


Figure 1. RNI construct [1]

Wing (SCOW), which eliminated the need to contact multiple organizations in order

to solve a supply-related issue and instead acted as the single focal point for the

customer [9]. In order to leverage similar benefits in the design of the RNI construct,

the Repair Network Manager (RNM) positions have also been aligned within the

SCOW. However, it is important to note that the SCOW does not possess chain of

command authority over the nodes and networks in which it is seeking to optimize,

thereby limiting its impact in terms of effectiveness and endurance. This is not to

say that the RNI concept is ineffectual (it is in fact the opposite), but rather that

there is a larger fundamental need to optimize repair network designs and processes

in order to meet the enterprise repair network vision.

As of October 2016, three Product Repair Groups (PRGs) have reached full oper-

ation capability under the RNI initiative: Propulsion, Precision Measurement Equip-

ment Labs (PMEL), and most recently, Hydraulic component repair [10]. The hy-
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draulic component repair group, when created, not only established the integration

of its particular repair network, but also encompassed the centralization of repair fa-

cilities. Specifically, repair actions shifted from 12 backshops to 5 Centralized Repair

Facilities (CRFs) and despite the reduction of backshops and recapitalization of 69

maintenance positions, the data shows CRFs and CRF supported bases sustained the

same, if not more, repair volume during this period [10]. Although the metrics pre-

sented by Chevalier [10] suggest that hydraulic component repair actually improved,

identifying the degree to which those improvements were generated from the integra-

tion of the repair network, its consolidation, or a combination thereof, is difficult to

determine. Furthermore, from the standpoint of resiliency, the researcher is skepti-

cal as to whether the statement that without a doubt, our Air Force is in a better

position to rapidly respond to disruptions in hydraulic component production [10] is

actually accurate due to the consolidation effort. As a rebuttal, the researcher would

postulate that the accuracy of the aforementioned statement is dependent upon the

nature of the disruption and the node(s) being affected, since capacity has effectively

been removed from the system.

This research seeks to determine the degree to which the design of a repair network

affects the ability of that network to respond to and recover from an unexpected dis-

ruption. The parameters which define the design of a repair network include density,

complexity, and node criticality [3]. Specifically, this research studies if integration

on an enterprise level would leverage greater benefits. The parameters which define

integration include visibility [3] and the ability of the system to laterally share ca-

pacity between nodes. This is achieved by shipping engines to repair nodes and/or to

bases requiring inventory based upon factors outlined in section 3.5 and section 3.6.

It is further postulated that the consolidation of repair capabilities retracts from,

rather than bolsters, the ability of a repair network to rapidly recover from disruption.
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In order to test these postulations, the F110-100 aircraft engine was selected to map

and test the resilience of the repair network due to its commonality as an asset utilized

by bases throughout the PACAF area of responsibility.

1.5 Thesis Overview

In Chapter 1, the foundational background of the research topic is provided, in-

cluding the motivation for the research, the current state of the U.S. Air Force supply

chain as it pertains to resiliency, along with the problem statement, research question,

and investigative questions.

In Chapter 2, relevant research is discussed, primarily from published articles and

books, and provides further insight and current frames of thought on the research

topic. The literature review begins with identifying the importance of resilient supply

chains, definitions of resiliency in this context, how it can be measured, and strategies

to improve a networks ability to cope with disruptions. Additionally, in Chapter 2,

gaps in the current research are identified, which are addressed within the context of

the intended contributions of this thesis.

In Chapter 3, the methodology utilized to conduct a quantitative analysis of the

degree to which resiliency has been designed into the F110-100 aircraft engine repair

network is outlined. The model of the system is constructed based upon the current

layout of the repair network, an identification of key variables needed to conduct the

analysis, the location of those data sources, and the design of the simulation.

In Chapter 4, the results of the simulations are analyzed based upon both the

current and integrated states of the F110-100 aircraft engine repair network. Further-

more, statistical analyses are performed upon these outputs to determine comparative

results and gauge the degree to which resiliency has been designed into the current

network.
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In Chapter 5, the implications that this research has upon measuring the resiliency

of a network is discussed. Furthermore, the researcher provides recommendations

based upon the findings in order to improve the methodology used so that decision

makers could utilize it to enhance the robustness of the repair networks design. Re-

finement of this method could lead to an advancement in the U.S. Air Force’s ability

to provide rapid support to the warfighter despite supply chain or repair network

disruptions.
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II. Literature Review

As organizations become increasingly globalized and business functions are out-

sourced, the flow of products, resources, information, and currency becomes longer

and more complex [6, 2]. The cumulative effect of these paradigms have increased the

vulnerability of supply chains and resulted in the inability of some firms to recover

from disruptions and its subsequent loss of customers, whereas others seem to pros-

per [6, 7, 2]. Those firms that find themselves poised to benefit from disruptions and

the inability of their competitors to cope with such events have done so through the

deliberate design of resiliency into their strategic business model [2]. The effective de-

sign of resiliency into a firms supply chain therefore becomes a competitive edge that

is not only necessary for short-term survival, but also to long-term competitiveness

[2]. However, before strategies that enhance resiliency can be employed, a thorough

understanding of what constitutes resiliency and the factors that effect it must first

be attained.

2.1 Supply Chain Resiliency

For the purpose of this research, resiliency, in both the context of supply chains

and repair networks, is defined as: The adaptive capability of a supply chain or

repair network to prepare for and/or respond to disruptions, to make a timely and

cost effective recovery, and therefore progress to a post-disruption state of operations

ideally, a better state than prior to the disruption.

As shown in Figure 2, the most significant amount of time is often consumed

within the preparation for recovery and recovery stage, during which the disruption

and its impacts are realized, the problem is communicated across various managerial

channels, and a decision is made as to how the recovery will be executed. This
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research seeks to explore and quantitatively analyze the various strategies proposed

within current literature on how recovery time can be effectively reduced.

Figure 2. Stages of Disruption [2]

2.2 Strategies for Supply Chain Resiliency

Christopher and Peck [6] assert that there are four key principles in increasing

supply chain resilience, which include: (1) resilience can be built into a system in

advance of a disruption, (2) a high level of collaboration is required to identify and

manage risks, (3) agility is essential to react quickly to unforeseen events, and (4)

the culture of risk management is a necessity. From these principles and in concert

with a focus group research methodology, 14 unique capability factors were identified

which could be utilized to bolster supply chain resilience (see Table 1).
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Table 1. Capability Factors [6]

Craighead, Blackhurst, Rungtusanatham, and Handfield (2007) identified two cat-

egories of capabilities that moderate the severity of a supply chain disruption based

upon the design of the system: recovery and warning (see Figure 3). In order to ensure

the feasibility of this research, the scope will be limited to only recovery capabilities.
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Furthermore, this research will incorporate varying facets of design characteristics

into the analysis in order to determine both their baseline effects and the degree to

which recovery strategies can reduce the severity of their influence upon recovery

time.

Figure 3. Theoretical Relationship Between Design and Disruption Severity [3]

2.3 Recovery

The review of current literature on the topic has identified two overarching methods

for increasing supply chain resiliency in terms of recovery: redundancy and flexibility

[7, 2, 11]. Redundancy, which is the duplication of capacity [4], has been viewed in

terms of an insurance policy, whereby the benefits of such strategies remain unrealized

until the moment that a disruption occurs and is otherwise considered as a sheer cost
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[7, 11]. Redundancy involves the strategic and selective use of spare capacity, such as

additional tools or machinery, and inventory that can be invoked during a disruption

or in response to a variance in demand that surpasses the normal operating capacity

of the system [6].

Conversely, flexibility is advocated as the preferred method since its underlying

sub-strategies not only mitigate the likelihood and impact of a disruption, but also

provides the organization with low cost capabilities that enable the firm to capital-

ize upon fluctuations [6, 7, 12, 11]. Such methods include utilizing multiple supply

sources and transportation methods, holding emergency strategic stocks, employing

process standardization, postponing product differentiation, maintaining multiple lo-

cations with built-in interoperability, increasing supply visibility, and creating an

organizational culture that promotes resiliency [6, 7, 12, 11]. These strategies benefit

a system both during a disruption and in daily operations. Specifically, these ben-

efits include reserved capacity to meet increased demand, lead-time reduction, early

detection of disruptions, and increased forecast accuracy [6, 7, 12, 11]. Furthermore,

it is postulated that training maintenance personnel in more that one specialty field

could dampen the severity of a disruption by allowing supervision to restructure their

workforce and increase throughput by transferring the spare capacity from one shop

to another which is constrained. Flexibility, therefore, enables resources to be more

easily redeployed in order to subjugate constraints, which due to the nature of a

disruption, might not be able to be known in advance [4]. Flexibility is considered

preferable to redundancy due to its inherent ability to sense threats and respond

to them quickly, without the high costs associated with purchasing, holding, and

maintaining redundant resources [2].

Since many of the works conducted by authors such as Sheffi and Rice (2005),

Pettit Fiksel and Croxton (2010), Tang (2006) are conceptual in nature, they have
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advocated that future empirical and quantitative studies be conducted to explore the

effectiveness of such flexible strategies upon resiliency [7, 2, 11]. One particular study,

conducted by Petit, et al. (2010), has led to the creation of a framework that breaks

vulnerabilities and capabilities into distinct categories, allowing for an evaluation to

be made on the balancing the resources. This study too, however, recommends that

additional quantitative studies be conducted in order to measure the degree to which

various vulnerabilities and capabilities are linked [7]. The lack of quantitative analysis

on supply chain resiliency presents a distinct knowledge gap and this research seeks to

contribute to academia by providing a quantitative analysis of the effects that these

strategies and designs have upon the ability of a system to quickly recover from a

disruption. First, however, the literature must be explored further to identify possible

methods by which resiliency can be quantified and comparatively analyzed.

2.4 Supply Chain Resiliency Measures

To our knowledge, few methods have been proposed to measure supply chain re-

siliency. Multiple authors, such as Kleindorfer and Saad (2005), Wu, Backhurst, and

O’Grady (2007), Tang (2006), and Thun and Hoening (2011), conclude that no clear

consensus has been agreed upon regarding what should be analyzed for the effective

management of network disruptions. However, in those methods which are proposed,

measuring the performance level over time is a reoccurring theme [5, 2, 4].

One proposed measure of resilience is the area between the performance curve and

pre-disruption performance level, as shown in Figure 4. The corresponding area of a

successive disruption (Period B) can be compared to the area of the earlier disruption

(Period A) [4].
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Figure 4. Measuring Supply Chain Resiliency [4]

Similarly, Munoz and Dunbar (2015), identify multiple dimensions by which re-

siliency can be measured. As shown in Figure 5, these dimensions include: the time

that it takes to reach an acceptable recovery performance range, the severity that

the impact has upon performance, the total performance loss (area above the curve),

the length of the profile curve, and a time-dependent deviation-weighted sum to cap-

ture the speed and shape of the transient response. In addition to these measures,

Munoz and Dunbar (2015), provide equations that could be utilized to determine

each specific dimension of performance.
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Figure 5. Dimensions of Resilience [5]

In the first row of Figure 5, recovery time following a disruption is calculated as

the difference between the time at which the system has recovered (t2) and the at

which the lowest performance value is attained (t1). In the second row of Figure 5, the

severity of a disruption is calculated as the difference between the pre-disruption per-

formance level (p2) and the minimum performance level reached during a disruption

(p1).
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III. Methodology

This research fills gaps in the literature on supply chain resiliency by providing a

quantitative method for measuring the degree to which resiliency is designed into a

repair network. Furthermore, a comprehensive examination of the system’s variables

will provide key insights into the relative importance of each variable and its effect on

the repair networks resiliency, as measured by the time it takes to return to or exceed

the pre-disruption level of performance. It is also fathomable that a system, which

has little or an insufficient level of resiliency built into its design, may not recover

to its pre-disruption level of performance. If such an event were to occur, once the

new steady-state operating level was achieved, the system would be considered to be

recovered from the disruption.

The research methodology adopted in this research consists of the following steps:

1. Develop a conceptual design of the F110-100 aircraft engine repair network in

PACAF that identifies the various nodes within the system and the current level of

interoperability between them.

2. Identify key variables that describe the repair process of the network at each

node (demand, capacity of both manpower and equipment, transportation times be-

tween nodes, unit repair times, etc.)

3. Identify database systems, which contain the required data previously identified,

gain access to those databases, and compile required data.

4. Create a simulation that models the conceptual F110-100 aircraft engine repair

network and incorporates the details and distributions identified by the previously

collected data.

5. Introduce a disruption into the model in order to gauge the degree to which the

repair network is affected.

6. Adjust the model to incorporate various resilient strategies identified during
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the literature review and gauge the degree to which the redesigned repair network is

affected by the same disruption.

7. Identify which system design strategies minimize the time required for the

system to return to or exceed the pre-disruption level of performance.

3.1 Developing a Conceptual Design

The basis of this research is centered around the actual and current design of F110-

100 aircraft engine repair network in PACAF. However, in order to protect sensitive

information, the numbers utilized in this simulation do not reflect the actual (real-

world) distribution of assets, resources, or repair node capabilities. As such, this

research can only be utilized as a proof of concept for the methodology and not as a

basis for evaluating the actual design of the F110-100 aircraft engine repair network

in PACAF.

Utilizing Arena, a discrete event simulation software from Rockwell Automation,

a model of this repair network was created. It is assumed that in this current-

design model that each of the four PACAF bases are self-contained, in that they

only repair their own engines and once complete, return the repaired engine to its

own pool of spares. Later, this basic model will be expanded into a fully-integrated

network, whereby engines can be shipped laterally for repair and repaired spares are

sent to the base which need them the most. It is also important to note that this

model only considers Organizational level (O-level) repairs and does not account for

Intermediate level (I-level) or Depot level repairs. It is assumed that all engines are

repairable at the O-level and none of them are damaged to the point where they

require decommissioning (i.e., aircraft crash).
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3.2 System Description

In all of the models of the repair network, entities (engines) enter the system at the

onset of the simulation and arrive at time zero. Each base receives a predetermined

amount of entities, as shown in Table 2, which is a function of the number of aircraft

assigned to base and the number of spares authorized for each base:

Arrivalsi = NumberofAircraftAssignedi + NumberofSparesAuthorizedi (1)

where, NumberofAircraftAssignedi is the number of aircraft assigned to base i and

NumberofSparesAuthorizedi is the number of spare engines authorized to base i.

Table 2. Entity Arrivals

Base Number of Arrivals Arrival Time
Misawa 48 Instant
Osan 30 Instant

Kunsan 48 Instant
Eielson 30 Instant

Once the system is seeded with engines, each aircraft is loaded with a single engine.

The time to failure for each aircraft’s engine is normally distributed mean 180 days

and standard deviation 40 days (see Table 3). Since the number of entities which

enter the system at each base exceeds the number of aircraft, not all engines will be

initially loaded onto an aircraft. The remaining engines will be used as an inventory

of replacement engines. In Table 3, the number of aircraft, the authorized number of

spares, and the on-aircraft distribution-based time period for each base is listed.

Failed engines are repaired, however the engine failure mode is not explicitly mod-

eled. Engine repair times follow the triangular distribution and vary for each base (see

Table 4). Initiation of engine repairs require (1) a repair station and (2) a repair crew
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Table 3. Engine Utilization

Base Aircraft Spares Auth. Distribution Mean (days) Std Dev (days)
Misawa 40 8 Normal 180 40
Osan 25 5 Normal 180 40

Kunsan 40 8 Normal 180 40
Eielson 25 5 Normal 180 40

to be available. Each base as its own set of resources available in order to perform

repairs. Engines are repaired on a first come, first served basis. The amount of each

resource available to each base and its respective distribution for repair is shown in

Table 3.

After the engine is repaired, it acquires serviceable status and is transported to

the appropriate base’s engine inventory. In section 3.6, the method for determining

which base to stock is discussed.

3.3 Integration

Within the repair network, a decision must be made on where (1) engines can be

repaired and (2) where engines can be restocked. The following cases are considered:

1. Baseline: engines remain at their assigned base.

2. Back-end Integration: engines are repaired at their assigned base, but once repaired

can be shipped to another base to replenish inventory.

3. Fully-Integrated: engines can be shipped to another base for both repair and to

replenish inventory.

Table 4. Repair Location Capabilities

Base Crews Stations Distrib. Min (days) Mode (days) Max (days)
Misawa 2 2 Triangular 1 5 9
Osan 2 2 Triangular 1 5 9

Kunsan 2 2 Triangular 1 5 9
Eielson 2 2 Triangular 1 5 9
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3.4 Selection of Repair Location

For the decision of where to send an engine for repair, Equation 2 is utilized to

determine which base has the shortest (minimum) expected time to repair an engine

and return it to serviceability. This decision takes into account the current number

of engines in a base’s repair queue, the number of engines inbound to that base for

repair from other bases, the average queue waiting time per engine for that base’s

repair facility, and the distribution-based time to ship the engine from the originating

base to the repair base (note: this time equals zero when the repair base is also the

originating base). Specifically, the repair base is given by

RepairLocation = arg min
i

(((Ri +
∞∑
j=1

Sji) ∗Hi) + Tdji), (2)

where, Ri represents the number of engines in the repair queue for base i. Sji rep-

resents the number of engines being shipped from base j to base i for repair. Hi

represents the average waiting time that an engine spends in the repair queue for

base i. Tdji represents the distribution-based time that it takes to ship an engine

from originating base j to potential repair base i. Once again, Tdji equals zero when

i = j.

The distribution-based times that it takes to ship an engine from one base to

another is shown in Table 4.

Table 5. Engine Shipment Matrix

Base (from) Base (to) Distribution Min (days) Mode (days) Max (days)
Misawa Osan Triangular 1 3 5
Misawa Kunsan Triangular 1 3 5
Osan Kunsan Triangular 1 2 3
Osan Misawa Triangular 1 3 5

Kunsan Osan Triangular 1 2 3
Kunsan Misawa Triangular 1 3 5
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3.5 Deciding which Base to Stock

Once an engine has been repaired and considered serviceable, it enters a second

decision block which determines which base is in the greatest need of it. Specifically,

the replenishment location is given by

BasetoSendSpare = arg min
i

((Qi +
∞∑
j=1

Spji) −Wi), (3)

where, Qi represents the number of engines currently in the spares pool queue for

base i. Spji represents the number of engines being shipped from base j to base i for

serviceable spare stock. Wi represents the number of engines required by base i for

WRE purposes.

Equation 3 is utilized to determine which base is the furthest below or closest to

its WRE requirement. This equation enables the simulation to objectively compare

differences in a base’s authorized number of spares, since not all base’s are equally

resourced, and provides a means for cross-base comparison of current stock levels.

3.6 Simulation Setup

For this simulation, each model is first ran for a period of two years (730 days)

in order to establish a baseline measurement of performance. The length of this

simulation enabled adequate time for each model to reach steady state both before

and after the introduction of a disruption.

Furthermore, each model is replicated 200 times. In order to determine how many

replications to run, the integrated model was replicated 10 times. From those 10

replications, the standard deviation (SD) of the average number of serviceable engines

in the system for each replication was calculated. The estimated standard error (SE)

is given by
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SE =
√
SD2/R (4)

where, SE is the estimated standard error which is being calculated, SD is the stan-

dard deviation of the average number of serviceable engines for each replication, and

R is the number of replications utilized.

The standard deviation and number of replications were then substituted into

equation 4, in order to determine the standard error. The acceptable SE was deter-

mined to be 0.25 engines, which corresponded to a 200 replication requirement, in

order to achieve this level of precision.

3.7 Simulation Output

Results from the simulation were saved into a text output file containing the repli-

cation number, arrival time for each entity, and the current number of spares in

inventory for each replication.

3.8 Measuring Resiliency

In order to measure resiliency, three critical points must be identified for each repli-

cation’s output. These critical points are the time in which performance begins to

drop due to a disruption, the minimum performance value hit during the disruption,

and the time at which the system recovers from the disruption. However, the perfor-

mance level over time is highly variable and as such, the output must be smoothed

in order readily identify these critical points. As shown in Figure 6, by taking the

moving average over 50 time periods, a smooth plot (blue line) can be created which

makes the identification of the critical points more apparent.
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Figure 6. Example of Performance Smoothing

Once smoothed, an algorithm is utilized to determine the critical points. The

algorithm, as denoted in Appendix B, looks for the points in which the derivative of

the performance line goes from positive to negative (onset of a disruption), back to

positive (system begins to recover), and back to negative again (system has surpassed

its point of recovery). Using these critical points, the recovery time can be calculated

by determining the delta between the time at which the system recovers from the

disruption and the time in which performance begins to drop due to a disruption.

A smaller delta would signify a shorter recovery period and thus a greater degree of

resiliency built into that model as compared to a model with a larger delta.

Additionally, the severity of the disruption for each model is measured by com-

paring the minimum performance value reached. Furthermore, these measures could

also be utilized to determine which strategies have the most influence on increasing

resiliency. For instance, once a model of a system has been created, all but one vari-

able can be held constant during several iterations of introducing a disruptive event.

A measurement of the impact that the variable had upon the severity and recovery

time could then be realized and compared against the effect that other strategies had

upon performance. Such an analysis would be useful in determining which variable(s)
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decision makers should focus upon in order to increase resiliency in the most effective,

efficient, and cost conscientious manner.

3.9 Model Performance Measurement Without a Disruption

In order to measure and compare the performance of each model without a dis-

ruption, a Matlab algorithm was created to capture the average part level (number of

serviceable engines available) for each replication (see Appendix A). A histogram was

then created for each model that shows the distribution of these average part levels,

which can then be compared against other models (see Figure 7 in the Results and

Analysis section).

3.10 Disruptive Events

After running each model without a disruption in order to gauge baseline per-

formance, a planned disruption was introduced into each of the three models at a

simulation time of 365 days. This allowed enough time for the systems to reach

steady state prior to the disruption occurring. At the time of disruption, one node

(Misawa) loses its entire capability to repair engines for a period of 100 days. The

length of this disruption allowed for a clear visual degradation in the system’s per-

formance. At the end of the disruption (simulation time of 465 days), the affected

node’s repair capability is restored in full to its pre-disruption level.
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IV. Results and Analysis

In determining the answer to investigative question 1 (IQ1), this research found

that at the O-level of repair, F110-100 aircraft engines within PACAF are repaired

only by the base at which they are assigned. As such, engines are not shipped to

other repair nodes based upon capacity and/or workload.

As discussed in the background, integration of the repair network is achieved via

coordination on telecoms between each node and the item managers and weapon

system teams at PACAF in order to solve specific problems once they have been

identified. There is however, no capacity that is being utilized laterally between nodes

as denoted in the answer to IQ1. This design was incorporated into the baseline model

of the simulation and satisfies IQ2.

As it applies to IQ3, in order to simulate PACAF’s F110-100 aircraft engine repair

network, data must be gathered on how many engines are assigned to each node,

the distribution by which they require repairs, the distribution by which each node

performs repairs, the repair resources allocated to each node, and the distributions

for transportation times between nodes.

The aforementioned datasets were pulled from the Logistics, Installations and Mis-

sion Support-Enterprise View (LIMS-EV) system. The Engine and Repair Network

sections allow the user to search for these data sets for various nodes over a specified

time period. Transportation times between nodes, however, are not available through

LIMS-EV and must be gathered from the SCOW. As such, in response to IQ4, LIMS-

EV and the SCOW posses the data required to simulate the current and integrated

states of the F110-100 aircraft engine repair network.

As shown in Figure 7, analysis of the simulation results indicate that the integration

of repair nodes at the O-level decreased, rather than increased, the overall number

of spare engines available to the system. This finding satisfies IQ5, which seeks to
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determine the effects that integration of repair facilities has upon the overall number

of spare engines available to the system. Unfortunately, this result is counter to the

expected outcome, as integration should only help and not hinder the performance

of a network. As such, it is clear that the decision logic used to determine where

and when to ship and engine for both repair and restocking of inventory is either

incomplete or sub-optimal. This concern will be discussed further in the limitations

and recommendations for future research sections.

Figure 7. Model Part Level Performance without Disruption

Of the three models originally developed, there was no statistically significant
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improvement noted from integration once a disruption was introduced (see Figure

8). In fact, once again, the back-end integrated model performed significantly worse

than both the baseline and fully-integrated designs. This reaffirms the previously

discussed finding that the decision logic used to determine where and when to ship

and engine for both repair and restocking of inventory requires refinement in order

for this method to be useful to decision makers. However, the results do illustrate

the significant impact that poor decision making in network design could have upon

its ability to recover from a disruption. As shown in the last column in Figure 8, the

recovery time for various network designs can be calculated, which satisfies IQ6.

In order to ensure that the distribution of transportation times were not the cause

of the poor performance by integrated designs, they were eliminated from the simu-

lation. In essence, engines could instantly be transported from one base to another

for both repair and/or inventory replenishment. As shown in Figure 8, removing

transportation times only resulted in a slight improvement in part level and recovery

time. As such, transportation times could be ruled out as the reason for the poor

performance of the integrated designs. This result does however suggest that reducing

transportation times between nodes could provide some benefit to the networks level

of resiliency.

Next, the capacity available to the fully-integrated and baseline models was dou-

bled in order to gauge the impact that it would have upon resiliency. As shown in

Figure 8, both models showed a respective increase in part level and reduction in

recovery time. This result suggests that adding redundancy to system does have a

clear impact on improving resiliency.

As previously discussed, the impact that integration has upon mitigating the sever-

ity of a disruption could not be clearly identified, which only partially answers IQ7.

As discussed in section 4.1, the decision logic utilized for engine shipment will need
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Figure 8. Resiliency Performance Measures with Disruption
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to be refined in order to show the benefit that integration could present. However,

once again, the results do illustrate the significant impact that poor decision making

in network design could have upon its ability to recover from a disruption.

4.1 Limitations

Inventory Decision Logic

As shown in the results and analysis section, the integrated models failed to per-

form better than the baseline model in terms of increasing the number of spares

available and minimizing recovery time. Unfortunately, this result is counter to the

expected outcome, as integration should only help and not hinder the performance

of a network. As such, it is clear that the decision logic used to determine where

and when to ship and engine for both repair and restocking of inventory is either

incomplete or sub-optimal. Further research will need to be conducted in order to

identify an effective and optimal decision logic so that the value of integration can be

identified. Instead, this research only shows the significant impact that poor network

design could have upon its ability to recover from a disruption.

Identifying Critical Performance Points

As shown in figure 9, Munoz and Dunbar [5] identified four types of of performance

profiles: (a) linear, (b) concave, (c) convex, and (d) non-specific, non-linear behaviors.

The critical points outlined in section 3.10 can be easily identified by the algorithm

shown in Appendix E for all of these types with the exception of non-specific, non-

linear behaviors. Since the derivative of the non-specific, non-linear performance

profile will change between positive and negative direction more than three times, the

algorithm was unable to accurately determine the critical points outlined in section

3.10. As such, replications that had a non-specific, non-linear performance profile were
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discarded. Further research will need to be conducted in order to create an effective

algorithm that can accurately identify these critical points for any performance profile.

Figure 9. Typology of Performance Profiles [5]
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V. Discussion

This research provides a comparative method for evaluating the effects that vari-

ous network designs have upon performance during a disruption and recovery time.

This is accomplished by demonstrating how resiliency can be measured and that the

benefit from various resilient strategies can be compared. Furthermore, this research

illustrates the significant impact that poor decision making in network design and

decision logic could have upon its ability to mitigate the severity of and recover from

an unanticipated disruption.

5.1 Problem Statement Resolution

As stated in section 1.1, decision makers at the AFSC need to know: (1) the

degree of vulnerability that the F110-100 aircraft engine repair network construct is

to disruptions, (2) how long it would take to resume steady-state operations following

an unexpected, disruptive event, and (3) what strategies can be employed in order to

reduce both the severity of a disruption and the time it takes to recover from it.

In response to research question 1, this research tested the degree of vulnerability

that the F110-100 aircraft engine repair network construct is to a specific disruption,

namely the temporary loss of throughput at a single node. Although this method

does allow for the testing and comparison of other variables, such as the effect of

various mitigation capabilities, a much more robust approach would include varying

where a disruption occurs, its duration, and its area of effect. Due to this limitation,

the severity of this one particular disruption can be gauged as factor of the networks

design. The first column in Figure 8 shows the degree of vulnerability (severity) that

a particular design is to the selected disruption. From this figure, an inference can be

drawn that of the capabilities tested, increasing capacity provides the greatest benefit
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to reducing severity.

In response to research question 2, the second column in Figure 8 shows the recov-

ery time that a particular design has to the selected disruption. For this particular

disruption, an inference can be drawn that of the capabilities tested, increasing ca-

pacity provides the greatest benefit to reducing recovery time.

From these findings, research question 3 can easily be addressed, as this method

enables the direct comparison of mitigating capabilities. This research tested the

effects that network design capabilities such as integration, reduced transportation

times, and increasing capacity, has upon the resiliency of a network. Once again, it

appears that increasing capacity provides the greatest benefit to both dimensions of

resiliency (severity and recovery time).

However, since research question 1 and 2 were not fully satisfied, a more robust

approach would include varying where a disruption occurs, its duration, and its area

of effect.

5.2 Significance of Findings

Although this research does not analyze the effect that different types of disruptions

has upon a network, it does clearly provide a means by which resilience can be

measured and the performance of multiple design prospects compared against each

other. Furthermore, this research bridges the gap in literature between the theory

of how resilience can be measured, which strategies poses the greatest potential to

mitigate a disruption, and a quantitative analysis that actually tests those theories.

As such, the importance of this research lies in its findings that this research does

serve as a proof of concept in that resiliency can be measured and that the benefit

from various resilient strategies can be weighed. Furthermore, this research does

illustrate the significant impact that poor decision making in network design and
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decision logic could have upon its ability to mitigate the severity of and recover from

an unanticipated disruption.

5.3 Managerial Implications

As it applies specifically to decision makers at AFSC, this method can be used

to compare the performance of proposed design changes to a repair network. In the

background, section 1.4, the SCP was identified by AFSC as a possible candidate for

redesign. Proposed alternative designs can be evaluated and compared against the

current design to determine both the levels of performance and the degree to which

resiliency is incorporated into each respective design. Additionally, by keeping severity

and recovery time as two separate dimensions in the measure of resilience, as this

method does, enables decision makers to quickly and easily discern the results. Both

the part level and recovery time metrics are easily understood and each paint a specific

and valuable picture, unlike methods which combine the two measures. For example,

if this research utilized the area above the curve method for calculating resilience,

then the output would be in engine-days. Such a unit of measure is convoluted, as

it masks the true shape of the disruption in terms of the performance curve and it

provides little useful description of the behavior of the network.

The method utilized in this research allows the decision makers at AFSC to base

their selection of which design to implement upon a quantitative comparison, rather

than ”gut feel” or cost alone. Although cost should be a factor in determining which

design to implement, it must be balanced against capability. Future recommendations

based upon this notion will be discussed in the next section.
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5.4 Recommendations for Future Research

It is recommended that future studies conduct quantitative research on the effect

that various capabilities factors have upon resiliency in order to further bridge the

identified gaps in literature. Specifically, the following research questions can be

explored in greater depth in order to further this research and expand upon the

understanding of resiliency:

What are the effects that various inventory decision policies have upon

the performance of a network?

As shown by the research, decision policies could have a wide range of effects

upon the performance of a network and its ability to recover from a disruptive event.

Therefore, it is recommended that further studies be conducted in order to determine

which variables should be considered when integrating a network and how decision

logic can be improved to ensure enhanced system performance.

To what degree do various strategies affect resiliency and which provide

the greatest benefit to cost ratio?

Although this research tests to see the impact that capacity, integration, and

transportation times have upon resiliency, there are many more capability factors, as

identified in figure 3, that can and should be analyzed. Furthermore, the benefits from

implementing each capability factor should be weighed against the cost required to

implement it. From such an analysis, the researcher could determine which strategies

have the greatest benefit to cost ratio. As such, this investigation could prove useful

to decision makers who wish to bolster the resiliency of their networks given a limited

budget.
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How should resources and capabilities be spread across a repair network

during wartime in order to ensure system resiliency?

The notion of adaptive basing has become quite popular in the U.S. Air Force as

a means to ensure continued operations in a contested environment. However, little

quantitative research has been conducted on how to best disperse limited assets and

resources in order to balance combat effectiveness and survivability. The methodology

presented in this research can be modified to compare the performance of a network

based upon various dispersion plans. Furthermore, given a particular dispersion plan,

the effects that an attack (or disruption) on various nodes would have upon the

performance of the system could be analyzed.
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Appendix A. Matlab Code for Identifying Moving Average
Part Level

num_rep = max(Rep);

AvgPL=[];

StdPL=[];

for i = 1:num_rep

PL = PartLevel(Rep==i);

AvgPL(i) = nanmean(PL);

StdPL(i) = nanstd(PL, 1);

end
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Appendix B. Matlab Code for Identifying Critical Points

num_rep = max(Rep);

MA_data = [];

Crit_t = [];

KeyMeasures=[];

for i = 1:num_rep

T = Time(Rep==i);

PL = PartLevel(Rep==i);

nT = numel(T);

dT = T - [0;T(1:nT-1)];

k = 50;

MA_PL=zeros(size(T));

for t = 1:nT-k

MA_PL(t) = sum(dT(t:t+k-1).*PL(t:t+k-1))/sum(dT(t:t+k-1));

end

dMA_PL = MA_PL - [0;MA_PL(1:nT-1)];

dMA_PLsmoothed = movmean(dMA_PL(1:nT-k),5);

t_start = find(T >350 & T < 375);

t_end = find(T > 580 & T < 600);

crit_t = [];

c = 0;

d = 2;

x=0;

[min_MA_PL, t_min0] = min(MA_PL(t_start(1):t_end(1)));

t_min = t_min0+t_start(1);
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crit_t(1) = 0;

crit_t(2) = T(t_min);

for j = t_min:numel(dMA_PLsmoothed)-1

if (dMA_PLsmoothed(j)>0 && dMA_PLsmoothed(j+1)<0)&&

(T(j)-T(t_min) > 50)

d= d+1;

crit_t(d)=T(j);

end

end

min_MA_PL = min(MA_PL(t_start(1):t_end(1)));

pre_dis_MA_PL = nanmean(MA_PL(t_start(1)-50:t_start(1)));

post_dis_MA_PL = nanmean(MA_PL(t_end(1):nT-k));

MA_rep_data = [T(1:nT-k),MA_PL(1:nT-k), movmean(dMA_PL(1:nT-k),5)];

MA_data = [MA_data;[repmat(i,nT-k,1), MA_rep_data]];

Crit_t = [Crit_t;[repmat(i,numel(crit_t),1),crit_t’]];

if(numel(crit_t)>2)

KeyMeasures = [KeyMeasures; [i, pre_dis_MA_PL, min_MA_PL,

post_dis_MA_PL, T(t_min), crit_t(3)-T(t_min)]];

end

end
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Appendix C. Matlab Code for Graphing Simulation Outputs

num_rep = max(Rep);

for i = 1:num_rep

T = MA_data(MA_data(:,1)==i,2);

T2 = Time(Rep==i);

PL = PartLevel(Rep==i);

MA_PL = MA_data(MA_data(:,1)==i,3);

dMA_smoothed = MA_data(MA_data(:,1)==i,4);

crit_t = Crit_t(Crit_t(:,1)==i,2);

clf

scatter(T, MA_PL);

hold;

scatter(T2, PL)

scatter(T, dMA_smoothed*10);

scatter(crit_t, repmat(5, size(crit_t)));

system(’pause’)

clf

end
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