specifically, for

a resident vector u and a linked vector v, each suitable index of Pu such that

Pu(k) = min
{(j,`)=1 ; 0<j≤(`+1)/2}

Pu(j)

is decimated to match each complementary index,

Pv(y) = max
{(j,`)=1 ; 0<j≤(`+1)/2}

Pu(j)

If this decimation is such that Pv + dky−1(Pu) = `+1
2

, then dky−1(v), u are LP.

This result is derived from the PAF of a decimated vector being the inverse deci-

mation of the PAF. Comparing each complementary pair of indices is computationally

inefficient and inherently redundant. It suffices to select a single index from one set

and compare it against the complementary set. This simplified approach reduces com-

parison complexity from O(`φ(`)2) to O(`φ(`)) as well as a constant order reduction

achieved by eliminating multiplications and inversions.

4.5 Discovered Legendre Pairs

The algorithm was employed at various odd integers. LP associated with core

sizes 55 and 57, which have yet to be exhaustively generated, are presented in this
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section and have been verified as distinct from those posted in preceding literature

[6] [3] [8].

Presented solutions are distinct from other known solutions, and exhibit the ben-

efit of space reduction. Presented alongside each solution is the single processor

duration in seconds required for execution on a Linux running CentOS 6.10 with 16

Intel Xeon CPU E5-2650 2.30 GHz processors and 256 GB RAM. The number of rep-

resentatives generated during execution is also provided. The number of generations

associated with finding an LP via non-exhaustive heuristics has not been found in lit-

erature previously, and is posted here such that future efforts may compare efficiency

in both time per generation and order of generation, which is of equal importance for

non-exhaustive searches.

Tables 9 and 10 present the solutions corresponding to the algorithm defined

herein. During algorithm development and refinement, a number of other LP were dis-

covered and proven distinct from those presented in previous literature (see [3][6][8]).

They are presented in Table 11 for completeness.

Table 9. LP Solution ` = 55

` 55
U [0000011101110110101010010010100111000110011010111100110]
V [0111100011111101100001111101010101100100110000001001001]

Generations 3,408,821
Time(sec) 115,341

Table 10. LP Solution ` = 57

` 55
U [000001111110110010101001110000100010100100110111101110101]
V [010011101101001011100111001111110000110000101010000110110]

Generations 21,537,161
Time(sec) 932,824
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Table 11. Additional LP Solutions

` 55
U1 [1111111101001010001100000110110110000100111001010100110]
V1 [1000111100100011010000111010101000011100110111110101100]
U2 [1111111101011000001100110000010011101010001101001011010]
V2 [1010000001101110011001100101101000111100001101011101011]
` 57

U [111111100110101011001010000001010011111010000101100111000]
V [100100101111101011110001000011001100100011001011101001011]

4.6 Concluding Remarks

This paper presented an LP generation algorithm whose decimation class gener-

ation component provides an O(`) amortized complexity reduction over the current

best algorithm[4]. The generation component also serves as the first algorithm to in-

herently enforce the PSD test and eliminate a portion of decimation class redundancy

during generation. This paper also presents the first sorting schema reducing com-

putations associated with comparing decimation class representatives to determine

LP status. The algorithm presented herein yielded a 99.75% reduction in single-

processor duration on ` = 57 as compared to the fastest known heuristic developed

by Chiarandini et al. [3].

A recommended follow-on is to apply the DFT focused lexicon to search heuristic

methods. As of this writing, Chiarandini et al. [3] developed the fastest LP search

heuristic which employs a binary lexicon. That heuristic suffered from the uninformed

moving schema which did not allow for space reductions pertaining to bracelet or

decimation classes. The restricted DFT focused space developed herein provides clear

boundaries guaranteeing a heuristic search only moves to bracelet representatives and

minimizes redundancy with respect to decimation class representatives.
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4.7 Additional Findings

This section serves as an addendum to Turner et al.’s [20] findings and presents

two means of decimation class generation.

The first method is similar to that employed by Dokovic et al. [4] in that it

appends a post-generation check for representative status.

Definition 4.7.1 Let u and v be two bracelet representatives with respective DFT

vectors, ν and µ. Define u < v when Re(ν1) < Re(µ1) or Re(ν1) = Re(µ1) and

Im(ν1) < Im(µ1).

As noted by Turner et al. [20], Re(µ1) approximates |µ|21. Definition 4.7.1 is

then similar to a PSD based comparison, but retains greater information. This is

essential as Fletcher et al. [6] noted a vector at ` = 15 had two LP. Thus PSD based

comparisons are ill-suited for such definitions.

When calculating the full DFT vector, Turner et al.’s [20] algorithm generates

constrained bracelet representatives at O(`) amortized complexity. The definition

of bracelet representative utilized therein allows constant order transformation of a

complex value to that of its corresponding bracelet representative. Determination of

decimation class representation on a generated bracelet representative then requires

phi(`)/2 comparisons of constant order complexity. Therefore Turner et al.’s [20] algo-

rithm may append such a check to achieve decimation class generation with O(`φ(`))

complexity.

An appendage based decimation class generation algorithm has relatively few com-

putations per vector and eliminates redundant representatives to hasten the compar-

ison stage. This makes such an approach suitable when searching for all LP for a

given vector length. However, the approach is not suitable when searching for a single

LP as representatives are, on average, submitted for comparison later in algorithm
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execution, increasing expected run time. As such, this O(`φ(`)) appendage was not

employed during algorithm development.

While suitable for an appended comparison, Definition 4.7.1 is designed for bracelet

representatives. As such, a corresponding constraint necessarily divides an itera-

tion’s feasible space into ` distinct regions, thus increasing generation complexity to

O(`2φ(`)) amortized. Incorporating a constraint during generation under the current

definition of bracelet representative may instead use the PSD relaxation.

Corollary 4.7.2 Let r1 denote the maximum attainable squared modulus of the first

DFT component of a prefix vector. If Aj ∩Cj = ∅ for any (j, `) = 1 such that rj = r1,

no suffix vector yielding a decimation class representative exists.

Theorem 4.3.5 employs radial constraints on each DFT component to enforce the

PSD test. Corollary 4.7.2 enforces the PSD relaxation of decimation class represen-

tatives. Notice Corollary 4.7.2 restricts components maximum PSD, thus searching

for a representative which is approximately maximal with respect to Definition 4.7.1.

Used in conjunction with RR modified to enforce |µ|21 < `+1
2

, all relatively prime

components are guaranteed to pass the PSD test as a result. All other components

may be subjected to the PSD test. Invoking Corollary 4.7.2 as a constraint does not

increase order of complexity beyond the O(`) derived from incrementally calculating

the prefix DFT. It follows that decimation class representatives which pass the PSD

test may be generated in O(`).

This second method was utilized during algorithm development and yielded the

following result on ` = 55:

Notice the number of generations increased by 47.5% as compared to Turner et

al.’s [20] algorithm, and time per generation increased by 28.2%. Thus LP represen-

tatives are generated later, and required longer per generation as well. This increased

generation time is primarily due to the change in solution response required for each
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Table 12. LP Solution: Integrated Decimation Constraints

` 55
U [1111111101011000001100110000010011101010001101001011010]
V [1010000001101110011001100101101000111100001101011101011]

Generations 5,029,394
Time(sec) 218,274

feasibility check as Corollary 4.7.2 requires determination of the maximum feasible

|µ|21. By comparison, Turner et al.’s [20] approach only requires determination of a

feasible region.
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V. Concluding Remarks

This dissertation presents the culmination of advances spanning multiple fields

brought to bear against the problem of generating Cocyclic Hadamard matrices and

the inherent condition of generating Legendre Pairs. The contributions of this work

are roughly divided into three categories: Decimation Class Counting, Bracelet Gen-

eration, and Decimation Class Sorting. The resultant algorithms provide the first

method for determining the number of decimation classes of odd length ` and fixed

density `+1
2

, and provide a reduction in the time to generate a Legendre Pair of

99.964% over the previous fastest method presented by Chiarandini et al. [3].

Future Work

This dissertation discovered multiple new Legendre Pairs for ` = 55 and ` = 57,

and is the first to provide number of vectors generated as a performance benchmark

in addition to required computer time. Each paper constructing this dissertation

provided independently applicable avenues for future research. The following are

opportunities for similarly cumulative advancements.

Multi-threading the decimation class generation and subsequent sorting algorithm

would allow for reduced human solution time. Sorting and generation are independent

components with the exception of vector submission and early termination hand offs,

and yet this multithreading is more complex than simple parallelization as distinct

tasks are to be completed. In addition, the sorting algorithm may be parallelized

based upon correlation energy, and the generation algorithm based upon vector pre-

fixes.

Dokovic et al.’s [4] Golay Pair search algorithm was provided as a comparison

to the algorithm constructed herein due to problem similarity. Adaptation of the

algorithm to Golay Pairs will be no small feat as the generated vectors are remarkably
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different from that of LP. However, such an adaptation will also provide a significantly

more efficient generation and sorting method.

Decimation classes in general are not well studied as evidence from this disserta-

tion providing the first counting method for binary sequences and Dokovic et al.’s [4]

cumbersome computations to verify decimation class representatives. Greater study

into decimation classes is essential to further related research. Principle among these

is the need for a definition of decimation class representatives which allows for verifi-

cation in constant order time.
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Appendices
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COCYCLIC HADAMARD MATRICES:

AN EFFICIENT SEARCH BASED ALGORITHM

A. Acronyms

CAT Constant Amortized Time

DFT Discrete Fourier Transform

FHT Fast Hadamard Transform

GCD Greatest Common Denominator

LP Legendre Pair

PAF Periodic Autocorrelation Function

PSD Power Spectral Density

SCIP Second-Order Conic Integer Program

SDS Supplementary Difference Sets

SSP Subset Sum Problem
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B. Notation

` Odd integer length of a vector

φ(`) Euler’s Totient

(j, `) GCD of j and `

(j, `) = 1 j relatively prime to `

Z∗` Multiplicative group of integers mod `

〈x〉 Group generated by x under specified operation.

cj(v) Circulant shift of vector v by amount j

dj(v) Decimation of vector v by amount j

Uv Necklace containing vector v

Bv Bracelet containing vector v

Dv Decimation class containing vector v

ω `th root of unity

ω Vector containing all powers of ω

|µj|2 jth PSD of DFT vector, µ

|µ|2 Vector of all PSD of DFT vector, µ

Pv(j) jth index of PAF of vector v
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C. Decimation Counting Code

1 function [TotalDecClasses,ReducedDecClasses,MultiSetSize,Hier]=CountDecClasses_Comb(L)

2

3 %% get unique cycles and necessary combinations

4 [UniCycles, FDComb,Hier,UCEquals]=FactorDecomp(L);

5

6 %Preserve Hierarchy for later removal

7

8 %% Find cycle lengths of each multiplier in UniCycle

9 ULen=length(UniCycles);

10 CycleCell=cell(ULen,1);

11 LenCell=cell(ULen,1);

12 for u=1:ULen

13 [Cycles,Lens]=CycleCosets(L,UniCycles(u));

14 CycleCell(u)={Cycles};

15 LenCell(u)={Lens};

16 end

17

18 %% Solve SSP problem and adjust for duplicated necklaces

19 FDLen=size(FDComb,1);

20 Sols=zeros(FDLen,1);

21 for f=1:FDLen

22 NC=find(FDComb(f,:)>0,1,’last’);

23 if NC==1

24 loc=find(UniCycles==FDComb(f,1),1);

25 TLens=LenCell{loc};
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26 else

27 locs=zeros(NC,1);

28 for n=1:NC

29 locs(n)=find(UniCycles==FDComb(f,n),1);

30 end

31 TLens=MarryCycles(CycleCell(locs),LenCell(locs));

32

33 end

34 Sols(f)=SubsetSum(TLens,(L+1)/2);

35 Divisor=Find_SSP_Divisor(FDComb(f,1:NC),L);

36 Sols(f)=Sols(f)/Divisor;

37 end

38

39 %% Discount Necklaces

40 [Hier,Ind]=SortRowByLen(Hier);

41 Sols=Sols(Ind);

42 for f=1:FDLen-1

43 %loop through all hierarchies

44 if Sols(f)>0

45 %don’t bother checking if there’s nothing to reduce.

46 for g=(f+1):FDLen

47 %loop through all subsequent hierarchies

48 T=ismember(Hier(g,Hier(g,:)>0),Hier(f,:));

49 if min(T) %==1

50 %a dependent has been found

51 Sols(g)=Sols(g)-Sols(f);
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52 %else if min(T)==0

53 %not a dependent, move on

54 end

55

56 end

57 end

58 end

59

60 %% Determine multiplier size

61 Mults=ones(FDLen,1);

62 %everybody gets one for free

63 for f=1:FDLen

64

65 NH=find(Hier(f,:)>0,1,’last’);

66 %loop through hierarchy

67 for n=1:NH

68 loc=find(UniCycles==Hier(f,n),1);

69 Mults(f)=Mults(f)+UCEquals(loc);

70 end

71 end

72

73 %% Determine number of Decimation Classes

74 MultiSetSize=Mults;

75

76 Decs=Sols./(Phi(L)./Mults);%number of necklaces per decimation class. inverted

77 ReducedDecClasses=Decs;
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78

79 BigDecs=(GetNumNecks(L)-sum(Sols))/Phi(L)+sum(Decs);

80

81 TotalDecClasses=BigDecs;

82

83 end%func CountDecClasses

84

85 function [Cycles,Lens]=CycleCosets(L,multi)

86 %Builds all cycles of multi mod L.

87 Cycles=zeros(L-1);

88 Inds=zeros(L-1,1);

89 Lens=Inds;

90 Search=1;

91 RowKtr=0;

92 while sum(Inds)<L-1

93 RowKtr=RowKtr+1;

94 SCyc=zeros(1,L-1);

95 loc=find(Inds==0,1);

96 SCyc(1)=loc;

97 Inds(loc)=1;

98 ktr=2;

99 while Search

100 NVal=mod(multi*SCyc(ktr-1),L);

101 if NVal==SCyc(1)

102 break

103 else
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104 SCyc(ktr)=NVal;

105 ktr=ktr+1;

106 Inds(NVal)=1;

107 end

108 end

109 Cycles(RowKtr,:)=SCyc;

110 Lens(RowKtr)=find(SCyc>0,1,’last’);

111 end

112

113 Cycles(RowKtr+1,1)=L;

114 Lens(RowKtr+1)=1;

115 Cycles(RowKtr+2:end,:)=[];

116 Lens(RowKtr+2:end)=[];

117 end%func CycleCosets

118

119 function [UniCycles, FDComb,Hier,UCEquals]=FactorDecomp(L)

120 %takes an odd integer L and outputs the list of SSP problems to conduct

121

122 RelPrimes=GetRelPrimes(L);

123 phi=length(RelPrimes);

124 Cycles=zeros(phi-1,L);

125 Lens=zeros(phi-1,1);

126 UCEquals=ones(phi-1,1);

127 for p=1:(phi-1)

128 Cycles(p,:)=FD_GetCycle(L,RelPrimes(p+1));

129 Lens(p)=find(Cycles(p,:),1,’last’);

70



130 end

131 %% Remove duplicates

132 p=0;

133

134 while p<size(Cycles,1)-1

135 %remove identical cycles while preserving cycle order

136 p=p+1;

137 q=p+1;

138 Tp=sort(Cycles(p,:),’descend’);

139 while q<size(Cycles,1)

140 Tq=sort(Cycles(q,:),’descend’);

141 if Lens(p)==Lens(q)

142

143 if size(unique([Tp;Tq],’rows’),1)==1

144 Cycles(q,:)=[];

145 Lens(q)=[];

146 UCEquals(p)=UCEquals(p)+UCEquals(q);

147 UCEquals(q)=[];

148 else

149 q=q+1;

150 end

151 else

152

153 q=q+1;

154 end

155 end
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156 end

157 CLen=size(Cycles,1);

158 UniCycles=Cycles(:,1);

159 Hier=zeros(CLen);

160 Hier(:,1)=Cycles(:,1);

161

162 for c=1:CLen

163 for d=1:CLen

164 if d˜=c

165 if ˜isempty(find(Cycles(c,:)==Cycles(d,1),1))

166 Hier(c,find(Hier(c,:)==0,1))=Cycles(d,1);

167 end

168 end

169 end

170 end

171

172 %% Start Building Hierarchy

173

174

175 CyclesBig=zeros(2ˆCLen-1,L);

176

177 CBLen=size(CyclesBig,1);

178 BigHiers=zeros(CBLen,CLen);

179 for c=1:(CBLen+1)

180 BVect=dec2bin(c)-48;%converts string to double

181 NV=length(BVect);
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182 if NV<CLen

183 BVect=[zeros(1,CLen-NV),BVect];

184 end

185

186 P=Cycles(BVect==1,1);%get first indices

187 BigHiers(c,1:length(P))=P;

188 CheckThis=CheckRedundancies(P,Hier);

189 if CheckThis

190 %if no dependencies necessarily causing redundant calculations

191 BigCycle=FD_GetCycle_Multi(L,P);

192 CyclesBig(c,:)=BigCycle;

193 end

194 end

195

196 %% Clean up

197 BigHiers(CyclesBig(:,1)==0,:)=[];

198 CyclesBig(CyclesBig(:,1)==0,:)=[];

199 [CyclesBig,ind]=unique(CyclesBig,’rows’,’stable’);

200 BigHiers=BigHiers(ind,:);

201

202 FDComb=BigHiers;

203

204 %% Pull Hierarchy for later use

205 NC=length(ind);

206 Hier=zeros(NC,CLen);

207 for n=1:NC
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208 ktr=0;

209 for c=1:CLen

210 if ismember(Cycles(c,1),CyclesBig(n,:))

211 ktr=ktr+1;

212 Hier(n,ktr)=Cycles(c,1);

213 end

214

215 end

216

217 end

218

219

220 end%main

221

222 %% Supplementary Functions

223

224

225

226

227 function Cycle=FD_GetCycle(L,p)

228

229 Cycle=zeros(1,L);

230 Cycle(1)=p;

231 for l=2:L

232 Cycle(l)=mod(Cycle(l-1)*p,L);

233 if Cycle(l)==1
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234 return

235 end

236 end

237

238 end%getcycle

239

240 function Cycle=FD_GetCycle_Multi(L,P)

241 NP=length(P);

242 Cycles=zeros(length(P),L);

243 for p=1:NP

244 Cycles(p,:)=FD_GetCycle(L,P(p));

245 end

246

247 Cycle=Cycles(1,:);

248 ktr=find(Cycle,1,’last’);

249 for p=2:NP

250 for j=1:L

251 for k=1:L

252 if Cycles(p,j)>1

253 ktr=ktr+1;

254 Cycle(ktr)=mod(Cycle(k)*Cycles(p,j),L);

255 end

256 end

257 end

258 end

259 Cycle=unique(Cycle);
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260 Cycle(Cycle==0)=[];

261 Cycle=[sort(Cycle,’descend’),zeros(1,(L-length(Cycle)))];

262

263 end%get cycle multi

264

265

266 function IsNew=CheckRedundancies(P,Hier)

267

268 THier=Hier(ismember(Hier(:,1),P),:);

269

270 Locs=ismember(P,THier(:,2:end));

271 IsNew=isempty(find(Locs,1));

272

273 end%CheckRedundancies

274

275

276 function Divisor=Find_SSP_Divisor(IntVect,L)

277 Divisor=1;

278 M=min(IntVect);

279 N=length(IntVect);

280 for m=M:-1:1

281 Good=0;

282 if gcd(m,L)==m

283 %if m is a divisor of L

284 for n=1:N

285 if mod(IntVect(n),m)==1
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286 Good=1;

287 else

288 Good=0;

289 break

290 end

291 end

292 end

293 if Good

294 Divisor=m;

295 return

296 end

297 end

298

299 end%func Find_SSP_Divisor

300

301 function NK=GetNumNecks(L)

302 %Get number of necklaces for a binary vector of odd length L with (L+1)/2

303 %active nodes

304

305 NK=nchoosek(int64(L),int64((L+1)/2))/L;

306 end%func GetNumNecks

307

308 function RP=GetRelPrimes(L)

309 %Brute force get relatively prime integers

310 RP=zeros(Phi(L),1);

311 ktr=0;
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312 for l=1:L

313 if gcd(l,L)==1

314 ktr=ktr+1;

315 RP(ktr)=l;

316 end

317 end

318

319 end%func GetRelPrimes

320

321 function Lens=MarryCycles(CycleCell,LenCell)

322 %Marries the cycles of each cell in Cycle Cell such that conditions of all

323 %underlying multipliers are satisfied.

324

325

326 Len1=LenCell{1};

327

328 NumCycs=length(CycleCell);

329

330

331 if NumCycs==1

332 %if there’s only one cycle to include, we know the lengths already

333 Lens=Len1;

334 return

335 end

336

337 CoreCycle=CycleCell{1};
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338

339

340 for n=2:NumCycs

341 TempCyc=CycleCell{n};

342 NC=size(TempCyc,1)-1;%efficiency since last spot is always L,1

343 for c=1:NC

344 NL=find(TempCyc(c,:)>0,1,’last’);

345 if NL==1

346 %don’t do rest of this if there’s no chance of marrying cycles

347 continue

348 end

349 CycCombo=zeros(NL,1);

350 %maximum number of cycles which could be combined

351 for m=1:NL

352 Val=TempCyc(c,m);

353 CycCombo(m)=MC_FindRow(CoreCycle,Val);

354 end%form NL

355 %CycCombo holds indices of all rows to combine

356 CycCombo=unique(CycCombo);

357 NL=length(CycCombo);

358 if NL>1%else all indices lie in same cycle

359 Temp=CoreCycle(CycCombo(1),:);

360 for m=2:NL

361 Temp=[Temp,CoreCycle(CycCombo(m),:)];

362 end

363 Temp(Temp==0)=[];
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364 Temp=unique(Temp);

365 CoreCycle(CycCombo(1),1:length(Temp))=Temp;

366 %core cycle initialized elsewhere to be of length L-1

367 CoreCycle(CycCombo(2:end),:)=[];

368 end

369 end%forc

370

371 end%forn NumCycs

372

373 NC=size(CoreCycle,1);

374 Lens=zeros(NC,1);

375 for n=1:NC

376 Lens(n)=find(CoreCycle(n,:)>0,1,’last’);

377

378 end%forn NC

379

380 end%function

381

382 function RowInd=MC_FindRow(CoreCycle,Val)

383 NR=size(CoreCycle,1);

384 for r=1:NR

385 if ismember(Val,CoreCycle(r,:))

386 %found it

387 RowInd=r;

388 return

389 end
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390 end

391 end%func Find Row

392

393 function phi=Phi(N)

394 %eulers totient

395 F=factor(N);

396 phi=1;

397 uni=unique(F);

398 for n=1:length(uni)

399 locs=find(F==uni(n));

400 phi=phi*uni(n)ˆ(length(locs)-1)*(uni(n)-1);

401

402 end

403 end%func Phi

404

405 function [Sorted,Inds]=SortRowByLen(InMat)

406 %Takes a matrix and sorts rows by length

407 S=size(InMat);

408 Lens=zeros(S(1),1);

409 for c=1:S(1)

410 Lens(c)=find(InMat(c,:)>0,1,’last’);

411 end

412 [˜,Inds]=sort(Lens,’descend’);

413 Sorted=InMat(Inds,:);

414 end%func SortRowByLen

415
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416 function [NumReps]=SubsetSum(Set,Sum)

417 %takes a set of values and determines the subsets and number of equivalent

418 %subsets which yield the desired sum

419

420 %This portion handles the overhead, then passes to a recursive

421 %implementation.

422

423 Uni=unique(Set);

424 Uni=sort(Uni,’descend’);

425 %sort into descending values so branches are fathomed faster.

426

427 NumUni=zeros(length(Uni),1);

428 for u=1:length(Uni)

429 NumUni(u)=length(find(Set==Uni(u)));

430 end

431 [Reps]=SSPNumSols(Uni,NumUni,Sum);

432 NumReps=sum(Reps);

433

434 end%main

435

436

437 function [Reps]=SSPNumSols(Uni,NumUni,Sum)

438

439 N=NumUni(1);

440 Reps=zeros(N+1,1);

441 if length(Uni)==1
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442 %if we’re on last unique value

443 for n=1:N

444 %last index, don’t need to account for zero usage

445 TSum=Sum-n*Uni(1);

446 if TSum==0

447 %either we hit sum

448 Reps(n+1)=nchoosek(N,n);

449 return

450 elseif TSum<0

451 %or overshoot

452 %(or undershoot at end and same result)

453 return

454 end

455 end

456 else

457 for n=0:N

458 TSum=Sum-n*Uni(1);

459 if TSum==0

460 %hit target, adding more won’t help

461 Reps(n+1)=nchoosek(N,n);

462 return

463 elseif TSum<0

464 %overshot target, adding more won’t help

465 return

466 else

467 %undershot, see if there’s options further down
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468 [NReps]=SSPNumSols(Uni(2:end),NumUni(2:end),TSum);

469 Reps(n+1)=sum(NReps)*nchoosek(N,n);

470 end

471 end

472 end

473 end%SSPNumSols

84



D. Legendre Pair Search Code (C++)

// DecClassGen . cpp : De f ine s t h e en t r y po i n t f o r t h e c on so l e a p p l i c a t i o n .

//

#include < l i s t >

#include <iostream>// b a s i c commandline i npu t / ou tpu t

#include <fstream>//make f a l e s

#include <math . h>//math

#include <s t r ing>// s t r i n g man ipu la t i on

#include <time . h>

using namespace std ;

#define pi 3.14159265359

#define L 33

#define LH (L+1)/2

const double SqLH = sqr t (LH) ;

const double RBorder = SqLH ;

bool RelPrimes [L ] ;

int I nv e r s e s [ L ] ;

bool GLPFound ; // f o r c e q u i t s ea rch a f t e r t h i s .

double minSSQ , maxSSQ;

t ime t t s t a r t ;

t ime t tend ;

struct complex {

complex ( ) : r e a l ( 0 ) , imag (0) {}

double r e a l ;

double imag ;

} ;

complex omega ; // l t h roo t o f un i t y

complex OmegaVect [L ] ; // a l l l t h r o o t s o f un i t y

// Complex f u n c t i o n s

#pragma r eg ion

void PrintC ( complex pt ) ;

complex MakeComplex (double r ea l , double imag ) ;

complex CExp(double theta ) ;

complex Add( complex z0 , complex z1 ) ;

complex Subtract ( complex z0 , complex z1 ) ;

complex Multd ( complex z0 , double x ) ;

complex Multc ( complex z0 , complex z1 ) ;

complex Power ( complex z0 , int x ) ;

complex CopyC( complex z0 ) ;

double min(double x , double y ) ;

#pragma endreg ion

// Complex f u n c t i o n s

// Euc l i d s Algor i thm

void Se t Inve r s e s ( ) {

for ( int j = 1 ; j < L ; j++) {
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i f ( RelPrimes [ j ] ) {

}

}

}

int GCD( int a , int b) {

return b == 0 ? a : GCD(b , a % b ) ;

}

int modInverse ( int a ) // e u c l i d s a l g o r i t hm

{// h t t p s : //www. g e e k s f o r g e e k s . org / mu l t i p l i c a t i v e −i n v e r s e−under−modulo−m/

int m = L;

int m0 = m;

int y = 0 , x = 1 ;

while ( a > 1)

{

// q i s q u o t i e n t

int q = a / m;

int t = m;

// m i s remainder now , p r o c e s s same as

// Euc l i d ’ s a l g o

m = a % m, a = t ;

t = y ;

// Update y and x

y = x − q ∗ y ;

x = t ;

}

// Make x p o s i t i v e

i f ( x < 0)

x += m0;

return x ;

}

// Decimat ions

void DecimateVect ( int inVect [ L ] , int decimAmt , int outVect [ L ] ) {

for ( int j = 0 ; j < L ; j++) {

outVect [ j ] = inVect [ ( j ∗decimAmt) % L ] ;

}

return ;

}

struct Smal lRes ident {

Smal lRes ident ( ) : f irstRMax (−1) {} ;

int vect [ L ] ;

int paf [ L ] ;

int f irstRMax ;

} ;

int DecimateVectBy ;

Smal lRes ident GLPair1 ;
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Smal lRes ident GLPair2 ;

class Resident {

public :

int vect [ L ] ;

int paf [ L ] ;

double psd [L ] ;

int f irstRMax = 0 ;

// s o r t i n g c r i t e r i o n ( up through LH)

// a l l i n t s d e r i v e d from i n t s

int compVals [ 9 ] ;

bool I n i t i a l i z e ( int inVect [ L ] ) {

complex Mu[L ] ;

for ( int k = 0 ; k < L ; k++) {

for ( int j = 0 ; j < L ; j++) {

i f ( inVect [ j ] ) {

Mu[ k ] = Add(Mu[ k ] , OmegaVect [ ( j ∗k ) % L ] ) ;

}

}

}

return ( I n i t i a l i z e ( inVect , Mu) ) ;

}

bool I n i t i a l i z e ( int inVect [ L ] , complex inMu [L ] ) {

//makes a copy to s t o r e , does not po i n t to o r i g i n a l

// r e t u rn s f a l s e i f t h i s i s not a rep

double inPsd [L ] ;

inPsd [ 0 ] = LH ∗ LH;

for ( int j = 1 ; j < LH; j++) {

inPsd [ j ] = inMu [ j ] . r e a l ∗inMu [ j ] . r e a l + inMu [ j ] . imag∗inMu [ j ] . imag ;

inPsd [L − j ] = inPsd [ j ] ;

}

int ssq = 0 ;

int maxRPaf = 0 ;

int minRPaf = LH;

int numRMax = 0 ;

int numRMin = 0 ;

int maxDPaf = 0 ;

int minDPaf = LH;

int numDMax = 0 ;

int numDMin = 0 ;

vect [ 0 ] = inVect [ 0 ] ;

for ( int j = 1 ; j < L ; j++) {

// psd / dec rep check

vect [ j ] = inVect [ j ] ;
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psd [ j ] = inPsd [ j ] ;

/∗ i f ( RelPrimes [ j ] ) {

i f ( psd [ j ] > psd [1 ]+0 .0000001) {

r e t u rn f a l s e ;

}

}

e l s e {∗/

i f ( psd [ j ] > LH) {

return fa l se ;

}

//}

}

// c a l c u l a t e pa f

//same comp l e x i t y to use d i s c r e t e or DFT approach in c a l c u l a t i o n

int tempPaf ;

paf [ 0 ] = LH;

for ( int j = 1 ; j < LH; j++) {

tempPaf = 0 ;

for ( int k = 0 ; k < L ; k++) {

i f ( vect [ k ] == 1) {

i f ( vect [ ( k + j ) % L ] == 1) {

tempPaf++;

}

}

}

paf [ j ] = tempPaf ;

paf [ L − j ] = tempPaf ;

}

// work ing w i th pa f p r e f e r a b l e because d i s c r e t e

for ( int j = 1 ; j < LH; j++) {

ssq += paf [ j ] ∗ paf [ j ] ;

i f ( RelPrimes [ j ] ) {// r e l a t i v e l y prime index

i f ( paf [ j ] > maxRPaf) {

f irstRMax = j ;

maxRPaf = paf [ j ] ;

numRMax = 1 ;

}

else i f ( paf [ j ] == maxRPaf) {

numRMax++;

}

i f ( paf [ j ] < minRPaf ) {

minRPaf = paf [ j ] ;

numRMin = 1 ;

}

else i f ( paf [ j ] == minRPaf ) {

numRMin++;

}

}

else {//non r e l a t i v e l y prime index

i f ( paf [ j ] > maxDPaf) {

maxDPaf = paf [ j ] ;

numDMax = 1 ;
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}

else i f ( paf [ j ] == maxDPaf) {

numDMax++;

}

i f ( paf [ j ] < minDPaf ) {

minDPaf = paf [ j ] ;

numDMin = 1 ;

}

else i f ( paf [ j ] == minDPaf ) {

numDMin++;

}

}

}

i f ( ssq > maxSSQ) {

// h e u r i s t i c , on l y a c c ep t r e l a t i v e l y low d e v i a t i o n s from cen t e r .

return fa l se ;

}

i f (minRPaf > maxRPaf) {

// on l y occur s i f minRPaf was never se t , t hu s a l l are e qua l

minRPaf = maxRPaf ;

}

i f (minDPaf > maxDPaf) {

// on l y occur s i f minDPaf was never se t , t hu s a l l are e qua l

minDPaf = maxDPaf ;

}

compVals [ 0 ] = ssq ;

compVals [ 1 ] = maxRPaf ;

compVals [ 2 ] = minRPaf ;

compVals [ 3 ] = numRMax;

compVals [ 4 ] = numRMin ;

compVals [ 5 ] = maxDPaf ;

compVals [ 6 ] = minDPaf ;

compVals [ 7 ] = numDMax;

compVals [ 8 ] = numDMin ;

return true ;

}

} ;

class Part i t i onBase {

public :

l i s t <SmallResident> r e s i d e n t s ; // which v e c t o r s are b e i n g ho s t ed here

int myVal = 0 ;

Part i t i onBase ∗pairLoc ; //where w i l l p a i r s be l o c a t e d

void AddRes ( Resident∗ newRes ) {

Smal lRes ident ∗myNewRes = new Smal lRes ident ;

myNewRes−>f irstRMax = newRes−>f irstRMax ;

for ( int j = 0 ; j < L ; j++) {

myNewRes−>paf [ j ] = newRes−>paf [ j ] ;

myNewRes−>vect [ j ] = newRes−>vect [ j ] ;
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}

r e s i d e n t s . push back (∗myNewRes ) ;

i f ( pairLoc ) {

pairLoc−>CheckPair (∗myNewRes ) ;

}

// send to pa i r to check

}

bool HostCheckPair ( ) {

bool re sponse = pairLoc−>CheckPair ( r e s i d e n t s . back ( ) ) ;

return re sponse ;

}

bool CheckPair ( Smal lRes ident compRes ) {

int PAF[L ] ;

for ( int j = 0 ; j < L ; j++) {

PAF[ j ] = compRes . paf [ j ] ;

}

int TempPAF[L ] = { 0 } ;

bool found = true ; //where i s p a i r found in my r e s i d e n t s

for ( int d = 1 ; d < LH; d++) {

i f ( RelPrimes [ d ] ) {

DecimateVect (PAF, d , TempPAF) ;

for ( Smal lRes ident myres : r e s i d e n t s )

{

found = true ;

// S t u f f needs to happen here

for ( int p = 1 ; p < LH; p++) {

i f (myres . paf [ p ] + TempPAF[ p ] != LH) {

found = fa l se ;

break ;

}

}

i f ( found ) {

DecimateVectBy = d ;

int TempVect [L ] ;

DecimateVect ( compRes . vect , d , TempVect ) ;

for ( int l = 0 ; l < L ; l++) {

GLPair1 . vect [ l ] = myres . vect [ l ] ;

GLPair1 . paf [ l ] = myres . paf [ l ] ;

GLPair2 . vect [ l ] = TempVect [ l ] ;

GLPair2 . paf [ l ] = TempPAF[ l ] ;

GLPFound = true ;

}

return true ;

}

}

}

}

return fa l se ;

}
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} ;

class Part i t i onLayer {

l i s t <Part i t i onLayer∗> ch i ld r enLaye r s ;

l i s t <Part i t i onBase∗> baseChi ldren ;

// p o i n t s to base i n s t e a d o f l a y e r s

public :

int MyLayer = 0 ; //

int myVal = 0 ;

Part i t i onBase ∗ AddRes ( Resident∗ newRes ) {

// r e t u rn s i f new b in was c r e a t e d

int compValue = newRes−>compVals [ MyLayer ] ;

i f (MyLayer <= 7) {

i f ( ch i ld r enLaye r s . s i z e ( ) == 0) {

//no b i n s e x i s t y e t

Part i t i onLayer ∗NewPartit ion = new Part i t i onLayer ;

NewPartition−>MyLayer = MyLayer + 1 ;

NewPartition−>myVal = compValue ;

ch i ld r enLaye r s . push back ( NewPartit ion ) ;

return ( NewPartition−>AddRes (newRes ) ) ;

}

for ( l i s t <Part i t i onLayer ∗>:: i t e r a t o r ch i l d = ch i ld r enLaye r s . begin ( ) ; . . .

c h i l d != ch i ld r enLaye r s . end ( ) ; ++ch i l d ) {

i f ( (∗ ch i l d)−>myVal == compValue ) {

return ( (∗ ch i l d)−>AddRes (newRes ) ) ;

// found b in

}

else i f ( (∗ ch i l d)−>myVal > compValue ) {

// over sho t , add new b in here

Part i t i onLayer ∗NewPartit ion = new Part i t i onLayer ;

NewPartition−>MyLayer = MyLayer + 1 ;

NewPartition−>myVal = compValue ;

ch i ld r enLaye r s . i n s e r t ( ch i ld , NewPartit ion ) ;

return ( NewPartition−>AddRes (newRes ) ) ;

}

}

// i f go t here , then no b in had b i g g e r v a l u e and must append one

Part i t i onLayer ∗NewPartit ion = new Part i t i onLayer ;

NewPartition−>MyLayer = MyLayer + 1 ;

NewPartition−>myVal = compValue ;

ch i ld r enLaye r s . push back ( NewPartit ion ) ;

return ( NewPartition−>AddRes (newRes ) ) ;

}

else {

// i f myLayer==8 ( p o i n t s to p a r t i t i o n base )

i f ( baseChi ldren . s i z e ( ) == 0) {

//no b i n s e x i s t y e t

Part i t i onBase ∗NewPartit ion = new Part i t i onBase ;

NewPartition−>myVal = compValue ;

baseChi ldren . push back ( NewPartit ion ) ;
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NewPartition−>AddRes (newRes ) ;

return ( NewPartit ion ) ;

}

for ( l i s t <Part i t i onBase ∗>:: i t e r a t o r ch i l d = baseChi ldren . begin ( ) ; . . .

c h i l d != baseChi ldren . end ( ) ; ++ch i l d ) {

i f ( (∗ ch i l d)−>myVal == compValue ) {

(∗ ch i l d)−>AddRes (newRes ) ;

return (∗ ch i l d ) ;

// found b in

}

else i f ( (∗ ch i l d)−>myVal > compValue ) {

// over sho t , add new b in here

Part i t i onBase ∗NewPartit ion = new Part i t i onBase ;

NewPartition−>myVal = compValue ;

baseChi ldren . i n s e r t ( ch i ld , NewPartit ion ) ;

NewPartition−>AddRes (newRes ) ;

return ( NewPartit ion ) ;

}

}

// i f go t here , then no b in had b i g g e r v a l u e and must append one

Part i t i onBase ∗NewPartit ion = new Part i t i onBase ;

NewPartition−>myVal = compValue ;

baseChi ldren . push back ( NewPartit ion ) ;

NewPartition−>AddRes (newRes ) ;

return ( NewPartit ion ) ;

}

return fa l se ;

}

Part i t i onBase ∗ l o c a t ePa i r ( int compVals [ 9 ] ) {

// r e t u rn s i f new b in was c r e a t e d

int compValue = compVals [ MyLayer ] ;

i f (MyLayer <= 7) {

i f ( ch i ld r enLaye r s . s i z e ( ) == 0) {

//no b i n s e x i s t y e t ( s hou l d never happen when f i n d i n g pa i r

return NULL;

}

for ( l i s t <Part i t i onLayer ∗>:: i t e r a t o r ch i l d = ch i ld r enLaye r s . begin ( ) ; . . .

c h i l d != ch i ld r enLaye r s . end ( ) ; ++ch i l d ) {

i f ( (∗ ch i l d)−>myVal == compValue ) {

return ( (∗ ch i l d)−> l o c a t ePa i r ( compVals ) ) ;

// found b in

}

else i f ( (∗ ch i l d)−>myVal > compValue ) {

// over sho t , s hou l d have h i t b in

return NULL;

}

}

// i f go t here , then no b in had b i g g e r v a l u e

return NULL;
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}

else {

// i f myLayer==8 ( p o i n t s to p a r t i t i o n base )

i f ( baseChi ldren . s i z e ( ) == 0) {

//no b i n s e x i s t y e t

return NULL;

}

for ( l i s t <Part i t i onBase ∗>:: i t e r a t o r ch i l d = baseChi ldren . begin ( ) ; . . .

c h i l d != baseChi ldren . end ( ) ; ++ch i l d ) {

i f ( (∗ ch i l d)−>myVal == compValue ) {

return (∗ ch i l d ) ;

// found b in

}

else i f ( (∗ ch i l d)−>myVal > compValue ) {

// o v e r s h o t

return NULL;

}

}

// i f go t here , then no b in had b i g g e r v a l u e

return NULL;

}

return fa l se ;

}

} ;

class Part i t ionMaster {

Part i t i onLayer f i r s t P a r t i t i o n ;

public :

int foundPair1 [ L ] ;

int foundPair2 [ L ] ;

void PrintCompVect ( int compVals [ 9 ] ) {

for ( int j = 0 ; j < 9 ; j++) {

cout << compVals [ j ] << ” , ” ;

}

cout << endl ;

}

bool AddRes ( Resident∗ newRes ) {

// r e t u rn s i f a GLP was found

Part i t i onBase ∗ assignTo = f i r s t P a r t i t i o n . AddRes ( newRes ) ;

// a s s i g n s to e x i s t i n g p a r t i t i o n or c r e a t e s new p a r t i t i o n s as needed

//PrintCompVect ( newRes−>compVals ) ;

i f ( assignTo−>pairLoc == NULL) {

// i f no pa i r f o r ass ignTo has been as s i gned , then see i f one e x i s t s

int compVals [ 9 ] = {

newRes−>compVals [ 0 ] , // s s q

LH − newRes−>compVals [ 2 ] , LH − newRes−>compVals [ 1 ] , . . .

newRes−>compVals [ 4 ] , newRes−>compVals [ 3 ] , // r e l pr imes
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LH − newRes−>compVals [ 6 ] , LH − newRes−>compVals [ 5 ] , . . .

newRes−>compVals [ 8 ] , newRes−>compVals [ 7 ] //non−r e l pr imes

} ;

// a s s i g n app r o p r i a t e v a l u e s to c o n s t i t u t e a pa i r

Part i t i onBase ∗ pa i r l o c = f i r s t P a r t i t i o n . l o c a t ePa i r ( compVals ) ;

// t r y to f i n d pa i r

i f ( p a i r l o c == NULL) {

//no pa i r e x i s t s y e t

return fa l se ;

}

assignTo−>pairLoc = pa i r l o c ;

pa i r l o c−>pairLoc = assignTo ;

// a s s i g n found p a i r s

}// e l s e pa i r i s a l r e a d y a s s i g n ed

bool re sponse = assignTo−>HostCheckPair ( ) ;

// see i f a GLP e x i s t s

return re sponse ;

}

void I n i t i a l i z e ( ) {

f i r s t P a r t i t i o n . MyLayer = 0 ;

f i r s t P a r t i t i o n .myVal = 0 ;

}

} ;

struct TwoPoints {

//some f u n c t i o n s need to r e t u rn 2 p o i n t s

TwoPoints ( ) : x1 (999) , y1 (999) , x2 (999) , y2 (999) {}

double x1 ;

double y1 ;

double x2 ;

double y2 ;

} ;

struct BoundingLine {

BoundingLine ( ) : s l ope (0 ) , i n t e r c ep t (0 ) , below ( fa l se ) {}

double s l ope ;

double i n t e r c ep t ;

bool below ;

complex r i gh t ;

complex l e f t ;

} ;

const double ThetaLim = pi / L ; // upper l i m i t on t h e t a to be a b r a c e l e t

void I n i t i a l i z eG l o b a l s ( ) ;

//GENERATION

#pragma r eg ion

//HEURISTIC

94



void MinSSQ() {

i f ( ( ( ( L + 1) / 2) % 2) == 1) {

minSSQ = ( ( (L + 1) ∗0 .25) + 0 . 5 ) ∗ ( ( (L + 1) ∗0 .25) + 0 . 5 )∗ ( (L − 1) ∗0 .25) + . . .

( ( (L + 1) ∗0 .25) − 0 . 5 ) ∗ ( ( (L + 1) ∗0 .25) − 0 . 5 )∗ ( (L − 1) ∗ 0 . 2 5 ) ;

}

else {

minSSQ = ((L + 1) / 4)∗ ( (L + 1) / 4)∗ ( (L − 1) / 2 ) ;

}

}

// Basic Funct ions

#pragma r eg ion

void CopyArray ( complex source [ L ] , complex s ink [L ] ) ;

void UpdateDFT( complex mu[L ] , int elem ) ;

void FinishDFT( complex mu[L ] , int numOnesRem ) ;

#pragma endreg ion

// Basic Funct ions

// Recur s i v e Generat ion

#pragma r eg ion

//GEOMETRY

#pragma r eg ion

double Dist (double x1 , double y1 , double x2 , double y2 ) ;

double DistC ( complex pt1 , complex pt2 ) ;

TwoPoints L ineCi r c In te r s ec tX Neare s tPo in t (double m, double d , complex center , double r ) ;

bool PtInCirc ( complex center , double r , complex pt ) ;

int PtsOnSegment (double crossx1 , double crossx2 , double endx1 , double endx2 ) ;

complex Re f l e c tPo in t (double s lope , complex pt ) ;

#pragma endreg ion

double CheckFeasMu( complex mu1 , int usedElems , int numOnesRem ) ;

bool CheckPSD( complex mu[L ] , int usedElems , int numOnesRem, double maxDist ) ;

bool SubmitVect ( int Vect [L ] , complex mu[L ] ) ;

bool AddNextZero ( int Vect [L ] , int usedElems , int numOnesRem, int numZersRem , complex mu[L ] ) ;

bool AddNextOne( int Vect [L ] , int usedElems , int numOnesRem, int numZersRem , complex mu[L ] ) ;

bool AddNextElem( int Vect [L ] , int usedElems , int numOnesRem, int numZersRem , complex mu[L ] ) ;

#pragma endreg ion
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#pragma endreg ion

// g ene r a t i on end

//Change t h e s e in header f i l e

//#d e f i n e p i 3 .14159265359

//#d e f i n e L 21

//#d e f i n e LH 11

// cons t doub l e ThetaLim = p i / L ; // upper l i m i t on t h e t a to be a b r a c e l e t

complex tr iPeak ;

complex SumOmega [L∗L ] ; // sum o f remaining r o o t s o f un i t y ( i n c l u d i n g cu r r en t index )

int bracekt r ;

Part i t ionMaster par t i t i onMaste r ;

o fstream f i l e ;

o f stream fi leGLP ;

s t r i n g f i l ePa th ;

void I n i t i a l i z eG l o b a l s ( ) {

// i n i t i a l i z e t h e g l o b a l v a r i a b l e s ( p r ima r i l y complex components )

omega = CExp(2 ∗ pi / L ) ;

// cout << omega . r e a l << ” ,” << omega . imag << end l ;

// cou t << p i << end l ;

complex cpo int ;

cpo int . r e a l = 1 ;

cpo int . imag = 0 ;

OmegaVect [ 0 ] = MakeComplex (1 , 0 ) ;

OmegaVect [ L − 1 ] = Power (omega , L − 1 ) ;

//PrintC (OmegaVect [ L−1 ] ) ;

// PrintC (SumOmega [L − 1 ] ) ;

for ( int l = L − 2 ; l >= 0; l−−) {

OmegaVect [ l ] = Power (omega , l ) ;

//PrintC (OmegaVect [ l ] ) ;

}

for ( int j = 0 ; j <L ; j++) {

SumOmega [ ( j + 1)∗L − 1 ] = OmegaVect [ ( ( j ∗(L − 1) ) % L ) ] ;

// cout << j << ” ,” << L − 1 << ” : ” ; PrintC (SumOmega [ ( j + 1)∗L − 1 ] ) ;

for ( int k = L − 2 ; k >= 0; k−−) {

SumOmega [ ( j ∗L) + k ] = Add(SumOmega [ ( j ∗L) + k + 1 ] , OmegaVect [ ( ( j ∗k ) % L ) ] ) ;

// cout << j << ” ,” << k << ” : ” ; PrintC (SumOmega [ ( j ∗L) + k ] ) ;

}
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}

RelPrimes [ 0 ] = fa l se ;

for ( int j = 1 ; j < L ; j++) {

RelPrimes [ j ] = (GCD( j , L) <= 1 ) ;

i f ( RelPrimes [ j ] ) {

I nv e r s e s [ j ] = modInverse ( j ) ;

}

// de termine i f r e l a t i v e l y prime to L

}

t r iPeak . r e a l = sq r t (LH / (1 + (ThetaLim∗ThetaLim ) ) ) ;

t r iPeak . imag = tr iPeak . r e a l ∗ThetaLim ;

MinSSQ ( ) ;

maxSSQ = minSSQ + 2∗(L − 1 ) ;

pa r t i t i onMaste r . I n i t i a l i z e ( ) ;

}

//GENERATION

#pragma r eg ion

// Basic Funct ions

#pragma r eg ion

void CopyArray ( complex source [ L ] , complex s ink [L ] ) {

for ( int j = 1 ; j < L ; j++) {

s ink [ j ] = MakeComplex ( source [ j ] . r ea l , source [ j ] . imag ) ;

}

return ;

}

void UpdateDFT( complex mu[L ] , int elem ) {

// debugged and works p r o p e r l y

for ( int j = 1 ; j < L ; j++) {

mu[ j ] = Add(mu[ j ] , OmegaVect [ ( ( elem∗ j ) % L ) ] ) ;

}

return ;

}

void FinishDFT( complex mu[L ] , int numOnesRem) {

for ( int j = 1 ; j < L ; j++) {

mu[ j ] = Add(mu[ j ] , SumOmega [ ( j + 1)∗L − numOnesRem ] ) ;

}

return ;

}

#pragma endreg ion

// Basic Funct ions

97



// Complex f u n c t i o n s

#pragma r eg ion

void PrintC ( complex pt ) {

cout << ” ( ” << pt . r e a l << ” , ” << pt . imag << ” ) ” << endl ;

return ;

}

complex MakeComplex (double r ea l , double imag ) {

complex cpo int ;

cpo int . r e a l = r e a l ;

cpo int . imag = imag ;

return cpo int ;

}

complex CExp(double theta ) {

complex cpo int ;

cpo int . r e a l = cos ( theta ) ;

cpo int . imag = s in ( theta ) ;

return cpo int ;

}

complex Add( complex z0 , complex z1 ) {

complex cpo int ;

cpo int . r e a l = z0 . r e a l + z1 . r e a l ;

cpo int . imag = z0 . imag + z1 . imag ;

return cpo int ;

}

complex Subtract ( complex z0 , complex z1 ) {

complex cpo int ;

cpo int . r e a l = z0 . r e a l − z1 . r e a l ;

cpo int . imag = z0 . imag − z1 . imag ;

return cpo int ;

}

complex Multd ( complex z0 , double x ) {

complex cpo int ;

cpo int . r e a l = z0 . r e a l ∗x ;

cpo int . imag = z0 . imag∗x ;

return cpo int ;

}

complex Multc ( complex z0 , complex z1 ) {

complex cpo int ;

cpo int . r e a l = z0 . r e a l ∗z1 . r e a l − z0 . imag∗z1 . imag ;

cpo int . imag = z0 . r e a l ∗z1 . imag + z0 . imag∗z1 . r e a l ;

return cpo int ;

}

complex Power ( complex z0 , int x ) {

double rad ius = sq r t ( z0 . r e a l ∗z0 . r e a l + z0 . imag∗z0 . imag ) ;

double theta = atan2 ( z0 . imag , z0 . r e a l ) ;

r ad ius = pow( radius , x ) ;

complex cpo int = CExp(x ∗ theta ) ;

cpo int = Multd ( cpoint , rad iu s ) ;

return cpo int ;

}

complex CopyC( complex z0 ) {
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complex cpo int ;

cpo int . r e a l = z0 . r e a l ;

cpo int . imag = z0 . imag ;

return cpo int ;

}

double min(double x , double y ) {

i f ( x <= y) {

return x ;

}

return y ;

}

#pragma endreg ion

// Complex f u n c t i o n s

// Recur s i v e Generat ion

#pragma r eg ion

//GEOMETRY

#pragma r eg ion

double Dist (double x1 , double y1 , double x2 , double y2 ) {

return sq r t (pow( ( x2 − x1 ) , 2) + pow( ( y2 − y1 ) , 2 ) ) ;

}

double DistC ( complex pt1 , complex pt2 ) {

return sq r t (pow( ( pt2 . r e a l − pt1 . r e a l ) , 2) + pow( ( pt2 . imag − pt1 . imag ) , 2 ) ) ;

}

TwoPoints L ineCi r c In te r s ec tX Neare s tPo in t (double m, double d , complex center , double r ) {

//m=s lope , b=i n t e r c e p t , c en t e r= c i r c l e cen ter , r=c i r c l e r a d i u s

// r e t u rn s x component ( complex to r e t u rn two dou b l e s w i th r ea l>=imag )

// conf i rmed debugged

TwoPoints pt2 ;

double a = cente r . r e a l ;

double b = cente r . imag ;

double de l t a = r ∗ r ∗(1 + m ∗ m) − pow( ( b − m ∗ a − d ) , 2 ) ;

i f ( de l t a < 0) {

// i f d e l t a <0 then l i n e doe sn t i n t e r s e c t c i r c l e

// r e t u rn d e f a u l t ( l o t s o f 999 s t h a t s hou l d never be reached )

return pt2 ;

}

double x1 = ( a + b ∗ m − d ∗ m + sqr t ( de l t a ) ) / (1 + m ∗ m) ;

double x2 = ( a + b ∗ m − d ∗ m − sq r t ( de l t a ) ) / (1 + m ∗ m) ;

pt2 . x1 = x1 ;

pt2 . y1 = m ∗ x1 + d ;

pt2 . x2 = x2 ;

pt2 . y2 = m ∗ x2 + d ;

// cout << pt2 . x1 << ” ,” << pt2 . y1 << end l ;

// cou t << pt2 . x2 << ” ,” << pt2 . y2 << end l ;

return pt2 ;
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}

bool PtInCirc ( complex center , double r , complex pt ) {

return ( Dist ( c ente r . r ea l , c ente r . imag , pt . r ea l , pt . imag ) <= r ) ;

}

int PtsOnSegment (double crossx1 , double crossx2 , double endx1 , double endx2 ) {

double endlow , endhigh , cross low , c ro s sh i gh ;

bool p ivo t edc ro s s = fa l se ;

i f ( c ro s sx1 < c ro s sx2 ) {

c ro s s l ow = cros sx1 ;

c r o s sh i gh = cros sx2 ;

}

else {

c ro s s l ow = cros sx2 ;

c r o s sh i gh = cros sx1 ;

p i vo t edc ro s s = true ;

}

int pivotedEnd = 0 ;

i f ( endx1 < endx2 ) {

endlow = endx1 ;

endhigh = endx2 ;

}

else {

pivotedEnd = 6 ;

endlow = endx2 ;

endhigh = endx1 ;

}

i f ( c ro s s l ow >= endlow && cros s l ow <= endhigh ) {

// low c r o s s f a l l s in bounds

i f ( c r o s sh i gh <= endhigh ) {

// h i gh c r o s s f a l l s in bounds

i f ( p i vo t edc ro s s ) {

// goes from c ro s s 2 to c r o s s 1

return 4 ;

}

// goes from c ro s s 1 to c r o s s 2

return 0 ;

}

else {

// h i gh c r o s s beyond bounds

i f ( p i vo t edc ro s s ) {

// goes from cro s s 2 to end2 i f p ivo tedEnd 0 (5)

// goes from cro s s 2 to end1 i f p ivo tedEnd 6 (11)

return 5+pivotedEnd ;

}

// goes from cro s s 1 to end2 i f p ivo tedEnd 0 (1)

// goes from cro s s 1 to end1 i f p ivo tedEnd 6 (7)

return 1+pivotedEnd ;

}

}

else i f ( c r o s sh i gh >= endlow && cro s sh i gh <= endhigh ) {

// i f h i gh i s in range ( bu t low appa r en t l y was not )
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i f ( p i vo t edc ro s s ) {

// goes from end1 to c ro s s 1 i f p ivo tedEnd 0 (6)

// goes from end2 to c ro s s 1 i f p ivo tedEnd 6 (12)

return 6+pivotedEnd ;

}

// goes from end1 to c ro s s 2 i f p ivo tedEnd 0 (2)

// goes from end2 to c ro s s 2 i f p ivo tedEnd 6 (8)

return 2 ;

}

else i f ( c ro s s l ow <= endlow && cro s sh i gh >= endhigh ) {

// c r o s s o u t s i d e o f bounds bu t c o v e r i n g

// end 1 to end 2

// goes from end1 to end2 i f p ivo tedEnd 0 (3)

// goes from end2 to end1 i f p ivo tedEnd 6 (9)

return 3 + pivotedEnd ;

}

return −1;

//−1 a l s o co v e r s no i n t e r s e c t i o n as d e f a u l t i s 999 ,999 which won ’ t be h i t in t h i s r e s e a r ch .

}

complex Re f l e c tPo in t (double s lope , complex pt )

{// r e f l e c t p o i n t a c ro s s l i n e i n t e r s e c t i n g o r i g i n

complex newpoint ;

double d = ( pt . r e a l + ( pt . imag∗ s l ope ) ) / (1 + pow( s lope , 2 ) ) ;

newpoint . r e a l = 2 ∗ d − pt . r e a l ;

newpoint . imag = 2 ∗ d∗ s l ope − pt . imag ;

return newpoint ;

}

#pragma endreg ion

double CheckFeasMu Internal ( complex mu1 , int usedElems , int numOnesRem)

{

// check c i r c l e i n t e r s e c t i o n s and t r i a n g l e d e s i r e d r e g i on

// to de termine i f c u r r en t Mu i s f e a s i b l e

// p a r t i a l l y debugged

// r e t u rn s −1 i f empty , d i s t t o mu o t h e rw i s e

/∗

CALCULATE CIRCULAR FEASIBLE REGION

∗/

complex o r i g i n ;

o r i g i n . r e a l = 0 ;

o r i g i n . imag = 0 ;

complex d i s tantCenter = SumOmega [L + usedElems + 1 ] ;

// wheres t h e c en t e r o f t h e d i s t a n t po i n t

complex s idePo int = SumOmega[ 2 ∗ L − numOnesRem ] ;

complex s idePointOther = Re f l e c tPo in t ( d i s tantCenter . imag / d i s tantCenter . r ea l , s idePo int ) ;

// s i d e po i n t w i l l g i v e r ad i u s from cen t e r and d i s t a n t c en t e r

// r e f l e c t i o n g i v e s o t h e r s i d e p o i n t w i t hou t need f o r summations
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//ADD BUFFER FOR COMPUTATIONAL ERROR

double rad iu sOr ig in = sq r t (pow( s idePo int . r ea l , 2) + pow( s idePo int . imag , 2 ) ) + . 0 0 1 ;

double r ad iu sD i s t = Dist ( s idePo int . r ea l , s idePo int . imag , d i s tantCenter . r ea l , d i s tantCenter . imag ) + . 0 0 1 ;

// c a l c u l a t e r a d i i

// PrintC ( d i s t a n tCen t e r ) ;

// PrintC ( s i d ePo i n t ) ;

// cou t << r a d i u sOr i g i n << end l ;

// cou t << r a d i u sD i s t << end l ;

/∗

CALCULATE TRIANGULAR FEASIBLE REGION

∗/

complex triSW = Multd (mu1 , −1);

// sou t hwe s t p o i n t

// de termine i f s i d ePo i n t ( f u r t h e s t r i g h t extreme o f a t t a i n a b l e r e g i on ) i s a b r a c e l e t rep

i f ( s idePo int . r e a l >= triSW . r e a l ) {

i f ( s idePo int . imag − triSW . imag <= ( s idePo int . r e a l − triSW . r e a l ) ∗ThetaLim ) {

return min(RBorder , DistC ( triSW , s idePo int ) ) ;

}

}

complex tr iSE = triSW ;

tr iSE . r e a l += RBorder ;

// s o u t h e a s t p o i n t

complex tr iN = Add( triSW , tr iPeak ) ;

// nor thern po i n t

/∗

DETERMINE INTERSECTION OF FEASIBLE REGION

∗/

// which p o i n t s are in t r i a n g l e

bool s e In = ( PtInCirc ( d i s tantCenter , rad iusDis t , t r iSE ) && PtInCirc ( o r i g in , rad iusOr ig in , t r iSE ) ) ;

bool nIn = ( PtInCirc ( d i stantCenter , rad iusDis t , t r iN ) && PtInCirc ( o r i g in , rad iusOr ig in , t r iN ) ) ;

i f ( s e In | | nIn ) {

return RBorder ;

}

bool swIn = ( PtInCirc ( d i stantCenter , rad iusDis t , triSW) && PtInCirc ( o r i g in , rad iusOr ig in , triSW ) ) ;

i f ( swIn ) {

// a t l e a s t one corner po i n t e x i s t s w i t h i n c i r c l e

return min(RBorder , DistC ( s idePoint , t r iSE ) ) ;

}

// e l s e check i f c en t e r o f f e a s i b l e r e g i on in t r i a n g l e

double radiusOTD = sqr t (pow( d i s tantCenter . r ea l , 2) + pow( d i s tantCenter . imag , 2 ) ) ;

complex feasCent = Multd ( dis tantCenter , . . .
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( ( rad iu sOr ig in + ( ( rad iu sOr ig in + rad iu sD i s t − radiusOTD) / 2) ) / radiusOTD ) ) ;

double radiusEye = DistC ( feasCent , s idePo int ) + 0 .000001 ;

// g e t c en t e r o f f e a s i b l e r e g i on

// e x i s t s on l i n e between o r i g i n and d i s t a n tCen t e r a t midpo int o f c u r v i t u r e bounds

// g e t s l o p e i n t e r c e p t o f t r i a n g l e s i d e s

// note t h e s l o p e s never change , bu t t h e i n t e r c e p t s do

// can improve e f f i c i e n c y by c a l c u l a t i n g s l o p e s once and making g l o b a l s

BoundingLine lineSwN ;

BoundingLine l ineSwSe ;

BoundingLine l ineSeN ;

lineSwN . s l ope = ThetaLim ;

lineSwN . i n t e r c ep t = triSW . imag − lineSwN . s l ope ∗ triSW . r e a l ;

lineSwN . below = true ;

lineSwN . r i gh t = tr iN ;

lineSwN . l e f t = triSW ;

l ineSwSe . s l ope = 0 ; // t h i s l i n e i s a lways h o r i z o n t a l

l ineSwSe . i n t e r c ep t = triSW . imag ;

l ineSwSe . below = fa l se ;

l ineSwSe . r i gh t = tr iSE ;

l ineSwSe . l e f t = triSW ;

l ineSeN . s l ope = ( tr iSE . imag − tr iN . imag ) / ( tr iSE . r e a l − tr iN . r e a l ) ;

l ineSeN . i n t e r c ep t = tr iSE . imag − l ineSeN . s l ope ∗ tr iSE . r e a l ;

l ineSeN . below = true ;

l ineSeN . r i gh t = tr iSE ;

l ineSeN . l e f t = tr iN ;

BoundingLine bLines [ 3 ] = { l ineSeN , lineSwSe , lineSwN } ;

// check c r o s s i n g r i g h t l i n e f i r s t , then bottom l i n e f o r maximum r e a l e x t e n t p o s s i b l e

double yc = 0 ;

BoundingLine curLine ;

bool a l l i n = true ;

for ( int n = 0 ; n < 3 ; n++) {

curLine = bLines [ n ] ;

yc = feasCent . r e a l ∗ curLine . s l ope + curLine . i n t e r c ep t ; // p t s p o s i t i o n in l i n e

i f ( ( curLine . below && yc < f easCent . imag ) | | ( ! curLine . below && yc > f easCent . imag ) ) {

a l l i n = fa l se ;

// i f v i o l a t e d l i n e c o n s t r a i n t

TwoPoints in tPts = LineCi r c In te r s e c tX Neare s tPo in t ( curLine . s lope , . . .

curLine . i n t e r c ep t , feasCent , radiusEye ) ;

// i n t e r s e c t c i r c l e sur round ing i n t e r s e c t i o n wi th v i o l a t e d l i n e

i f (PtsOnSegment ( in tPts . x1 , in tPts . x2 , curLine . l e f t . r ea l , curLine . r i gh t . r e a l ) >= 0) {

// i f c i r c l e i n t e r s e c t s or co v e r s l i n e , don ’ t care how

i n tPts = LineCi r c In te r s e c tX Neare s tPo in t ( curLine . s lope , . . .

curLine . i n t e r c ep t , o r i g in , r ad iu sOr ig in ) ;

int crossHow = PtsOnSegment ( in tPts . x1 , in tPts . x2 , . . .

curLine . l e f t . r ea l , curLine . r i gh t . r e a l ) ;

TwoPoints borderPts ;
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i f ( crossHow >= 0) {

switch ( crossHow ) {

// s e t border p o i n t s (1 l e f t , 2 r i g h t )

case 0 :

borderPts . x1 = intPts . x1 ;

borderPts . x2 = intPts . x2 ;

borderPts . y1 = intPts . y1 ;

borderPts . y2 = intPts . y2 ;

break ;

case 1 :

borderPts . x1 = intPts . x1 ;

borderPts . y1 = intPts . y1 ;

borderPts . x2 = curLine . r i gh t . r e a l ;

borderPts . y2 = curLine . r i gh t . imag ;

break ;

case 2 :

borderPts . x2 = intPts . x2 ;

borderPts . y2 = intPts . y2 ;

borderPts . x1 = curLine . l e f t . r e a l ;

borderPts . y1 = curLine . l e f t . imag ;

break ;

case 3 :

borderPts . x2 = curLine . r i gh t . r e a l ;

borderPts . y2 = curLine . r i gh t . imag ;

borderPts . x1 = curLine . l e f t . r e a l ;

borderPts . y1 = curLine . l e f t . imag ;

break ;

// be low here , t h e i n t e r c e p t p o i n t s are x2<x1

case 4 :

borderPts . x1 = intPts . x2 ;

borderPts . x2 = intPts . x1 ;

borderPts . y1 = intPts . y2 ;

borderPts . y2 = intPts . y1 ;

break ;

case 5 :

borderPts . x1 = intPts . x2 ;

borderPts . y1 = intPts . y2 ;

borderPts . x2 = curLine . r i gh t . r e a l ;

borderPts . y2 = curLine . r i gh t . imag ;

break ;

case 6 :

borderPts . x2 = intPts . x1 ;

borderPts . y2 = intPts . y1 ;

borderPts . x1 = curLine . l e f t . r e a l ;

borderPts . y1 = curLine . l e f t . imag ;

break ;

case 7 :

borderPts . x1 = intPts . x1 ;

borderPts . y1 = intPts . y1 ;

borderPts . x2 = curLine . l e f t . r e a l ;

borderPts . y2 = curLine . l e f t . imag ;

break ;

case 8 :

borderPts . x2 = intPts . x2 ;
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borderPts . y2 = intPts . y2 ;

borderPts . x1 = curLine . r i gh t . r e a l ;

borderPts . y1 = curLine . r i gh t . imag ;

break ;

case 9 :

borderPts . x2 = curLine . l e f t . r e a l ;

borderPts . y2 = curLine . l e f t . imag ;

borderPts . x1 = curLine . r i gh t . r e a l ;

borderPts . y1 = curLine . r i gh t . imag ;

break ;

case 11 :

borderPts . x1 = intPts . x2 ;

borderPts . y1 = intPts . y2 ;

borderPts . x2 = curLine . l e f t . r e a l ;

borderPts . y2 = curLine . l e f t . imag ;

break ;

case 12 :

borderPts . x2 = intPts . x1 ;

borderPts . y2 = intPts . y1 ;

borderPts . x1 = curLine . r i gh t . r e a l ;

borderPts . y1 = curLine . r i gh t . imag ;

break ;

}// end o f sw i t c h

i n tPts = LineCi r c In te r s e c tX Neare s tPo in t ( curLine . s lope ,

curLine . i n t e r c ep t , d i s tantCenter , r ad iu sD i s t ) ;

// check i n t e r c e p t s o f l i n e w i th d i s t a n t c i r c l e

crossHow = PtsOnSegment ( in tPts . x1 , in tPts . x2 ,

borderPts . x1 , borderPts . x2 ) ;

i f ( crossHow >= 0) {

switch ( crossHow ) {

// s e t border p o i n t s (1 l e f t , 2 r i g h t )

case 0 :

return min(RBorder ,

DistC (MakeComplex ( in tPts . x2 , in tPts . y2 ) , triSW ) ) ;

case 1 :

return min(RBorder ,

DistC (MakeComplex ( borderPts . x2 , borderPts . y2 ) , triSW ) ) ;

case 2 :

return min(RBorder ,

DistC (MakeComplex ( in tPts . x2 , in tPts . y2 ) , triSW ) ) ;

case 3 :

return min(RBorder ,

DistC (MakeComplex ( borderPts . x2 , borderPts . y2 ) , triSW ) ) ;

case 4 :

return min(RBorder ,

DistC (MakeComplex ( in tPts . x1 , in tPts . y1 ) , triSW ) ) ;

case 5 :

return min(RBorder ,

DistC (MakeComplex ( borderPts . x2 , borderPts . y2 ) , triSW ) ) ;

case 6 :

return min(RBorder ,

DistC (MakeComplex ( in tPts . x1 , in tPts . y1 ) , triSW ) ) ;

case 7 :

return min(RBorder ,
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DistC (MakeComplex ( borderPts . x1 , borderPts . y1 ) , triSW ) ) ;

case 8 :

return min(RBorder ,

DistC (MakeComplex ( in tPts . x2 , in tPts . y2 ) , triSW ) ) ;

case 9 :

return min(RBorder ,

DistC (MakeComplex ( borderPts . x1 , borderPts . y1 ) , triSW ) ) ;

case 11 :

return min(RBorder ,

DistC (MakeComplex ( borderPts . x1 , borderPts . y1 ) , triSW ) ) ;

case 12 :

return min(RBorder ,

DistC (MakeComplex ( in tPts . x1 , in tPts . y1 ) , triSW ) ) ;

}// end o f sw i t c h

}

}// end i n s i d e o r i g i n c i r c l e

}// end i f eye c i r c l e c o v e r s p o r t i on o f t r i a n g l e s i d e

}// end i f s i d e c o n s t r a i n t was v i o l a t e d

}// end l o o p i n g through t r i a n g l e s i d e s

i f ( a l l i n ) {

return true ;

} else {

return fa l se ;

}

}

double CheckFeasMu( complex mu1 , int usedElems , int numOnesRem) {

//a f i l t e r e n f o r c i n g a lower bounon mu1

double maxDist = CheckFeasMu Internal (mu1 , usedElems , numOnesRem ) ;

i f (maxDist < sq r t (LH/4)) {

return −1;

}

return maxDist ;

}

bool CheckPSD( complex mu[L ] , int usedElems , int numOnesRem, double maxDist ) {

// a l t e r l a t e r to account f o r max a c h e i v a b l e r a d i u s o f mu1

complex cente r ;

complex s t a r ;

double rad ius ;

for ( int j = 2 ; j < LH; j++) {

// s k i p mu0

// on l y go up to LH−1 as remainder are same bu t c on j u ga t e

cente r = SumOmega [ j ∗L + 1 + usedElems ] ;

s t a r = SumOmega [ ( j + 1)∗L − numOnesRem ] ;

rad ius = DistC ( center , s t a r ) ;

i f (GCD( j , L) == 1) {

// r e l a t i v e l y prime

i f ( DistC (MakeComplex(−mu[ j ] . r ea l , −mu[ j ] . imag ) , c ente r ) >(maxDist + rad ius ) ) {

// che c k in g i f c i r c l e s i n t e r s e c t .

// i f t h e range we want mu to f a l l in does not i n t e r s e c t

// a c h i e v a b l e range , then i n f e a s i b l e
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return fa l se ;

}

}

else {

// not r e l a t i v e l y prime

i f ( DistC (MakeComplex(−mu[ j ] . r ea l , −mu[ j ] . imag ) , c ente r ) > (SqLH + rad ius ) ) {

// che c k in g i f c i r c l e s i n t e r s e c t .

// i f t h e range we want mu to f a l l in does not i n t e r s e c t

// a c h i e v a b l e range , then i n f e a s i b l e

return fa l se ;

}

}

}

return true ;

}

bool SubmitVect ( int Vect [L ] , complex mu[L ] ) {

double theta = mu [ 1 ] . imag / mu [ 1 ] . r e a l ;

i f ( theta < 0 | | theta > ThetaLim ) { return fa l se ; }

// not a b r a c e l e t rep

// i f some mu f a i l s psd t e s t

// fathom immedia t e l y

Resident newRes ;

bool passe s = newRes . I n i t i a l i z e (Vect , mu) ;

i f ( ! pas se s ) {

return fa l se ;

}

// e l s e

/∗ f o r ( i n t j = 0 ; j<L − 1 ; j++) {

f i l e << Vect [ j ] << ” , ” ;

}

f i l e << Vect [ L − 1 ] << end l ; ∗/

passe s = par t i t i onMaste r . AddRes(&newRes ) ;

bracekt r++;

// add new r e s i d e n t to p a r t i t i o n s

i f ( ! pas se s ) {

//no GLP was found

return fa l se ;

}

//ELSE One Was

for ( int j = 0 ; j<L − 1 ; j++) {

f i leGLP << GLPair1 . vect [ j ] << ” , ” ;

}

f i leGLP << GLPair1 . vect [ L − 1 ] << endl ;

for ( int j = 0 ; j<L − 1 ; j++) {

f i leGLP << GLPair2 . vect [ j ] << ” , ” ;

}

f i leGLP << GLPair2 . vect [ L − 1 ] << endl ;

time(&tend ) ;
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double t imereq = d i f f t im e ( tend , t s t a r t ) ;

f i leGLP << ”Time( Sec ) : ” << t imereq << endl ;

f i leGLP << ”VectsGenned : ” << bracekt r << endl ;

f i leGLP . c l o s e ( ) ; // save

for ( int j = 0 ; j<L − 1 ; j++) {

cout << GLPair1 . vect [ j ] << ” , ” ;

}

cout << GLPair1 . vect [ L − 1 ] << endl ;

for ( int j = 0 ; j<L − 1 ; j++) {

cout << GLPair2 . vect [ j ] << ” , ” ;

}

cout << GLPair2 . vect [ L − 1 ] << endl ;

return true ;

}

bool AddNextZero ( int Vect [L ] , int usedElems , int numOnesRem, int numZersRem , complex mu[L ] )

{

// cout << ”AddingZero ” << end l ;

i f (numOnesRem == 0) {

// i f a l l e l emen t s have been a s s i g n e d

// cout << 0 << ” ,” << numOnesRem << end l ;

for ( int j = L − numZersRem ; j < L ; j++) {

Vect [ j ] = 0 ; // put 0 ’ s in a l l r e q u i r e d s l o t s

}

return SubmitVect (Vect , mu) ;

}// ( imp l i e d e l s e )

usedElems++;

numZersRem−−;

double MDist = CheckFeasMu(mu[ 1 ] , usedElems , numOnesRem ) ;

i f (MDist<0) {

// cout << ”AddZer” << usedElems << ” ” << numOnesRem << end l ;

// PrintC (mu1 ) ;

// c in . g e t ( ) ;

return fa l se ;

}

bool i s f e a s ;

i f ( usedElems > LH) {

i s f e a s = CheckPSD(mu, usedElems , numOnesRem , MDist ) ;

i f ( ! i s f e a s ) {

return fa l se ;

}

}

Vect [ usedElems ] = 0 ;

i s f e a s = AddNextElem(Vect , usedElems , numOnesRem, numZersRem , mu) ;

//don ’ t a c t u a l l y care whats r e t u rned

//Only do i t f o r ease o f code r ead ing ( i . e . fathomed or con t inued )

return i s f e a s ;

108



}

bool AddNextOne( int Vect [L ] , int usedElems , int numOnesRem, int numZersRem , complex mu[L ] )

{// de termine i f a one can be added

i f (numZersRem == 0) {

FinishDFT(mu, numOnesRem ) ;

for ( int j = L − numOnesRem ; j < L ; j++) {

Vect [ j ] = 1 ; // put 1 ’ s in a l l r e q u i r e d s l o t s

}

// add a l l remaining mus

return SubmitVect (Vect , mu) ;

}// ( imp l i e d e l s e )

usedElems++;

numOnesRem−−;

UpdateDFT(mu, usedElems ) ;

Vect [ usedElems ] = 1 ;

double MDist = CheckFeasMu(mu[ 1 ] , usedElems , numOnesRem ) ;

i f (MDist < 0) {

return fa l se ;

}

bool i s f e a s ;

i f ( usedElems > LH) {

i s f e a s = CheckPSD(mu, usedElems , numOnesRem , MDist ) ;

i f ( ! i s f e a s ) {

return fa l se ;

}

}

i s f e a s = AddNextElem(Vect , usedElems , numOnesRem, numZersRem , mu) ;

return i s f e a s ;

}

bool AddNextElem( int Vect [L ] , int usedElems , int numOnesRem, int numZersRem , complex mu[L ] )

{

bool passed = fa l se ;

complex nextMu [L ] ;

i f (numOnesRem > 0) {// i f t h e r e are ones to be added

CopyArray (mu, nextMu ) ;

AddNextOne(Vect , usedElems , numOnesRem, numZersRem , nextMu ) ;

}

i f (GLPFound) {

// pushes out i f GLP i s found

return true ;

}
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i f (numZersRem > 0) {// i f t h e r e are z e r o s to be added

CopyArray (mu, nextMu ) ;

AddNextZero (Vect , usedElems , numOnesRem, numZersRem , nextMu ) ;

}

i f (GLPFound) {

// pushes out i f GLP i s found

return true ;

}

return passed ;

}

#pragma endreg ion

#pragma endreg ion

// g ene r a t i on end

//MAIN

#pragma r eg ion

int main ( )

{

I n i t i a l i z eG l o b a l s ( ) ;

b racekt r = 0 ;

int Vect [L ] = { 0 } ;

f i l ePa th = ”C:/ ” ;

f i l e . open ( f i l ePa th + ”L=” + t o s t r i n g (L) + ” BraceGen PSD DisV . txt ” ) ;

f i l e . c l e a r ( ) ;

f i leGLP . open ( f i l ePa th + ”L=” + t o s t r i n g (L) + ” GLP DisV . txt ” ) ;

f i leGLP . c l e a r ( ) ;

//AddNextElem ( i n t Vect [ L ] , i n t usedElems , i n t numOnesRem , i n t numZersRem , complex mu1)

time(& t s t a r t ) ;

// i n i t i a l i z e mu v e c t // auto a s s i g n s 0 to new e l emen t s

complex mu[L ] ;

AddNextElem(Vect , −1, LH, L − LH, mu) ;

time(&tend ) ;

double t imereq = d i f f t im e ( tend , t s t a r t ) ;

cout << ”Time( sec ) : ”<<t imereq << endl ;

cout << ”VectsGen : ”<< bracekt r << endl ;

cout << GLPFound << endl ;

c in . get ( ) ;

return 0 ;

}

#pragma endreg ion
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