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Abstract

This research models and analyzes the distribution of heat and current in a buffered

superconducting or hyper-conducting wire that shows potential for use in different

capacities in multiple Air Force systems including the Active Denial System. The

thesis includes a brief background of the reaction-diffusion system of partial differen-

tial equations provided by AFRL/RZPG and development of the numerical scheme.

It then explores solutions to the model. These solutions indicate some of the various

heat-related failures that may be observed in such a wire. The nature of the solu-

tions observed depends on the characteristics of the wire, operating temperature and

efficiency of cooling.
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HEAT AND CURRENT PROPAGATION IN BUFFERED SUPERCONDUCTING

AND HYPER-CONDUCTING WIRE

I. Introduction

Over the last two decades the Department of Defense has shifted its focus more

and more towards peace keeping and addressing asymmetric threats. Along with this

shift have come increased fighting in urban areas and a need to minimize collateral

damage. There has consequently been an increased need for non-lethal weapons. In

2000 the Air Force began testing the Active Denial System, a less-than-lethal crowd

control system utilizing a direct-able microwave beam. The Air Force is currently

sponsoring work to develop an aerial variant of the Active Denial System for use on

helicopters.

Active Denial and similar systems require large amounts of power. In order to

generate large, megawatt-level amounts of electrical power, either high voltage or

large levels of current need to be available. Voltage is limited at higher altitudes due

to lower atmospheric pressure [5]. Voltages that are considered low at sea level will

produce arcing at higher altitudes. For that reason, the way to increase power on an

aircraft is not to increase voltage but to increase current. An increase in current will

require larger gauge and/or more wiring. For small aircraft, two major concerns are

the size and weight of a prospective system. Power generation and transport could

be accomplished with conventional copper wires on a C-130, where weight is not as

much of an issue. Conventional power production and transport at megawatt levels

would be too heavy and bulky to be used on a smaller platform, such as a helicopter.

In order to develop a helicopter mounted Active Denial System, several components

1



need to be smaller and lighter than their ground counterparts.

A high-temperature superconducting wire is considerably smaller and lighter than

a comparable capacity copper wire. In terms of weight, even when cryogenics sys-

tems are factored in, high-temperature superconductors have shown potential sav-

ings of roughly 100 kg/m of cable operating at 10 to 15 MW DC [5]. This makes

high-temperature superconductor-based components a promising option for use in

the spatially limited environment of a helicopter or other aircraft.

Reliability is a concern for any military system and a crucial part of reliability is

survivability. In high-temperature superconductors, one of the survivability require-

ments is temperature remaining below a damage threshold. At this temperature the

superconductor will be irreversibly damaged. This constitutes a failure of the system.

To prevent a failure, it is necessary to be able to detect as quickly as possible, by

voltage drop or temperature variance, any heat pockets that may develop and act to

mitigate them. Figure 1 shows a burned out armature from a liquid-hydrogen cooled

generator. The windings of the armature are copper, but the rotors of the generator

were high-purity aluminum which is a hyper-conductor. The burned portions of the

armature illustrate the severity of the damage caused by such failures.

In current, state-of-the-art, high-temperature superconducting wires, the temper-

ature may climb in a localized region and not be detectable until the system fails

due to damage from heat [9]. The Power Generation Branch of the Power Division,

Propulsion Directorate, Air Force Research Laboratory (AFRL/RZPG) is research-

ing buffered high-temperature superconductors and the impact of varying interfacial

resistivity between conducting layers.

This research addresses a general model for current and temperature in a super-

conducting wire and the effect of increasing interfacial resistivity between conducting

layers. The intent is to increase the rate at which heat will spread so that it is detected

2



Figure 1. The armature from a liquid-hydrogen cooled generator. The rotors of the
generator were high-purity aluminum which is a hyper-conductor. The windings of
the armature are copper. Note the burned areas visible on the facing edge of the
armature [7].

before the damage threshold is reached. While damage or destruction of the system

is the most dramatic type of heat related failure, there are other less severe types of

failure that may be observed. The range of failures from destruction of the system to

minor interruption of current will be examined. The final possibility addressed is a

system that will recover from a heat related incident and maintain stable operation.

Chapter 2 discusses relevant background and presents the model as a reaction-

diffusion system. Equilibrium solutions are explored and basic dimensional analysis

is performed on the system. Chapter 3 develops a fast, robust implicit/explicit nu-

merical scheme for the model. Chapter 4 presents solutions of the reaction-diffusion

system as interfacial resistance and coefficient of cooling are varied. The solutions are

qualitatively separated into five classes according to morphological behavior. Chapter

5 discusses areas for future research.

3



II. Background

2.1 Superconductors

Superconductivity, discovered in 1911, is a property displayed by certain materi-

als that provide very low (or no) electrical resistance as well as excluding magnetic

fields at low temperatures. Over the years several different materials, originally met-

als but later ceramics and organic materials, have exhibited superconductivity [12].

Superconductors are currently used in applications ranging from magnetic resonance

imaging to particle accelerators, primarily as high-field electromagnets.

In a superconductor, at a certain temperature called the critical temperature,

there is a sudden change from zero electrical resistivity to high electrical resistivity

as temperature increases. In yttrium barium copper oxide (YBCO) for example, this

transition takes place over a 2 K span. Figure 2 on page 6 [12] illustrates the change

in resistivity as a function of temperature for YBCO. While there are several ways to

classify superconductors, for the purposes of this research the distinction of high or

low temperature superconductors is sufficient.

YBa2Cu3O7−� is a ceramic that was one of the first materials to display supercon-

ductivity at a temperature higher than 77 K, the boiling point of liquid nitrogen. It

is a semiconductor, but for certain values of � ∈ [0, 1] it becomes a superconductor.

Its superconducting characteristics vary considerably depending on concentration of

oxygen with critical temperature ranging from about 28 K to 92 K. Figure 2 shows

a plot of electrical resistivity as a function of temperature. For � = 0.22, the critical

temperature is about 77 K and for � = 0, the critical temperature jumps to about

92 K. In addition to high critical temperature, YBCO has been shown to be more

robust than other superconductors with regard to maintaining superconductivity in

the presence of nearby magnetic fields, having been observed to maintain supercon-

4



ductivity at low temperature in fields higher than 100 T (100 Tesla) [15]. Even at

approximately 75 K the critical field of YBCO is in the neighborhood of 50 T [12].

When � is greater than about 0.7, YBCO becomes strictly semi-conducting [12]. Un-

less specifically referring to � values, optimally-prepared (highest oxygen with � = 0)

YBa2Cu3O7−� will be referred to as YBCO in the sequel. Other superconducting

materials have different critical temperatures, but they all display an abrupt change

from zero resistivity to high resistivity as the temperature transitions through the

critical temperature.

Low-temperature superconductors operate in temperature ranges less than about

23 K. This means that a typical cooling method involves liquid helium which boils

at roughly 4 K. Such a cooling system is expensive and bulky. Low-temperature

superconductors are also highly susceptible to heat and magnetic fields. This limits

the range of applications for which they are suited and makes them unsuitable for

most military applications.

If the temperature of a superconducting material rises above its critical tem-

perature or if a local magnetic field becomes too powerful, the material loses its

superconducting capability. This process is called quench and at that point the su-

perconductor may be damaged or destroyed unless appropriate protective measures

are in place. When a superconductor quenches, a region called a normal zone is cre-

ated where there is greater than zero electrical resistance [7]. The normal zone will

spread as the temperature in that region rises heating adjacent regions to quench. In

low-temperature superconductors, normal zone propagation occurs fast enough that

quench can be detected and mitigated—typically by shutting down the system to

restore temperature—before the temperature reaches the damage threshold. The low

operating temperature and susceptibility to magnetic fields makes them, generally,

suitable for a narrow range of real world applications where conditions can be carefully

5
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controlled and space is not a limiting factor, such as an MRI in a hospital.

2.2 High-Temperature Superconductors

High-temperature superconductors maintain zero electrical resistivity up to ap-

proximately 135 K. This means that liquid nitrogen which boils at about 77 K can

be used to cool these materials. This makes high-temperature superconductors more

suitable for many applications. Unfortunately, normal zone propagation is sufficiently

slow in high-temperature superconductors that temperature can reach the damage

threshold before there is any indication of quench [9]. This makes quench difficult to

detect and potentially harder to mitigate.

A superconductor may be coupled with a conventional conductor to help prevent

damage/destruction brought on by quench. In this case the electrical current which

ideally travels through the superconducting material simply reroutes through the

conventional conductor until heat dissipation restores low temperature or the system

can be shut down.

There is some small amount of electrical resistance between the superconducting

and normal conducting layers. Traditionally, it has been thought that this interfacial

resistance needs to be small [9]. AFRL/RZPG is currently investigating the effect of

increasing interfacial resistance on the speed of normal zone propagation. If the speed

of normal zone propagation could be made fast enough to allow detection and shut-

down prior to system damage, then high-temperature superconductors could be used

in a variety of military applications including the electromagnets used for microwave

generation in the Active Denial System.

7



2.3 Development of the Model from Physical Principles

The superconducting wire is a ribbon 4 mm wide composed of four layers as il-

lustrated in Figure 3. The first layer is a substrate approximately 50 µm thick. This

substrate is made out of stainless steel, nickel, or Hastelloy (a high-performance al-

loy). A layer of YBCO approximately 1 µm thick is deposited on the substrate and

a thin (nanometers thick) resistive layer may be deposited on top of this. The final

layer is 50 µm of copper which acts as a stabilizer by providing an alternate route for

current to travel if the temperature rises above the critical temperature of the YBCO

and the YBCO loses its superconductivity [9].

For the sake of a mathematically tractable solution, a simplification made to the

mathematical model is the reduction of a three-dimensional wire to a one-dimensional

model. This is reasonable because the thickness and width of the wire are small

enough that heat can be considered approximately uniform in those directions [9].

Readers interested in the complete development of this model should refer to [9].

The development in this thesis focuses on the elements of the physical model that

cannot be passed over without loss of context. The physical phenomenon in question

3
4

2

1

2

1

x
y

I

Figure 3. Cross-sectional representation of the buffered ribbon wire. 1 represents the
copper which acts as a stabilizer allowing current to flow when superconductivity is lost.
2 represents the Hastelloy substrate which provides a base for depositing the YBCO.
Because of the relatively high resistance of the Hastelloy compared to the copper or
the YBCO, no current flows through the Hastelloy. 3 represents the thin resistive layer
providing interfacial resistance between the YBCO and the copper. 4 represents the
YBCO.
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is described by a system of partial differential equations:

∂

∂t
�(x, t) =

∂2

∂x2
�(x, t) + (u(x))2 + f(�(x, t))(1− (u(x)))2 ⋅ ⋅ ⋅

+ r(x)

(
∂

∂x
u(x)

)2

− �(�(x, t)− �(x, t)0)

∂

∂x

(
r(x)

∂

∂x
u(x)

)
= u− f(�(x, t))(1− (u(x)))

For readability, this system will be written as

�t = �xx + u2 + f(�)(1− u)2 + r(ux)
2 − �(� − �0) (1)

(r(u)x)x = u− f(�)(1− u). (2)

In either case, the first equation describes heat and the second describes current in

the wire presented previously. The variables and parameters in the above system

are listed in Table 1 on page 11. All terms are dimensionless in this model. In

practice the operating temperature � is greater than the temperature of the coolant

�0. The critical temperature of the superconductor is defined to be � = 0, so in

the absence of a failure the operating temperature will be negative. This means the

coolant temperature, for obvious physical reasons lower than any other temperature

in the model, is always a negative number. The fraction of total current that travels

through the stabilizer u is a number between zero and one, that is u ∈ [0, 1], with

u = 0 denoting all current flows through the superconductor and u = 1 indicating all

current flows through the stabilizer.

Following the development in [8, 9], the first terms in (1) �t = �xx are the basic

heat equation. This provides diffusion in the model. The following three terms

u2+f(�)(1−u)2+r(ux)
2, which are positive, contribute heat. The u2 term represents

the heat produced by current flowing through the stabilizer. Notice when temperature

9



is low enough, there is no current traveling through the stabilizer and this term will

not contribute any heat. The f(�)(1−u)2 represents the heat produced by the current

in the superconductor. When temperature is low, this will contribute little-to-no heat

because f(�) will evaluate to zero, or nearly zero. The function f(�) is detailed in the

following section. When all current is passing through the stabilizer this term will not

contribute heat. The final heat building term r(ux)
2 represents the heat produced by

current crossing the interface between the superconductor and the stabilizer. Recall

the resistive layer between the superconductor and the stabilizer. This resistance r

is not constant, for reasons that will be detailed below. The coefficient of cooling

� is multiplied by the difference between operating and coolant temperature � − �0

and together they represent the heat loss and cooling forces. The second equation,

essentially Poisson’s equation, derives from the condition of charge conservation across

the vertical thickness of the wire. The right hand side, similar to the first equation,

comprises a term for current through the stabilizer u, and a term for current through

the superconductor f(�)(1− u).

For the superconducting wire, � is dimensionless temperature derived from the

following relationship (variables are defined in Table 1):

� =
T − T1
Tc − T1

(3)

The current sharing temperature T1 can be thought of as the temperature at which

current starts to flow through the stabilizer. It is below the critical temperature

and is detailed in [9]. The domain is given by x ∈ [−L,L], L is dimensionless, with

either reflecting or periodic boundary conditions. Reflecting, or thermally insulating,

boundary conditions model a wire of length 2L, while periodic boundary conditions

model a closed loop of wire. Mathematical representations of the boundary conditions

are presented in the following chapter. The interfacial resistance along the ribbon is
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Table 1. Variables and Terms for Equations 1 and 2

Tc critical temperature
T1 current sharing temperature
T temperature
T0 ambient (coolant) temperature
� coefficient of cooling (dimensionless)
� dimensionless temperature
�0 dimensionless ambient temperature
f(�) transition function
r interfacial resistance (dimensionless)
u fraction of current through copper stabilizer (dimensionless)
t time (dimensionless)
x length (dimensionless)

given by r(x). Typically, r(x) is a constant r0 along the length of the ribbon, but

near the ends it is beneficial to reduce resistivity for the purpose of simulating the

wire accurately. In the wire, current enters the wire through the copper stabilizer.

Current will need to overcome the interfacial resistance in order to flow into the

superconductor. To make sure this happens, resistance is minimized at each end of

the wire. To model this

r(x) = �+ r0

(
1− e(cos(x�/(2L))2/c2

)

where � = 0.01, and c = 0.1. This modification is included in the model with reflecting

boundary conditions. It is not used in the model with periodic boundary conditions.

In that case interfacial resistance is held constant r(x) = r0 in the entire domain.

This allows current and temperature to pass from L to −L (through the boundary)

without interference. In this way, the periodic boundary conditions simulate a length

of wire with uniform activity at fixed intervals.
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2.4 Transition Functions

Of particular interest in the study of this system is the function that models

the transition of the superconductor from zero to high electrical resistance. This

is represented in the system by f(�). A peculiarity of superconducting materials is

the rapid, or immediate, transition from zero electrical resistance to high electrical

resistance at the critical temperature. Below the critical temperature the current

traveling through the stabilizer will be low u ≈ 0. As the operating temperature

climbs, current through the stabilizer will increase until u = 1 and there is no current

moving through the superconductor. To properly model this, three functions have

been considered as the transition function describing electrical resistivity � of the

superconductor. The first, and simplest, is the scaled Heaviside function

f(�) = ΓH(� − 1) =

⎧⎨⎩
0 if � < 1

Γ if � ≥ 1

where Γ≫ 1.

As shown in Figure 4, this is a step function which equals zero below the critical

temperature and a constant at or above the critical temperature.

The next function considered is the variable ramp shown in Figure 5. Although
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Figure 4. Scaled Heaviside function for resistivity � as a function of temperature �.
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shown with a small Δ, in practice this will be variable depending on u and �

f(�;u) =

⎧⎨⎩
0 if � < u

Γ(� − u)/(1− u) if u < � ≤ 1

Γ if 1 < �.

The ramp models a finite (2 K) change between superconducting and insulating.

This function has been used to describe the superconducting relation in the afore-

mentioned buffered YBCO wire [8].

The final function considered is the exponential function

f(�) = e�.

While the exponential function provides a smooth transition from low to high electri-

cal resistivity, it is not as appropriate for the accurate modeling of the superconducting

material. However, this model does describe a relevant and related physical device

such as a ribbon wire of high purity aluminum and Hastelloy separated by a resistive

layer of oxidized aluminum. The Hastelloy could be the same as that used in the

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−20

0

20

40

60

80

100

120

140

160

180

200

 

 
f

(�
)

=
�

�

Figure 5. The ramp transition function for resistivity � as a function of temperature
�. Note, the ramp function has been fixed for readability. In practice, the slope of the
ramp is variable.
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Figure 6. The exponential transition function for resistivity � as a function of temper-
ature �.

buffered YBCO wire, with a thin (a couple of nanometers thick) layer of aluminum

deposited and allowed to oxidize in the air. Deposited on top of that would be a

layer of high purity aluminum. Pure aluminum (at least 99.99% pure) is a hyper-

conductor. This means that its electrical resistivity is close to zero at sufficiently

low temperatures [3]. Unlike superconductors, this change in resistivity is gradual,

ranging from 7.55× 10−4 µΩ cm at 20 K to 2.733 µΩ cm at 300 K [3]. Figure 7 on

page 16 shows the relative electrical resistances of aluminum, Hastelloy, copper and

YBCO. Notice that while aluminum’s resistance gets very close to zero, it does so

over a large temperature range, unlike the change in resistance of YBCO. The dimen-

sionless temperature for a hyper-conducting wire made of high-purity aluminum and

Hastelloy is slightly different than that of a superconducting wire. The dimensionless

temperature � is given by

� =
T − T1

ΔT
. (4)

ΔT is used here because there would not be a critical temperature Tc in the hyper-

conducting wire, instead there is only a current sharing temperature T1 [7]. Unlike

a superconductor, the temperature at which the resistance of aluminum becomes

lower than that of Hastelloy is entirely determined by their relative thickness. For

example, consider a wire such that the current sharing temperature T1 = 65 K. The
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electrical resistivity of aluminum at that temperature is �Al = .1384 µΩ cm [3]. Since

Hastelloy’s electrical resistivity is 130 µΩ cm, the thickness of the Hastelloy would be

need to be roughly one thousand times that of the aluminum. The temperature driven

increase in resistance of aluminum, and the corresponding shift in current, is similar to

what happens in the superconducting wire. In the superconducting wire the electrical

resistance of the YBCO is zero when T < Tc and current will flow through the YBCO.

When T > Tc, resistance in the YBCO will be much higher than resistance in the

copper. At that point, the current will overcome the interfacial resistance between

the copper and the YBCO, transfer to the copper and continue flowing through the

copper unless the temperature drops again. Figure 7 shows the change in resistance as

a function of temperature for YBCO, high-purity copper, Hastelloy and high-purity

aluminum. For readability, the electrical resistance of Hastelloy is shown for Hastelloy

one hundred times as thick as the aluminum. In this case, widths of all materials are

equal as are lengths. Also, the resistance of YBCO is shown at one-twentieth of actual

for comparison to the resistance of copper.

Empirical observations suggest the specific function is not critical so long as it

provides a change from zero or near zero resistivity to high resistivity over a narrow

temperature range. In the physical wires and in the models the current will travel

through the superconductor or the hyper-conductor so long as the temperature is

low enough to allow it. Once the temperature passes the critical temperature, the

YBCO—or the hyper-conductor—becomes a resistor and the current will reroute

through the stabilizer (copper or Hastelloy, respectively). For this reason this thesis

will address the case of the exponential function as transition function.
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2.5 Constant Equilibrium Solutions

Prior to numerical modeling, it is necessary to develop a fundamental understand-

ing of the solutions to the equilibrated system. Recall the system of equations for

temperature � and current u:

�t = �xx + u2 + f(�)(1− u)2 + r(ux)
2 − �(� − �0)

(rux)x = u− f(�)(1− u)

As an initial exploration of this system, a good starting point is determining the

stable or constant equilibrium solutions. Consider current and temperature constant.

Then ux = 0, �x = 0, �t = 0, and �xx = 0:

0 = u2 + f(�)(1− u)2 − �(� − �0) (5)

0 = u− f(�)(1− u) (6)

Now, solving (6) for u:

u =
f(�)

1 + f(�)
. (7)

To find the equilibrium solutions, substitute (7) into (5) and simplify.

� (� − �0) =
f(�)

1 + f(�)
. (8)

The solutions to (8) will depend on �. These solutions are shown in Figure 8(a) on

page 19 as well as Figures 8(b) and 9(a), where current u is a function of temperature

�. In those figures, the left and right hand side of (8) are plotted representing cooling

forces and heating forces respectively. The solutions are indicated at the intersections

or equilibrium of the cooling and heating terms. If temperature � is greater than a
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nearby constant equilibrium solution, then cooling will be stronger than the heating

forces and � decreases to converge to the equilibrium solution. On the other hand,

if � is less than a solution, the heating forces will be greater than the cooling and �

will increase to converge to the solution. Therefore these solutions are stable with

regard to perturbations in temperature. In all of the above referenced figures, the low

temperature equilibrium occurs at the ambient temperature for the system �0. In the

adiabatic case, where � = 0, there will be one solution and it will be a stable solution.

Any introduction of heat (perturbation of the system) will cause a shift to the normal

conducting regime and temperature will grow unbounded. In later instances, the

largest value of � for which there is a high-temperature equilibrium solution will be

referred to as �★. When 0 < � < �★, there will be two stable equilibrium solutions a

high-temperature and a low-temperature solution. When �★ < � there will only be

a low-temperature solution. In Figure 9(b) showing solutions in the ��-plane, one

can see that for � = 0.06 there would be three intersections. The highest of these

intersections corresponds to the highest temperature of a solution to this system, �max

for the considered value of �.

2.6 Traveling Wave Solution

The scaled Heaviside function is suited to one analytic approach when the inter-

facial resistance is zero. Recall the system of equations:

�t = �xx + u2 + r(ux)
2 + f(�)(1− u)2 − �(� − �0)

(rux)x = u− f(�)(1− u)
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Figure 8. The bistable solutions, indicated by the solutions of (8). For � > �★, there is
only one stable solution, the low temperature solution. Note, the ramp function has
been fixed for readability. In practice, the slope of the ramp is variable
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only one stable solution, the low temperature solution.
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Take the transition function f(�) = ΓH(�), where H(�) is the Heaviside function and

Γ≫ 1 is a scaling parameter and let r(x) = 0. Then the system becomes:

�t = �xx + u2 + f(�)(1− u)2 − �(� − �0) (9)

0 = u− f(�)(1− u). (10)

The second equation can be solved for u

u =
f(�)

1 + f(�)
=

Γ

1 + Γ
H(�).

When � < �max, the solution has two stable equilibria

�(x) = �0 and �(x) = �max = �0 +
1

�

Γ

1 + Γ
.

Consider a the temperature distribution which consists of the two equilibrium so-

lutions separated by an interface, specifically �max on the left and �0 on the right as

shown in Figure 10. The interface is not in equilibrium and hence it will evolve over

time. A traveling wave solution merely translates without changing shape. Consider

the traveling wave solution �(x, t) = �(x−ct) = �(�) where c is the propagation speed

of the interface. In this case

�t = ���t = −c��

and

�x = ���x = �� ⇒ �xx = ���.

For such a traveling wave solution (9) reduces to

−c�′ = �′′ + u2 + f(�)(1− u)2 − �(� − �0),
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Figure 10. Equilibrium solutions �max and �0 connected by a smooth interface. This
interface is not in equilibrium so it will evolve over time.

or equivalently

�′′ + c�′ + u2 + f(�)(1− u)2 − �(� − �0) = 0

an ordinary differential equation in �. This equation is the same as

�′′ + c�′ +M − �(� − �0) = 0, for � > 0 (11)

�′′ + c�′ − �(� − �0) = 0, for � < 0 (12)

with M = Γ/(1 + Γ), because the transition function f(�) is a scaled Heaviside

function.

The homogeneous problem

�′′ + c�′ + �� = 0

has the characteristic equation r2 + cr − � = 0 which has solutions

r1 =
−c+

√
c2 + 4�

2
and r2 =

−c−
√
c2 + 4�

2
.
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Only r1 will be considered, since r2 would result in a negative speed for a front that

is supposed to move to the right. The solutions to (11) and (12) are

�−(x) = A0 exp(r1x) +B0 exp(r2x) +
M

�
+ �0 for � > 1 (13)

�+(x) = A1 exp(r1x) +B1 exp(r2x) + �0 for � < 1. (14)

Where A0, A1, B0 and B1 are arbitrary constants. To ensure continuity and smooth-

ness of the solution, the following boundary conditions and continuity conditions

apply

1. lim
x→∞

� = �0

2. lim
x→−∞

� = �max

3. �−(0) = 1 = �+(0)

4. �′−(0) = �′+(0)

Imposing boundary conditions 1 and 2 on (13) and (14) forces B0 = A1 = 0 and the

solution becomes:

�−(x) = A0 exp(r1x) +
M

�
+ �0 for � > 1 (15)

�+(x) = B1 exp(r2x) + �0 for � < 1 (16)

Applying continuity conditions 3 to (15) and (16) yields

A0 = 1− M

�
− �0 (17)

B1 = 1− �0 (18)
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Applying continuity condition 4 to the solutions and solving for the speed c gives

c =

(
�

(
−4 +

M

M + � (−1 + �0)

)
− M

−1 + �0

)1/2

.

The traveling wave moves to the right (c > 0) when

� <
M

2 + 2∣�0∣

The speed c of the traveling wave can be be approximated by letting M = 1, and

�0 = −1. Figure 11 shows speed of the traveling wave c as a function of cooling �.

By extension a plateau solution consisting of three equilibrium solutions separated by

two interfaces such as shown in Figure 16(a) on page 40 will grow if � < M/2 + 2∣�0∣

or shrink otherwise. This condition on � appears to be necessary but not sufficient.

Numerical results using the exponential and ramp transition functions require lower

values of � to guarantee a traveling wave solution in the case of no interfacial resis-

tance.
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Figure 11. The speed of the traveling wave solution as a function of �.
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2.7 Dimensional Analysis

It is useful to develop an understanding of the importance of � on the function

f(�). In general, whether an exponential term or a step function is used makes little

difference in the types of solutions observed. The specifics of speed and regions may

change, but the fundamental solution-types—heat gain or heat loss—remain the same.

It is possible to observe the effect of scaling the coefficient of � in the exponential

term by introducing the coefficient �. This can be considered:

�t = �xx + u2 + f(��)(1− u)2 + r(ux)
2 − �(� − �0)

(rux)x = u− f(��)(1− u)

Then introduce � in place of the term ��:

1

�
�t =

1

�
�xx + u2 + f(�)(1− u)2 + r(ux)

2 − �(
1

�
�− 1

�
�0)

(rux)x = u− f(�)(1− u)

Now, let � = �t and � = x
√
�. The system of equations becomes:

�� = ��� + u2 + f(�)(1− u)2 + �r(u�)
2 − 1

�
�(�− �0)

�(ru�)� = u− f(�)(1− u)

This analysis shows that changing the transition function from f(�) to f(��) has the

same effect as changing interfacial resistance from r to �r, changing the coefficient

of cooling (inhibitor) from � to �/�, rescaling time from t to �t, and rescaling space

from x to
√
�x, while keeping f(�) as the transition function. Hence, it is sufficient

to examine f(�) over a range of values for � and r.

25



III. Numerical Method

3.1 Considerations

This section presents the development and details of the numerical method used

to solve the system of equations

�t = �xx + u2 + f(�)(1− u)2 + r(ux)
2 − �(� − �0) (19)

(rux)x = u− f(�)(1− u) (20)

over a domain x ∈ [−L,L] with either periodic or reflecting boundary conditions.

While the wire can be considered infinitely long for the purposes of classical analysis,

numerical analysis requires defined boundaries. For that reason, boundary conditions

will be as follows. For periodic boundary conditions current and temperature will be

allowed to flow across the boundaries

�(t, L) = �(t,−L), �x(t, L) = �x(t,−L),

u(L) = u(−L), and ux(L) = ux(−L).

For reflecting boundary conditions current will be fixed at the boundaries to simulate

current injection through the copper stabilizer and the boundaries will be thermally

insulating

�x(t,−L) = 0, �x(t, L) = 0, u(−L) = 1, and u(L) = 1.

Reflecting boundary conditions are used to model a wire with terminals included.

In the wire, the current will enter through the copper stabilizer before re-routing to

26



the superconductor. Reflecting boundary conditions require the specific adaptation

r(x) = �+ r0

(
1− e(cos(x�/(2L))2/c2

)

to allow for the change in resistance necessary for current injection at the ends of

the wire. The parameter c is the width parameter of the interface between resistance

r(x) ≈ r0 to r(x) ≈ � at the boundaries. Without this modification, temperature

builds at the boundaries as a result of the current crossing the interface between the

superconductor and the stabilizer. Figure 12 on the next page shows the interfacial

resistance along the length of the wire with reflecting boundary conditions. Notice

the smooth transition from about r0 = 200 in the bulk of the wire to almost zero

resistance at the boundaries. Periodic boundary conditions represent a closed loop of

wire. In this case, there is no change in resistivity so r(x) = r0 throughout. Using

reflecting or periodic boundary conditions results in essentially the same solution as

long as the boundaries are avoided.

Initial conditions are given by

�(0, x) = �0 + (a− �0)e−x
2/2d2 (21)

where a is the temperature above critical temperature � = 0 and d is the width

parameter. Equation (21) produces a Gaussian shape that models the distribution of

initial heat.

This system presents two difficulties with regard to a numerical solution. The

system is both stiff and nonlinear. The stiffness means there are differing time scales.

That is, the solution exhibits both rapid changes and slow changes. An explicit

method would involve a Courant–Friedrichs–Lewy (CFL) condition, Δt ≤ Δx2/2,

which places sever restrictions on the step size for the purpose of stability. This
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additional restriction would drive the time step to even smaller sizes, further extending

the time to compute a solution. This means that an explicit method, which would

generally be simpler to implement, would be impractical [11]. To achieve the desired

level of accuracy, one would need to use very small step sizes making computation

slow. An implicit method such as a Crank-Nicolson permits arbitrarily large step sizes

because it is unconditionally stable with respect to the CFL condition. To maintain

reasonable accuracy Δt = O(Δx), which is not overly restrictive.

An explicit scheme is suitable for the non-stiff operators in the equations. An

explicit method has the advantage of being simpler to implement than an implicit

scheme, so it should be faster. The system is solved with a second-order implic-

it/explicit (IMEX) Adams-Bashforth/Crank-Nicolson method. The implicit portion

takes care of the stiff linear terms, while the explicit portion addresses the nonlinear

term(s). The IMEX Adams-Bashforth/Crank-Nicolson method is absolutely stable

(A-stable). This means that it converges even for larger step sizes while maintaining

second order accuracy [11]. For further details see [10] or [11].
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3.2 Numerical Model

The domain is discretized using a uniform mesh xj = jΔx for j = 0, 1, . . . , N

and a mesh size Δx. An IMEX Adams-Bashforth/Crank-Nicolson time marching

scheme is used to solve (19) at each time step tn = nΔt. Let Θn
j be the numerical

approximation of the temperature �(xj, tn) and Un
j be the numerical approximation

of current u(xj, tn). The scheme is given by

Θn+1
j −Θn

j

Δt
=

1

2

(
Hn+1
j +Hn

j

)
+ F

n+1/2
j (22)

with

Hn
j =

Θn
j+1 − 2Θn

j + Θn
j−1

(Δx)2
− �

(
Θn
j − �0

)
(23)

and

F
n+1/2
j = (U

n+1/2
j )2 + f(Θ

n+1/2
j )(1− Un+1/2

j )2 + r(x)j

(
U
n+1/2
j+1 − Un+1/2

j−1

2Δx

)2

(24)

for j = 0, 2, . . . , N . The variable �0 is the non-dimensionalized ambient temperature.

The current U
n+1/2
j is computed by solving the numerical discretization of the Poisson

equation (20)

rj+1/2Uj+1 −
(
rj+1/2 + rj−1/2

)
Uj + rj−1/2Uj−1

(Δx)2
= Uj − f(Θ

n+1/2
j )(1− Uj) (25)

where rj+1/2 ≡ r(xj+1/2). When r(x) ≡ r0 (25) simplifies to

r0
Uj+1 − 2Uj + Uj−1

(Δx)2
= Uj − f(Θ

n+1/2
j )(1− Uj) (26)
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for j = 1, 2, . . . , N−1 with Θ
n+1/2
j approximated using the second-order extrapolation

Θ
n+1/2
j = 3

2
Θn
j − 1

2
Θn−1
j .

The systems of equations (22) and (26) are not closed. Specifically, ghost points

are necessary on the domain boundaries (j = −1 and j = N + 1). The ghost points

are eliminated by the constraints given by the boundary conditions. To implement

periodic boundary conditions (23) and (24) j = 0 and j = N are replaced by

Hn
0 =

Θn
1 − 2Θn

0 + Θn
N

(Δx)2
− � (Θn

0 − �0)

Hn
N =

Θn
0 − 2Θn

N + Θn
N−1

(Δx)2
− � (Θn

N − �0)

and

r0
U1 − 2U0 + UN

(Δx)2
= U0 − f(Θ

n+1/2
0 )(1− U0)

r0
U0 − 2UN + UN−1

(Δx)2
= UN − f(Θ

n+1/2
N )(1− UN)

where r0 is the interfacial resistance as previously defined. To implement reflecting

boundary conditions, the following constraints are used to eliminate the ghost points

at x−1 and xN+1

Θn
1 −Θn

−1

2Δx
= 0

Θn
N+1 −Θn

N−1

2Δx
= 0
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and using the second order approximation u(x) ≈ (u(x+ Δx) + u(x−Δx))/2

U1 + U−1
2

= 1

UN+1 + UN−1
2

= 1.

By combining these constraints with (22) and (26)

Hn
0 =

2Θn
1 − 2Θn

0

(Δx)2
− � (Θn

0 − �0)

Hn
N =

2Θn
N−1 − 2Θn

N

(Δx)2
− � (Θn

N − �0)

and

r0
2− 2U0

(Δx)2
= U0 − f(Θ

n+1/2
0 )(1− U0)

r0
2− 2UN
(Δx)2

= UN − f(Θ
n+1/2
N )(1− UN).

For the system of equations in which there is an exponential transition function,

a centered difference method is used to solve (20) for u which is input into (19).

Because the equation is linear with respect to u, the operator may be inverted using

Gaussian elimination and the result is used in the time marching solution to (19).

The system of equations in which there is a ramp as the transition function requires

a fixed point iterative method to solve (20), because the ramp function is nonlinear

with respect to u. A typical step size when exploring general forms of solutions has

been Δx = 0.25. When computing specific values, such as front-speed, Δx = 0.125

Table 2. L1 error by step size

scale 1/2 1/4 1/8
error 0.00548 0.00127 0.00025
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has been used. Table 2 on the preceding page shows L1 error relative to step size. L1

error is computed by

error =
N∑
i=1

∣(�(xi)−Θi)∣Δx

where �(xi) is the “exact” solution and Θi is the corresponding computed value for a

given step size. The “exact” value is determined by solving the system with a small

step size Δx = 0.0625. The ratios of the error terms confirm quadratic convergence

of the method.

For reflecting boundary conditions the second derivative operator is a sparse tri-

diagonal matrix. For periodic boundary conditions, the same operator is a sparse

circulant matrix. Typical runtime for a simulation with L = 200, t = 300, 1600

mesh-points in space, 1200 mesh-points in time and reflecting boundary conditions

will be about 22 seconds. Typical runtime for the same simulation modified for

periodic boundary conditions is about 67 seconds. For reference purposes these times

represent performance on a dual core 2GHZ processor.
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IV. Taxonomy of Solutions

4.1 Map of Qualitative Regions

This chapter details the qualitative characteristics that define different solutions

to the system

�t = �xx + u2 + f(�)(1− u)2 + r(ux)
2 − �(� − �0)

(r(u)x)x = u− f(�)(1− u).

The solutions can be grouped into seven different families based on qualitative dy-

namics with six of these categories classified as failures. Recall that r0 is interfacial

resistance and � is the cooling coefficient. When a wire is coiled for use in a magnet,

its contact with the coolant is limited. This is different from a wire that is surrounded

by coolant. For these reasons, r0 and � have been varied in the numerical model and

the results studied. The initial question addressed the impact of interfacial resistance

on speed of normal zone propagation. The results of this research, in addition to

addressing that question, show solutions that are not so simple.

Figure 13(a) on the next page shows a map, in the r0�-plane, of the different

regions for the system with an exponential transition function. Figure 13(b) shows

a map for the system with a variable ramp as the transition function. The regions

shown in the maps correspond to specific types of solutions. These maps correspond

to solutions generated using specific initial conditions. In the case of the exponential

transition function, the initial Gaussian shape was centered in space and had height

and width parameters a = d = 6. In the map corresponding to the ramp transition

function, these parameters were a = 1.1, d =
√

2. Changing these parameters will

result in changes to these maps. The solutions have been categorized based on quan-
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Figure 13. Maps of qualitative regions in the r0� phase-plane. In figure (a) initial
conditions, see equation (21), are a = d = 6; �★ ≈ 0.1101. In figure (b) initial conditions
are a = 1.1, d =

√
2; �★ = 0.495.
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titative as well as qualitative differences. The quantitative descriptors are listed in

Section 4.1.1 .

The regions can be described as follows. The Adiabatic Region, not shown in

Figure 13(a), corresponds to the adiabatic case where heat increases, but � = 0 so

there is no cooling. In this region � increases unbounded and the profile of � resembles

a triangle expanding over time. Region I is also characterized by an increase in

temperature, but there is an upper bound for �. A solution in this region resembles

a horizontally expanding plateau similar to the traveling wave solution detailed in

section 2.6. Solutions in Region II are also described by traveling waves but as an

upper bound for �, they have small peaks that form at the trailing edges of the

moving fronts. Solutions in all three of these regions display increasing temperature

with the maximum value of � in Regions I and II consistent with analysis of constant

equilibrium solutions in Chapter 2. The solutions in Region III can be described as

dissipative solitons [1]. Dissipative solitons differ from classical solitons in that their

shapes are not necessarily constant, and their rate of motion is not determined by their

initial conditions. Instead they can pulsate and their rate of motion is characterized

by system parameters. While classical solitons may interact, in dissipative solitons

interaction is limited to the edges of their tails [1]. In Region III, the solitons will

be generated continuously on an infinite domain and spread along the length of the

wire. In Region IV, the initial Gaussian shape splits into two solitons that will

begin pulsating as they move away from each other until they encounter a change in

interfacial resistance or another soliton. At that point they will be repelled and move

back in the opposite direction. In Region V, the initial Gaussian undergoes a change

in shape and size, but does not move. The resulting distribution is a stationary,

non-pulsating soliton. In Region VI, the initial Gaussian dissipates completely and

all heat is absorbed by the cooling forces.
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The map for the regions for solutions of the system with ramp transition function is

qualitatively similar to the map of regions for the system with exponential transition.

The Adiabatic Region and Regions I and II contain solutions that can be described

as having continuously increasing heat. In each case, the boundary locations are

determined by initial conditions. For example, increasing the width parameter d in

the initial Gaussian shape means that it is necessary to increase interfacial resistance

in order to observe solutions in Region V. This is reasonable because in equation (1)

the gradient of the current ux is multiplied by r interfacial resistance, and therefore

r(ux)
2 can held at a fixed value for appropriate values of ux and r.

For a fixed value of interfacial resistance, varying the cooling coefficient � will

change the types of solutions that are observed. For example, if r0 = 20 then � = 0.103

will produce a solution in Region I. Increasing cooling so that � = 0.104 produces a

solution in Region VI. This qualitative change in solutions is a bifurcation. While the

location of bifurcation points is dependent on initial conditions, the characteristics of

the regions are not. In other words the solutions to this system are robust with respect

to background noise or subtle changes to initial conditions. �max, front speed and the

behavior of solitons are determined by the system conditions, �, r(x) and exp(�),

rather than initial conditions. This differs from conservative systems where the speed

of a soliton may be altered by adding noise or changing its initial conditions [1].

As mentioned in Section 2.4 the solutions to the system of equations have two

stable equilibrium, normal conductivity corresponding to high (above critical) tem-

perature and superconductivity corresponding to low temperature. In the first case,

heat is generated and there is not enough cooling capacity to adequately disperse

it. After a short time as heat builds, this normal zone will spread or propagate at a

constant rate. In the latter case, heat is generated, but it is quickly dispersed. This

is the case both when there is a high cooling coefficient � > �★ with low interfacial
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resistance, and when the shape of the initial Gaussian does not have a large enough

gradient ux or the initial Gaussian is not high enough a < ∣�0∣.

Figure 14 on the following page shows the initial Gaussian shape produced by (21),

with a = d = 6, used to model initial temperature in the majority of this research.

These are the initial conditions used to generate Figure 13(a) on page 34. Modifying

the initial heat distribution can, in some cases, change the solution observed. This

will be addressed in the following sections.

4.1.1 Quantitative Descriptors.

Where appropriate, a few quantities are used to describe the solutions and char-

acterize the regions. Maximum temperature, referred to as max(�), is defined as

max
x∈[−L,L]

(�(t))

and quantifies the maximum temperature of the solution in the domain. Total heat

is defined as ∫ L

−L
�(x, t) dx

and quantifies the total temperature above �0. Total variation is defined as

TV(t) =

∫ L

−L
∣ d

dx
�(x, t)∣ dx.

Total variation quantifies the total change in temperature in the region. For example,

for a constant function, say f(x) = 5, total variation would be zero. For f(x) = sin(x)

over the interval [−�, �], total variation would be two.
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Figure 14. A cross-section of the initial dimensionless temperature and ratio of current,
showing the perturbation of each. The ratio of current u ∈ [0, 1] is not to scale in this
image.

4.2 Adiabatic

The Adiabatic case is the set of � = 0 and r0 for which a temperature profile

�(x, t)—starting with the Gaussian distribution—will grow unbounded. As the nor-

mal zone propagates along the length of the wire, the temperature will climb until

current is shut off or the wire is destroyed. Figure 15(a) on the following page shows

the distribution of � for � = 0 and r0 = 200 at time t = 62.5. The distribution of �

resembles a triangle with height �max and base 2x0, where x0 is the point where � = 0.

In the Adiabatic case, total variation is increasing, as are total heat and max(�).

4.3 Region I

Region I is the set of � and r0 for which a temperature profile �(x, t)—starting

with the Gaussian distribution—will grow, but there is an upper bound to �. The

solution in this region resembles a monotonic expanding front, or a traveling wave. As
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Figure 15. (a) A snapshot at time t = 62.5 of dimensionless temperature and ratio of
current. The ratio of current u ∈ [0, 1] is not to scale in this image. (b) The evolution
of the solution in time, x-axes show distance L = 200, y-axes show total time t = 100,
Δt = Δx = 0.25, red indicates high temperature, blue indicates low temperature. In
black and white images, the area above/inside each ‘V’ is higher temperature than the
rest of the region. In the adiabatic case, the wave front is not as pronounced as it is in
Regions I and II.
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Figure 16. (a) A snapshot at time t = 150 of dimensionless temperature and ratio of
current for r0 = 200 and � = 0.08333. The ratio of current u ∈ [0, 1], is not to scale in this
image. (b) The evolution of the solution in time, x-axes show distance L = 200, y-axes
show total time t = 400, Δt = Δx = 0.25, where red indicates high temperature and blue
indicates low temperature. In black and white images the area inside the ‘V’ is the
high temperature region.
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the total temperature � increases, the top of the curve will flatten out. Figure 16(a)

on the previous page shows the distribution of � for � = 0.08333 and r0 = 100 at time

t = 150. This solution corresponds to heat build up and the conversion to normal

mode with a continuous normal zone and normal zone propagation. While there is

normal zone propagation in these solutions, the temperature remains bounded and

should grow enough to damage the wire. It occurs when � is too weak to inhibit

quench. For solutions in this Region, total variation is roughly constant, while total

heat is increasing and max(�) approaches �max described in Chapter 2.

4.3.1 Front Speed.

The speed of the traveling wave can be found numerically by tracking the position

at which �(x, t) = 0 and computing its speed. Because �(x, t) = 0 lies between

mesh-points, linear interpolation is used to approximate its location. Some care is

taken to avoid approaching the boundary. Figure 17(a) on the following page shows

front-speed as a function of � and
√
r0. It illustrates the fact that as r0 increases, so

does the speed of the traveling wave, as roughly the
√
r0, for values of � as low as the

adiabatic case. After computing front speed, linear regression is used to determine the

speed as a function of � and r0. In the system with exponential transition function,

the speed S can be expressed as S(�, r0) = 1.26− 16.3�+ .055r0.

While it is useful to find the front-speed, it is more important to know what that

speed is relative to the rate of change of max(�). Recall that in the adiabatic or near-

adiabatic case, max(�) may reach the point of permanent damage before a normal

zone can be detected. Figure 17(b) shows the ratio of max(�) to x0 as a function of

√
r0.
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Figure 17. (a) Front-speed as a function of
√
r0 for parameter 0 ≤ � ≤ 0.12. Note that

even though values of � are uniformly spaced, the change of front-speed is not uniform.
� = 0.12 is the only value that is above the analytically predicted �★ ≈ 0.1101. (b) The
ratio of max(�) to x0 as a function of

√
r0 for parameter 0 ≤ � ≤ 0.006. Note that � is

restricted to the adiabatic or nearly adiabatic case.
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Figure 18. (a) A snapshot at time t = 150 of dimensionless temperature and ratio of
current for r0 = 200 and � = 0.109. The ratio of current u ∈ [0, 1] is not to scale in this
image. (b) The evolution of the solution in time, x-axes show distance L = 200, y-axes
show total time t = 400, Δt = Δx = 0.25, red indicates high temperature, blue indicates
low temperature. In black and white images, the area above/inside the ‘V’ is the high
temperature region. In this region, the temperature inside the ‘V’ is actually lower
than the temperature of the ‘V’.
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4.4 Region II

Region II is the set of � and r0 for which a temperature profile �(x, t)—starting

with the Gaussian distribution—will expand as a traveling wave, in a manner similar

to Region I, except for small peaks that form at the trailing edge of the moving fronts

of the solutions. Figure 18(a) on the previous page shows the distribution of � for

� = 0.109 and r0 = 200 at time t = 150. While the front in Region I is monotonic

in space, Region II presents a non-monotonic expanding front with a local maximum

at each edge of the plateau. Temperature � for the plateau region is consistent with

values predicted by (8). The height of the local maximum, �peak, has been computed

numerically. Figure 19 on the following page shows the relation between this height,

relative to the predicted �max, and r0 for several values of �. The peaks are caused

by increased cooling coupled with high interfacial resistance. The increase in cooling

makes the gradient of the front higher increasing the heating contributed by the r(ux)
2

term. This region is quantitatively similar to Region I; total variation and max(�)

are roughly constant with total heat increasing as the normal zone propagates. Like

Region I, the failures described by the solutions are not likely to lead to damage or

destruction of the wire.

4.5 Region III

Region III is the set of � and r0 for which a temperature profile �(x, t)—starting

with the Gaussian distribution—expands outward with variable � between the fronts.

The front-speed can be determined as for previous Regions. Figure 17(a) on page 42

includes computed speed for � and r0 representative of this Region.

The solution consists of continuously generated solitons which will move unless

they are kept stationary by their neighbors and boundary conditions. Since this is a

non-conservative system these solitons are referred to as dissipative solitons [1]. Dis-
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Figure 19. Overshoot �peak minus predicted maximum �max as a function of
√
r0 for

parameter � in Region II

sipative structures, have been observed in various biological, chemical, and physical

settings such as gas-discharge systems, nonlinear optical systems, and nerve pulses.

They have also been described by a variety of reaction-diffusion systems in one to three

dimensions [1, 2, 4, 13]. In this Region normal zones are created which subsequently

move but do not necessarily expand or dissipate. Figure 20(a) on the following page

shows a typical profile of � for � = 0.115 and r0 = 200 at time t = 150.

For some values of �, after the initial propagation of heat the solitons will be

generated until they have filled the available space and then they will stop moving.

Figure 21(a) on page 48 shows a solution when � =0.1109, r0 = 300, and L = 200.

Notice that after the solution reaches the boundaries, there is no further change in

the distribution. In other cases, solitons will develop but will continue pulsating as

shown in Figure 21(b), where � =0.1115, r0 = 300, and L = 200. In this case, the

change in � has caused the width of the solitons to decrease and they will continue
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Figure 20. (a) A snapshot at time t = 150 of dimensionless temperature and ratio of
current. The ratio of current u ∈ [0, 1] is not to scale in this image. (b) The evolution
of the solution in time, x-axes show distance L = 200, y-axes show total time t = 400,
Δt = Δx = 0.25, red indicates high temperature, blue indicates low temperature. In
black and white images, the area above/inside the ‘V’ is the high temperature region.
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attempting to bud or generate new solitons. There is insufficient space for additional

solitons, so the solution develops a pattern in time. In some of these instances, a

pattern of generation and annihilation develops that does not subside over time as

shown in Figure 22(b) on page 49, where � =0.115, r0 = 100, and L = 210. In

all cases, solitons will generate and organize into a pattern. The pattern will be

stationary if length L is an integer multiple of the width of a soliton. This pattern

is demonstrated for several domain sizes in Figures 22(a), 22(b), 22(c), and 22(d) on

page 49. As L increases, the qualitative nature of the solution, after reaching the

boundaries, changes. Before the solitons reach the boundaries, all four solutions are

the same. This suggests that in the absence of boundaries, in a very long wire for

example, the solitons will continue moving and budding.

The nature of the solutions in this region is influenced by �, r0, and size of the

spacial domain L. In general, the solutions are similar to that shown in Figures 21(a)

and 21(b), but solutions close to the boundary of Region IV or Region VI—high �—

will develop fewer solitons, and in the neighborhood of a bifurcation it is possible to

observe symmetry breaking behavior.

In Region III, max(�) is not predicted by analysis in Chapter 2 and is not high

enough to cause damage to the wire. Solutions in Region III display a bounded-

oscillating max(�), increasing total variation until boundary effects restrict further

increase and an increase in total heat.

4.5.1 Ramp Transition Function.

Unlike the solutions for the exponential transition function, the numerical solu-

tions for the ramp transition function are sensitive to mesh-size away from bifurcation

points, see Figures 23(a), 23(b), and 23(c) on page 51. The solutions shown share

identical values of �, r0, and L. The mesh-size decreases from .25 to .0625. In the
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(a) � = 0.1109 (b) � = 0.1115

Figure 21. Effect of varying the cooling coefficient � on the evolution of solutions over
time, x-axes show length when L = 200, y-axes show total time t = 6000, Δt = Δx = 0.25.
(a) A stationary and non-pulsating solution, r0 = 300, � = 0.1109. (b) A pulsating
solution, r0 = 300, � = 0.1115.
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(a) 2L = 400 (b) 2L = 420

(c) 2L = 460 (d) 2L = 500

Figure 22. Effect of varying the length of domain on the evolution of solutions over
time, x-axes show length 2L ranging from 400 to 500, y-axes show total time t = 6000,
Δt = Δx = 0.25. All images produced with r0 = 100, � = 0.115. (a) A stationary, pulsating
system of solitons. (b) A cycle of creation and annihilation of solitons. (c) A stationary,
non-pulsating system of solitons. (d) A stationary, pulsating system of solitons.
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case of the ramp transition function, the difference in computed front-speed due to

mesh-size has an impact on the behavior of the solitons in this region. Notice that,

unlike the solutions shown previously, the difference in behavior occurs well before

boundary effects have an impact on the solution.

4.6 Region IV

Region IV is the set of � and r0 for which a temperature profile �(x, t)—starting

with the Gaussian distribution—will evolve into traveling solitons. The solitons may

display pulsating behavior that looks like a galloping motion as seen in Figure 25(a)

for parameters � = 0.14 and r0 = 350. This region, like Region III, does not exist

for low interfacial resistance. Figure 24(a) on page 52 shows the distribution of � for

� = 0.14 and r0 = 350 at time t = 150. This is similar to the budding observed in

Region III, and the movement is similar as well. Each soliton will start to bud and

split into two solitons but the cooling force is strong enough to prevent a complete

split. Instead, the soliton will swell, developing dual peaks. One peak will die off

while the other will continue in the direction of the original soliton. This budding is

suppressed for large values of r0, and for these values there is only initial movement

to an equilibrium position as shown in figure 25(b) where � = 0.19 and r0 = 3500.

In the pulsating case, the solitons move in one direction until they encounter another

soliton at which point both will be repelled and proceed in the opposite direction.

This behavior is unlike the behavior of solitons in a conservative system. Solitons in a

conservative system may interact in a manner that includes a large soliton overtaking

a smaller soliton and a resulting change in mass and speed. In the case of dissipative

solitons, interaction is typically limited to the tails or edges of the solitons [1]. As in

Region III, symmetry breaking can occur in the bifurcation regions. In considering

the interactions of these solitons, it is not unreasonable to treat them as particles, or
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(a) Δt = Δx = 0.25 (b) Δt = Δx = 0.125

(c) Δt = Δx = 0.0625

Figure 23. Effect of varying mesh-size on evolution of solutions to system with ramp
as transition function, x-axes show distance L = 150, y-axes show total time t = 800.
(a) Δt = Δx = 0.25, reflecting boundary conditions. (b) Δt = Δx = 0.125, reflecting
boundary conditions. (c) Δt = Δx = 0.0625, reflecting boundary conditions.
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Figure 24. (a) A snapshot at time t = 150 of dimensionless temperature and ratio of
current. The ratio of current u ∈ [0, 1] is not to scale in this image. (b) The evolution
of the solution in time, x-axes show distance L = 200, y-axes show total time t = 1600,
Δt = Δx = 0.25, red indicates high temperature, blue indicates low temperature. In
black and white images, the portion that is moving in time is elevated heat. Note,
this simulation was run with reflecting boundary conditions. In the case of periodic
boundary conditions, the solitons are still repelled at the boundary, but they are closer
to the edges when they are repelled.

52



(a) r0 = 350 (b) r0 = 3500

Figure 25. Effect of varying interfacial resistance , x-axes show distance L = 200, y-
axes show total time t = 6000, Δt = Δx = 0.25. (a) A pulsating soliton solution, r0 = 350,
� = 0.14, reflecting boundary conditions. (b) A non-pulsating soliton solution, r0 = 3500,
� = 0.19, reflecting boundary conditions.
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as particle-like entities [2, 13]. Observing the repulsion of two or the more complex

patterns that arise as multiple solitons move and are moved around, is very similar

to the behavior of particles colliding, complete with a suggestion of conservation of

momentum. Solutions in this region display oscillating and bounded values of max(�),

total heat, and total variation.

4.7 Region V

Region V is the set of � and r0 for which a temperature profile �(x, t)—starting

with the Gaussian distribution—will reshape and then resolve into a stationary soli-

ton. This reshaping begins with the peak of the soliton dropping faster than the

sides. This produces a distribution of � with two peaks that will draw together. Fig-

ure 26(a) on the following page shows the distribution of � for � = 0.17 and r0 = 400

at time t = 150 after the stationary soliton has formed. Before the peaks touch, the

midpoint of the soliton will push back up and stabilize. The heating and cooling

forces are balanced in such a way that a stable stationary soliton is sustained in the

original position. The interfacial resistance coupled with the steep gradient term in

the r(ux)
2 term of (1) is strong enough that it prevents the otherwise powerful cooling

term due to relatively large � from overcoming the weak heating terms. The solutions

in this region display constant values of max(�), total heat and total variation after

the initial evolution.

4.8 Region VI

Region VI is the set of � and r0 for which a temperature profile �(x, t)—starting

with the Gaussian distribution—decays to a uniform distribution given by the ambient

temperature �(x, t) = �0. Physically, this means that a perturbation in temperature

vanishes. The region is characterized by large cooling parameters � and moderate

54



−200 −150 −100 −50 0 50 100 150 200
−6

−4

−2

0

2

4

6

8

 

Current

Temperature

(a) Current and Temperature Distribution

(b) Evolution

Figure 26. (a) A snapshot at time t = 150 of dimensionless temperature and ratio of
current. The ratio of current u ∈ [0, 1] is not to scale in this image. (b) The evolution
of the solution in time, x-axes show distance L = 200, y-axes show total time t = 400,
Δt = Δx = 0.25, red indicates high temperature, blue indicates low temperature. In
black and white images, the vertical bar in the middle of the image is elevated heat.
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Figure 27. (a) A snapshot at time t = 42.5 of dimensionless temperature and ratio of
current. The ratio of current u ∈ [0, 1] is not to scale in this image. (b) The evolution of
the solution in time, x-axes show distance = 400 (x/lT ), y-axes show total time = 100
(t), Δt = Δx = 0.25, red indicates high temperature, blue indicates low temperature.
In black and white images, the portion that disappears over time is elevated heat.
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to low interfacial resistivity r0. This is the only region that does not show a failure

due to heating, because given sufficient cooling capacity, any heat that develops is

diffused and absorbed by the coolant. Figure 27(a) on the previous page shows the

temperature for � = 0.132 and r = 200 at time t = 42.5 after it has dropped below

the current sharing temperature � = 0. Because � is large, the cooling term �(�− �0)

dominates the heating terms of (1) near the center of the Gaussian distribution where

the temperature is highest. This causes the peak to decay quickly. Because the

interfacial resistance is sufficiently strong, the higher current gradients on either sides

of the peak contributes to heating which counteracts the cooling, resulting in the

dual peak distribution shown in Figure 27. The temperature continues to decay in

time asymptotically approaching a uniform distribution at the ambient temperature.

For a lower interfacial resistivity, � = 0.18 and r0 = 50 for example, the heat diffuses

more uniformly in space and there is only a subtle change in shape of the temperature

profile from the Gaussian distribution as it shrinks until it disappears.
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V. Conclusion and Areas for Further Research

5.1 Conclusion

This thesis has explored the similarities and differences between a model for heat

and current in a superconducting wire and a similar model for a hyper-conducting

wire. In each case there are solutions characterized by heat gain and heat loss.

The solutions characterized by heat gain describe a type of failure in the wire. By

increasing interfacial resistance between the superconductor and the stabilizer it is

possible to increase the likelihood of detecting one of these failures before critical

damage is done to the system. The differences in the models considered are largely a

matter of scale in terms of both spacial domain and time. In the superconducting wire,

the transition to normal conductivity occurs over a much smaller temperature range

than in the hyper-conducting wire. This changes the scale and temperature ranges of

some of the solutions but does not change the qualitative nature of the solutions. All

research conducted in conjunction with this thesis was limited to the one dimensional

model with constant interfacial resistance. Expanding these parameters provides

material for further research.

5.2 Varying Interfacial Resistance

It is possible to vary the interfacial resistance in the domain x ∈ [−L,L]. Primarily

this system has been studied with a uniform resistivity over the domain with lowest

resistivity at the boundaries. Instead, consider the interfacial resistance as a series of

wells in an otherwise high level of interfacial resistance. This is a reasonable simulation

of a change to the physical wire. In the original case, consider a continuous wire with

uniform resistive layer applied between the YBCO and the copper. This case would

be analogous to placing several breaks in the resistive layer along the length of the
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wire. Such a change would likely slow the speed of normal zone propagation, but it

might also allow for better dissipation and more stability since the resistivity is one

of the factors that contributes to normal zone propagation. The original expression

for interfacial resistance is

r(x) = �+ r0

(
1− e(cos(x�/(2L))2/c2

)
.

The simplest approach to modify r(x) is to change the coefficient of x in the cosine

term

r(x) = �+ r0

(
1− e(cos(nx�/(2L))2/c2

)
where n ∈ ℤ+.

5.3 Two-Dimensional Model

The one dimensional model is sufficient for initial exploration and describing a

length of wire. It is not appropriate for modeling a coil of wire like the ones used

for electromagnets. In that case, since there is heat transfer between layers, but no

current between layers, the model would need to be modified and or extended.

5.4 Transition Function

Consider the resistance of aluminum shown in Figure 7 on page 16. Rather than

exponential, this appears asymptotically linear. With that in mind, a hyperbolic

function might be more appropriate. It might prove illuminating to implement a

function like

f(�) =
√
�2 + 1− 1

instead of the exponential function.
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