


Figure 3.3. Periodic Orbits in the CR3BP

Figure 3.4. Periodic Orbits in the Entire CR3BP Synodic Reference Frame
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Figure 3.5. Periodic Orbits in the Inertial Reference Frame

With the periodic orbits selected, the invariant manifolds associated with the

orbits must be propagated. As discussed in Section 2.7, the orbit is perturbed in

the direction of the stable or unstable eigenvector at selected points around the orbit.

This creates a manifold tube as seen in Fig. 3.6. The manifold shown in Fig. 3.6 is the

unstable manifold of the L1 periodic orbit perturbed in the direction of the unstable

eigenvector in both the positive and negative direction. The negative direction is only

propagated to the surface of section and is thus only shown on Fig. 3.6 at values of

x > 0.8.
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Figure 3.6. L1 Periodic Orbit Unstable Manifold from Perturbations in both the Posi-
tive and Negative Direction

The manifold tube will need to be created for both the L1 periodic orbit and the

DPO. However, since the L1 periodic orbit is the starting orbit, only the unstable

manifold needs to be found as unstable manifolds depart from the orbit. Similarly,

the DPO is the final orbit and only needs to have the stable manifold propagated.

When a connection is found between the unstable manifold of the L1 periodic orbit

and the stable manifold of the DPO, a spacecraft traveling from the L1 periodic orbit

along the unstable manifold will be able to transfer to the stable manifold and arrive

at the DPO.

To find a connection between manifolds, a surface of section is chosen at a selected

x-value. In the current research, the surface of section is chosen at x = 0.890940 to
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match the value chosen in [5]. A surface of section is discussed in Section 2.8. The

manifolds are propagated until they intersect this surface. The L1 periodic orbit

manifolds in Fig. 3.6 only need to be propagated in the direction of the negative

perturbation to intersect the surface of section. The propagation of the stable and

unstable manifolds to the surface of section can be seen in Fig. 3.7.

Figure 3.7. Unstable and Stable Manifolds Propagated until Intersection with the
Surface of Section

At the intersection of the surface of section, the manifolds are guaranteed to have

the same x-value. Two of the three remaining states must be chosen to be plotted on

a Poincaré map as described in Section 2.8. A two-sided Poincaré map is utilized to

show the intersection of the manifolds from either direction. The two states selected

to be plotted on the Poincaré map are y and ẏ. The Poincaré map from the periodic

84



orbits can be seen in Fig. 3.8. Each point on the map represents the y- and ẏ-values

of a single manifold as it intersects the surface of section.

Figure 3.8. Poincaré Map Showing the Intersection Point between the stable and
Unstable Manifold

Any points on the Poincaré map that overlap guarantee that the stable and unsta-

ble manifold intersecting the surface of section at that point have the same state. The

x-values are the same due to being on the surface of section; the y- and ẏ-values are

the same due to intersecting on the Poincaré map; and the ẋ-values are guaranteed

to be aligned due to the orbits having a shared Jacobi constant. Since all the values

of the state are the same, a heteroclinic connection has been found. The closest point

from the stable and unstable manifold on the Poincaré map in Fig. 3.8 is labeled as

the intersection point. There are many points that are close to overlapping, and any
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of these points could be labeled as a heteroclinic connection depending on the defined

tolerance. The point selected as the heteroclinic connection in the current research

was the point where two manifolds were the closest out of all the intersection with the

surface of section. After, finding the heteroclinic connection, the unstable and stable

manifold that intersected on the Poincaré map are the manifolds that comprise the

heteroclinic trajectory. The heteroclinic trajectory is seen in Fig. 3.9.

Figure 3.9. The Heteroclinic Trajectory Found between the L1 Periodic Orbit and the
DPO

The heteroclinic trajectory is a “free” transfer from the L1 periodic orbit to the

DPO. Since the heteroclinic trajectory is the known minimum-fuel trajectory, it is

used as the initial guess for the optimal control problem. The heteroclinic connection

only found the required states needed for the optimal control problem, so the control
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initial guess still needs to be defined. Since this is the min-fuel solution, there should

be minimal throttle from the control, γ. The direction of the control, ux and uy, in the

initial guess does not matter, since there is minimal throttle. Therefore, the throttle

in the control, γ, is assigned to be zero for the entire trajectory and the direction of

the control, ux and uy, are arbitrarily assigned, since ux and uy will have negligible

impact on the resulting trajectory.

There are two initial guesses used in the current research. The first initial guess

is the heteroclinic trajectory, which will be called the minimum-fuel initial guess.

Another initial guess is also used, but is not found from insight into the CR3BP.

The other initial guess is a resulting trajectory found in the process of applying

a compound objective functional to balance the weights of minimum-time versus

minimum-fuel. The best way to describe this initial guess is the minimum-time so-

lution for transfer between the periodic orbits in Fig. 3.3. Since this initial guess

cannot be derived from insight into the CR3BP, the initial guess will be introduced

in the results section. The second initial guess will be called the minimum-time initial

guess. There are now two initial guesses: the minimum-fuel initial guess, which is a

heteroclinic trajectory, and a minimum-time initial guess. Other initial guesses were

attempted, such as using an iterative process, where the previous result is used as the

next initial guess. However, the iterative initial guess was problematic due to issues

with a single orbit arriving at a local minimum and causing all successive orbits to

also arrive at a local minimum or failing to converge altogether. Thus, the iterative

initial guess was no longer utilized as an initial guess, leaving only the minimum-fuel

and the minimum-time initial guesses.
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3.6 Continuation Method

In Section 3.5, the initial conditions for the L1 Periodic Orbit and the DPO are

given. However, these are not the only two orbit evaluated in the current research.

Orbits “nearby” to the original L1 Periodic orbit are also analyzed. All “nearby”

orbits are in the same family of orbits as the original L1 periodic orbit and each

“nearby” orbit has a different Jacobi constant. In the current research, “nearby”

orbits are defined as within 0.0307 DU or 11,784 km of the original orbit. This

distance is slightly smaller than the diameter of the Earth. The distance was selected

because the L1 periodic orbits in Fig. 3.10 begin to significantly overlap the DPO

beyond this distance.

To find the nearby orbits, a continuation method was used. A continuation method

calculates a family of orbits by varying the initial state of a previous periodic orbit

slightly in a certain direction and performing the differential corrections on the new

initial conditions [4]. This process can be iterated for multiple orbits to develop a

family of orbits. In the current research, the original orbit is varied by ∆x, such that

the new state is ~X = [x + ∆x, y, z, ẋ, ẏ, ż]T . This process is iterated until changing

the ∆x moves the orbit outside 0.0307 DU from the original orbit. The continuation

method and the “nearby” orbits used in this thesis are shown in Fig. 3.10.
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Figure 3.10. The Family of Orbits Produced from the Continuation Method

3.7 Objective Functions

The objective function in the current research is actually a compound objective

functional. The form of the compound objective functional is given in Eq. (3.1). The

compound objective functional allows different weights to balance the cost functional

between two functions. In the current research, the two functions being balanced are

fuel and time.

The minimum-fuel cost function is defined as

J =
Tmax
c

∫ tf

t0

γdt (3.17)
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and the minimum-time cost function is defined as

J =

∫ tf

t0

dt. (3.18)

To combine Eq. (3.17) and (3.18) into one compound objective functional, a

weighting factor, α, must be introduced. α will determine if the compound objective

functional is balanced toward minimum-fuel or minimum-time. Since the Tmax

c
in Eq.

(3.17) will affect the weighting in the problem, Tmax

c
will be removed since it is simply

multiplying the minimum-fuel cost function by a constant. The compound objective

functional then becomes

J =

∫ tf

t0

[α + (1− α)γ] dt. (3.19)

The compound objective functional can be varied to balance between minimum-

fuel and minimum-time by changing the value of α. If α = 0, then the compound

objective functional is the minimum-fuel solution. If α = 1, then the compound

objective functional is the minimum-time solution. This compound objective func-

tional can be used to evaluate the trade-off between minimum-fuel trajectories and

minimum-time trajectories.

3.8 2BP Benchmark

In Section 3.2, a 2BP comparison was listed as part of the test plan. The most basic

Three-Body Problem (3BP) comparison is the optimal maneuver between two circular

orbits using an impulsive maneuver, called a Hohmann Transfer [2]. A Hohmann

transfer is performed by making two impulsive burns in the trajectory. The first

burn occurs to take the spacecraft out of the starting circular orbit and place the

spacecraft on an elliptical transfer orbit. The second burn is used to re-circularize
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the orbit upon arriving at the second orbit. Since the orbits used in the current

research are not circular when converted to the 2BP, an exact comparison between

trajectories in the 2BP and the CR3BP is difficult. To simplify the comparison, two

circular orbits will be used in the analysis. This basic approximation will at least be

able to demonstrate if the CR3BP trajectories are generally performing better than

the 2BP trajectories.

The circular orbits used in the approximation will be the location of the L1 point

and the location of Moon when these locations are converted to an Earth-Centered

Inertial (ECI) reference frame. The process for converting from the synodic reference

frame to the ECI frame is described in Section 2.3.3.As seen in Fig. 3.5, the L1 orbit

and the moon’s orbit in the inertial frame are approximately equivalent to the L1

periodic orbit and the DPO used in the current research.

To calculate the ∆v required to perform the Hohmann transfer, the following

equation is used [2]

∆v = ∆v1 + ∆v2 (3.20)

where

∆v1 =

√
2µ

r1
− 2µ

r1 + r2
−
√
µ

r1
(3.21)

and

∆v2 =

√
µ

r2
−
√

2µ

r2
− 2µ

r1 + r2
. (3.22)

Equation (3.21) shows that ∆v1 is the first burn to put the spacecraft on the

transfer trajectory and Eq. (3.22) shows that ∆v2 is the second burn to re-circularize

the orbit at the final orbit. The distances r1 and r2 are the radius of the first and
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second circular orbits, respectively, and µ is the gravitational parameter for the two-

body problem, which is different from the µ used in the CR3BP.

Transfer time is also an important comparison metric used in the current research.

For a Hohmann transfer, the transfer time is [2]

∆t = π

√
(r1 + r2)3

8µ
(3.23)

3.9 Summary

Chapter 3 discussed the research methodology used in the current research. A

test plan was introduced to describe the scenarios that will be used to analyze the

pseudospectral method. The parameters, EOMs, and controls specific to the current

research were established. An initial guess was generated by finding a heteroclinic

trajectory. Finally, the ”nearby“ periodic orbits, the compound objective functional,

and a 2BP benchmark were presented.
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IV. Results

4.1 Chapter Overview

Chapter 4 performs the test plan developed in Section 3.2. First, the heteroclinic

connection will be given as an initial guess to validate that the pseudospectral method

can find a known minimum-fuel solution in the Circular-Restricted Three-Body Prob-

lem (CR3BP). The research will then examine the robustness of the pseudospectral

method for “nearby” periodic orbits using the heteroclinic initial guess. Finally, a

compound objective functional will examine the balance of min-time and min-fuel for

the original periodic orbit and “nearby” periodic orbits. An evaluation of the initial

guess and the pseudospectral method will be provided based on the results from the

tests.

4.2 Heteroclinic Trajectory in General Purpose Optimal Control Soft-

ware (GPOPS)

A heteroclinic trajectory is the known minimum-fuel result for the transfer be-

tween two periodic orbits of the same Jacobi Constant. As an initial test, the pseu-

dospectral method was given the heteroclinic connection as an initial guess and the

objective function was set to find the minimum-fuel solution. The result is shown in

Fig. 4.1.
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Figure 4.1. Heteroclinic Connection Found by Pseudospectral Method in GPOPS

As expected, the pseudospectral method successfully converges on the heteroclinic

trajectory when solving for the minimum-fuel. While the convergence on the hetero-

clinic trajectory helps to validate the initial guess in GPOPS, the resulting control

and Hamiltonian are also important to examine. The throttle in the control should be

essentially zero since almost no ∆v should be expended for a heteroclinic trajectory.

There should also be negligible mass loss since the heterolcinic trajectory is a “free”

transfer. Therefore, the Hamiltonian should be constant because the cost function

and equations of motion (EOMs) do not explicitly contain time when mass loss is

negligible. The control and Hamiltonian are shown in Fig. 4.2 for the minimum-fuel

trajectory found by GPOPS in Fig. 4.1.
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Figure 4.2. Control and Hamiltonian for the Heteroclinic Connection Found by GPOPS

In Fig. 4.2, the control and Hamiltonian are all of the order 10−4. Thus, the

control is practically zero and the Hamiltonian is very close to constant. The ∆v

expended in this maneuver is 0.8677 m/s, which is also very low. This demonstrates

that the pseudospectral method used in GPOPS effectively determined the min-fuel

solution when provided with an accurate initial guess. Further analysis will be done

in the current research to determine the robustness of the pseudospectral method in

the CR3BP.

4.3 Nearby Periodic Orbits

Determining the ability for the pseudospectral method to converge on an accurate

optimal solution in different scenarios is important to evaluate the pseudospectral
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method’s robustness. The ability of the pseudospectral method to converge on an

optimal solution can also be improved by providing an accurate guess. Thus, deter-

mining if the heteroclinic trajectory can be used as an initial guess for other scenarios,

such as “nearby” orbits, will provide a valuable insight into effective initial guesses to

ensure convergence of the pseudospectral method. The “nearby” orbits used in the

current research are described in Section 3.6. Several of the minimum-fuel trajectories

resulting from an initial guess of the heteroclinic connection are shown in Fig. 4.3.

Figure 4.3. Min-Fuel Optimal Trajectories Found by GPOPS for “Nearby” Periodic
Orbits of different Jacobi Constants

Each of the periodic orbits in Fig. 4.3 have different Jacobi constants. If the

required ∆v is compared to to the Jacobi Constant, a close to linear relationship

appears as seen in Fig. 4.4.
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Figure 4.4. Optimal ∆v Found by GPOPS for “Nearby” Periodic Orbits of different
Jacobi Constants

Note that the ∆v increases in either direction when moving away from the Jacobi

constant of the heterolcinic trajectory. This makes intuitive sense because the further

away from the “free” transfer an orbit is, the more expensive a transfer should be.

However, an important aspect of Fig. 4.4 is that not all of the ∆v’s are on the line

that would create a linear relationship. These points likely indicate that the optimal

trajectory for that periodic orbit converged to a local minimum. A global minimum,

or at least a lower local minimum, could likely be found that reduces the ∆v required

to make the transfer. This indicates that while the pseudospectral method being

tested might be robust at converging on a solution, the solution may not be most

optimal solution that could be found. Thus, it is possible that a better initial guess
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may need to be provided to the pseudospectral method.

4.4 Compound Objective Function Initial Guesses

In this section, the compound objective functional

J =

∫ tf

t0

[α + (1− α)γ] dt, (4.1)

introduced in Section 3.7 will be evaluated as the balance between min-fuel and min-

time is tested by varying α between 0 and 1. The balance of min-fuel and min-time

provides a unique scenario for the pseudospectral method to find an optimal solution.

Comparing the balance of min-fuel and min-time will demonstrate the robustness of

the pseudopsectral method. The robustness of the provided initial guesses will also

be evaluated by comparing the outputs in different scenarios.

4.4.1 Compound Objective Functional: Original Periodic Orbit

Varying α from 0 to 1 in the compound objective functional, the optimal control

problem is solved using the heteroclinic trajectory, the minimum-fuel solution, as the

initial guess. The optimal trajectories generated by GPOPS are shown in Fig. 4.5.
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Figure 4.5. Optimal Trajectories Found in GPOPS by varying the balance of α between
Min-Fuel and Min-Time with an initial guess of the heteroclinic trajectory

Figure 4.5 only shows selected trajectories from the varying of α between [0, 1].

Although it cannot be seen in Fig. 4.5, the pseudospectral method converged on the

heteroclinic connection for α = [0, 0.4]. After α = 0.4, the trajectory follows a similar

shape as the heteroclinic trajectory by traversing around the moon before reaching

the final state. However, as α increases, the trajectory passes closer and closer to the

Moon. This can be seen in the trajectories α = 0.45 and α = 0.6 in Fig. 4.5.

An interesting aspect of the pseudospectral method with the adaptive mesh is

the adaptive mesh’s ability to account for rapidly changing dynamics. When the

trajectory at α = 0.6 passes very close by the moon, which is an area of rapidly

changing dynamics. In order for the dynamics to be approximated correctly near the
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moon, many collocation points are used. A large number of collocation points allows

a trajectory to still be found even though the dynamics are changing very rapidly.

Despite the pseudospectral method’s ability to converge on solutions with rapidly

changing dynamics, it is unable to converge at α = 0.65. The balance between min-

fuel and min-time is difficult for the pseudospectral method at this point. At α = 0.6,

the trajectory passes very close to the moon, but still passes around the moon before

ending at the final state, whereas at α = 0.75 a new shape for the trajectory is found,

where the trajectory no longer passes around the moon and, instead, takes a more

direct route to the final state. A bifurcation point appears to exist at α = 0.65,

where the shape of the trajectories change and create a new family of orbits. At

this supposed bifurcation point, not only do the shape of the trajectories change, but

also the required ∆v and time of flight change. At α = 0.6, ∆v = 359.05 m/s and

t = 12.03 days. At α = 0.75, ∆v = 275.16 m/s and t = 8.96 days. The new family of

orbits after α = 0.75 have lower ∆v and time. Since the new family of orbits seems

to have better characteristics, the new family of orbits would be a beneficial initial

guess to reevaluate the balance between min-fuel and min-time. This new family of

orbits could potentially have lower ∆v and transfer time for all α if the pseudospctral

method happened to converge on a local minimum when the heteroclinic connection

was provided as the initial guess. Thus, the min-time solution, when α = 1, was

chosen as the initial guess to rerun the analysis.

With the minimum-time solution as the initial guess for the pseudospectral method,

the optimal trajectories were found again. The optimal trajectories found from the

min-time initial guess are shown in Fig. 4.6.
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Figure 4.6. Optimal Trajectories Found in GPOPS by Varying the balance of α between
Min-Fuel and Min-Time with an Initial Guess of Minimum-Time

The trajectories found from the min-time initial guess shown in Fig. 4.6 appear

to be all of the same family of orbits. All of the orbits from the min-time initial

guess appear to be of the same shape, where the trajectory goes directly to the final

state without passing around the Moon. There also seems to be a consistent trade-off

between required ∆v and transfer time. Both initial guesses results are plotted in

Fig. 4.7 to demonstrate the trade-off between ∆v and transfer time. Values for α are

shown in Fig. 4.7, so the associated trajectory can be seen in Fig. 4.5 and 4.6.
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Figure 4.7. Trade-off between ∆v and Transfer Time for Optimal Trajectories Found
in GPOPS

The most beneficial solutions can be determined as the location where either ∆v

or time must be given up to reach another optimal solution, but not both. These

solutions are called a Pareto Front. As can be seen in Fig. 4.7, the min-time initial

guess has a consistent trade-off between ∆v and transfer time, whereas the min-fuel

initial guess lacks this structure. The min-time initial guess is more beneficial at each

respective α. Thus, the min-time optimal trajectories lie on the Pareto Front. The

only min-fuel trajectories that lies on the Pareto Front are at α = 0 and for α’s that

are greater than 0.7. The trajectories fround when α > 0.7 for the min-fuel initial

guess happen to be the same trajectories found from the min-time initial guess.

The min-time initial guess effectively finding an optimal solution, while the min-
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fuel initial guess does not, provides insights into what makes a good initial guess for

the pseudospectral method. While the pseudospectral method struggled to converge

at certain values when given the minimum-fuel initial guess, it did not have issues

when given the minimum-time initial guess. The min-time initial guess also resulted

in more globally optimal trajectories for the majority of the values of α. The min-time

solution appears to be the better initial guess for the compound objective function

at all values of α, except for α = 0.

When examining the Pareto Front in Fig. 4.7, the location of a comparable Two-

Body Problem (2BP) transfer needs to be examined. The 2BP results are those of

a Hohmann transfer as described in Section 3.8. The Hohmann transfer was found

to have a ∆v = 79.14 m/s and a transfer time of t = 12.29 m/s. From examining

Fig. 4.7, the Hohmann transfer would not fall on the Pareto Front and would be

a more expensive transfer in both ∆v and transfer time as compared to an optimal

solution on the Pareto Front in the CR3BP. This demonstrates the applicability and

cost savings from exploiting the dynamics of the CR3BP and utilizing continuous

low-thrust. The optimal solutions found from the pseudospectral method are also

shown to be a more optimal solution, then the results from the 2BP.

4.4.2 Compound Objective Functional: Nearby Periodic Orbit

Due to the minimum-time initial guess appearing more robust in the pseudospec-

tral method for the original orbit, it is beneficial to check these results in another

scenario. Thus, the initial guesses are evaluated for a “nearby” orbit. Beginning

with the min-fuel (heteroclinic trajectory) initial guess, the balance of min-fuel and

min-time in the compound objective function is evaluated. The resulting trajectories

can be seen in Fig. 4.8 and 4.9. The optimal trajectories are shown on two images

because many of the trajectories had unique characteristics that could not be seen
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when all the trajectories were on one plot.

Figure 4.8. (1 of 2) Optimal Trajectories Found in GPOPS by Varying the balance of α
between Min-Fuel and Min-Time with an Initial Guess of the Heteroclinic Trajectory
for a “Nearby” Orbit
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Figure 4.9. (2 of 2) Optimal Trajectories Found in GPOPS by Varying the balance of α
between Min-Fuel and Min-Time with an Initial Guess of the Heteroclinic Trajectory
for a “Nearby” Orbit

The min-fuel initial guess appears to converge on optimal trajectories that appear

to be in the same family, where the trajectories make one orbit around the moon

before arriving at the final state. Even though these orbits appear to be of the same

family, optimization failed at several values, α = 0.4, α = 0.75, and α = 1. The reason

for the failed convergence is difficult to determine, but it should be noted that each

trajectory in Fig. 4.8 and 4.9 seemingly differ in form. Thus, the trajectories found

at these particular values of α could have required a maneuver that was too different

from the heteroclinic trajectory to allow the pseudospctral method to converge on a

solution.

Regardless of the failed trajectories, it appears that the optimal trajectories with
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lower values of α attempted to remain on the L1 Nearby Periodic orbit and the Distant

Prograde Orbit (DPO) for as long as possible. The solution at α = 0 seems to have

two noticeable burns: one as the trajectory departs the L1 Nearby Periodic orbit and

one as the trajectory attempts to continue following the DPO at the DPO’s highest

point. Alternatively, the near min-time solution at α = 0.9 departs the L1 Nearby

Periodic orbit immediately, passes nearby by the Moon, and only enters the DPO at

the final state.

The min-time initial guess was also used in the pseudospectral method to de-

termine if the alternative initial guess improved the robustness of the pseudospetral

method in a different scenario. The optimal solution found for the min-time initial

guess is shown in Fig. 4.10.
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Figure 4.10. Optimal Trajectories Found in GPOPS by Varying the balance of α be-
tween Min-Fuel and Min-Time with an Initial Guess of the Min-Time Solution for a
“Nearby” Orbit

Similar to the min-time initial guess in the original orbit, all the trajectories in the

nearby orbit take the same shape by going directly to the final state. The trajectories

for lower values of α follow the L1 “Nearby” Periodic Orbit shape for longer than

higher values of α, but all of the trajectories take the same form. The trade-off

between ∆v and time for both initial guesses is shown in Fig. 4.11.
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Figure 4.11. Trade-off between ∆v and Transfer Time for Optimal Trajectories Found
in GPOPS for a “Nearby” Periodic Orbit

Figure 4.11 shows comparable results to the original orbit. The optimal trajecto-

ries found from the min-time initial guess all lie on the Pareto Front. However, the

optimal trajectories from the min-fuel initial guess also lie on the Pareto front for

α = 0 to around α = 0.4. The min-fuel initial guess trajectories produce a longer

time of flight in exchange for a lower ∆v. Since each of these points cannot improve in

both transfer time and ∆v, the points lie on the Pareto Front. Unlike in the original

orbit, higher values of α for the min-fuel initial guess do not lie on the Pareto Front.

Thus, for higher values for α the min-time initial guess is clearly favored, whereas at

lower values of α the initial guess would depend on whether lower transfer times or

lower ∆v are desired.
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Several other unique trajectories should be noted, such as α = 0.6 and α = 0.95

for the min-fuel initial guess. The values α = 0.6 and α = 0.95 produce slightly

different trajectories than neighboring α values. When examining Fig. 4.11, both of

the values of α have a more optimal solution, where there would be less ∆v expended

for a lower transfer time. These trajectories obviously converged on local minimum.

This demonstrates the importance of a good initial guess on the robustness of the

pseudospectral method.

4.5 Evaluation of Methods used in Current Research

4.5.1 Evaluation of Inclusion of Mass Loss

Several assumptions were made in Chapter 3 that can be evaluated. The first

choice was to incorporate mass lass into the EOMs. This decision was made because

the amount of mass being lost in a trajectory was unknown, so incorporating mass

loss ensured that this factor would be accounted for if the mass loss was not negligible.

Mass loss was also incorporated to check if the results were comparable to reality and

if the maneuvers could actually be performed with the allocated amount of mass.

After completing the results for a compound objective function with the heteroclinic

trajectory as the initial guess in Section 4.4.1, the same analysis was performed,

but with mass assumed to be constant. Table 4.1 gives the values for the min-fuel

(α = 0) and min-time (α = 1) when mass is assumed constant and when mass loss is

incorporated.
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Table 4.1. Resulting Time and ∆v for Constant Mass and Mass Loss

Case α Time (days) ∆v (m/s)

Constant Mass α = 0 (Min-Fuel) 21.934 1.2777

Mass Loss α = 0 (Min-Fuel) 21.934 0.8677

Constant Mass α = 1 (Min-Time) 8.3783 482.59

Mass Loss α = 1 (Min-Time) 8.3600 485.52

From the results from Table 4.1, the inclusion of mass loss does not seem necessary

for the scenarios examined in the current research. The difference in ∆v is negligible

even in in the minimum-time case, which requires much higher ∆v. By including mass

loss, the pseudospectral method had to account for an additional variable. Reducing

the number of variables is beneficial because it reduces the chance of converging on

a local minimum. Mass loss may need to be incorporated in other scenarios where

mass loss is much higher, but for the case presented in the current research, assuming

constant mass would have been recommended.

4.5.2 Evaluation of Utilizing Initial Guess

Throughout the results in Chapter 4, the importance of an initial guess has been

emphasized. The min-fuel initial guess frequently converged on local minimum so-

lutions, whereas the min-time initial guess did not have this issue. The min-time

initial guess was valuable in guaranteeing the pseudospectral method converged on a

at least a more beneficial local minimum than the min-fuel solution. However, there

were certain situations in which the min-fuel initial guess produced an optimal solu-

tion that was on the Pareto Front. Thus, another analysis could benefit from using

a hybrid initial guess scheme, such as using the min-fuel initial guess to develop an

original optimal solution set and then using the minimum-time solution as an initial
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guess to complete the Pareto Front. In the scenario presented in the current research,

the min-fuel initial guess only produced optimal results on the Pareto Front through

α = 0.4 and all of these results required trading higher transfer times for ∆v. If

transfer time is a major concern, then the min-fuel initial guess may not be relevant

and instead the min-time initial guess should be utilized.

Another conclusion concerning initial guesses is that a single initial guess is gen-

erally acceptable to be used as an initial guess in all “nearby” scenarios. By “nearby”

scenarios, it is meant that a single initial guess can be used for “nearby“ orbits and

also for a varying compound objective functional. The heteroclinic connection ini-

tial guess successfully found optimal trajectories for “nearby“ orbits in Section 4.3.

Even though several optimal trajectories converged on local minimum, the majority

of the trajectories converged on advantageous results that allowed a general linear

trend to be noticed. On top of this, the min-time initial guess worked superbly in the

compound objective functional for all values of α. The applicability of a single ini-

tial guess to a variety of scenarios demonstrates the robustness of the pseudospectral

method. The pseudospectral method is capable of converging on an optimal solution

in “nearby” scenarios even with an initial guess that may not be very accurate.

4.5.3 Evaluation of Pseudospectral Method

The selected pseudospectral method utilized an hp-adaptive mesh refinement

scheme. This mesh refinement scheme was important in ensuring the convergence

of the pseudospectral method. As mentioned in Sections 4.4.1 and 4.4.2 the mesh

was refined to ensure that there were enough collocation points to accurately approx-

imate the EOMs in areas of rapidly changing dynamics. Thus, the pseuodpsectral

method was able to converge on solutions even with non-accurate initial guesses in a

variety of scenarios.
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In some situations, the mesh-refinement method did not successfully divide the

mesh frequently enough to add enough collocation points. One of these situations can

be seen in Fig. 4.9 for α = 0.95. The fact that α = 0.95 converged to a local minimum

is difficult to determine from Fig. 4.9 alone. However, Fig. 4.10 demonstrates that

when α = 0.95 there is a more optimal solution at α = 0.9. Since the trajectories

for α = 0.9 and α = 0.95 are becoming increasingly close to the Moon, the dynamics

in the region are changing rapidly and the EOMs are approaching a singularity as

r2 → 0. Thus, the inclusion of more collocation points would ensure the trajectory

for α = 0.95 does not converge on a local minimum. By increasing the required

number of collocation points in each mesh in GPOPS, the pseudospectral method

successfully converged on a more optimal solution (potentially a globally optimal

solution). Figure 4.12 shows the the old trajectory for α = 0.95, the new trajectory

for α = 0.95, and the trajectory for α = 0.9 for comparison. The old trajectory for

α = 0.95 had a ∆v = 619.05 m/s and a transfer time of t = 13.94 days. The new

trajectory for α = 0.95 had a ∆v = 673.76 m/s and a transfer time of t = 11.84 days.

The new trajectory would be an optimal solution that is on the Pareto Front, which

demonstrates the success of adding more collocation points when the dynamics are

rapidly changing.
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Figure 4.12. Increasing Collocation Points Results in a New Trajectory for α = 0.95

Figure 4.12 demonstrates an effective method of correcting a trajectory that con-

verged on a local minimum. By increasing the number of collocation points in each

mesh interval, the pseudospectral method can successfully solve for an optimal tra-

jectory, even in a region of rapidly changing dynamics and approaching a singularity.
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V. Conclusions and Recommendations

5.1 Summary of Work

The current research evaluated the efficacy of the pseudospectral method utilized

in General Purpose Optimal Control Software (GPOPS) in determining optimal tra-

jectories in the Circular-Restricted Three-Body Problem (CR3BP). The pseudospec-

tral method was evaluated by applying the method to a variety of scenarios.

The first scenario used the pseudospectral method to solve for the heteroclinic tra-

jectory, which is a known minimum-fuel solution. Converging on the known minimum-

fuel solution verified that the pseudospectral method is viable in the CR3BP system.

Next, the research examined if the pseudospectral method could converge without

an accurate initial guess. The minimum-fuel solution was evaluated for “nearby”

periodic orbits using the heteroclinic connection as an initial guess. In the majority of

the cases, the pseuospectral method converged on a beneficial local minimum. Several

trajectories did converge on less beneficial local minima, but these minima could be

clearly picked out by examining the trend (discussed in the research) between the

Jacobi constant of the periodic orbit and the ∆v required for the optimal trajectory.

Finally, this research evaluated a compound objective function by investigating

the balance between the minimum-fuel and minimum-time trajectories. A minimum-

fuel initial guess versus a minimum-time initial guess was evaluated, along with an

evaluation of the original periodic orbit and a “nearby” periodic orbit. A Pareto

Front was generated to compare the trade-off between ∆v and transfer time. The

minimum-time initial guess allowed the pseudospectral method to converge on optimal

solutions that were all on the Pareto Front, whereas the minimum-time initial guess

only had optimal solutions on the Pareto Front for low values of α. This demonstrates

the importance of an initial guess on ensuring the robustness of the pseudospectral
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method. The recommendation is to use the minimum-time initial guess to generate

the first part of the Pareto Front and then use the minimum-fuel initial guess up to

approximately α = 0.4 to generate the remainder of the Pareto Front.

The pseudospectral method successfully converged on optimal solutions when pro-

vided a proper initial guess, such as a minimum-time solution. The pseudospec-

tral method was aided by the hp-adaptive mesh refinement scheme used in GPOPS.

The mesh refinement allowed for an increased number of collocation points to be

placed in locations of rapidly changing dynamics. With insight into the CR3BP,

the pseuodspectral method can be utilized to determine optimal trajectories in the

chaotic CR3BP environment, but accurate initial guesses are required and an effective

mesh-refinement scheme can help the robustness of the pseudospectral method..

5.2 Future Work

Future work for the current research should involve evaluating the pseudospectral

method in further scenarios and comparing it to other methods. Recommended future

work include:

• Provide a more accurate initial guess to the pseudospectral method, such as

through the use of a heuristic method. The pseudospectral method was highly

dependent on the initial guess provided to it, so it may provide better solutions

if accurate initial guesses are provided specific to each scenario.

• Perform the same analysis in a larger variety of scenarios, including different

locations with the CR3BP and with different parameters, such as thrust levels

and specific impulse. Even though the pseudospectral method worked for the

scenario in the current research, the results may not extend to other areas in

the CR3BP. Testing in other scenarios would provide further insights into the

robustness of the pseudospectral method.
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• Expand the problem to analyze impulsive maneuvers. Impulsive maneuvers

would require the use of phases within GPOPS due to the discontinuity in

states at the burn time. This would further evaluate the pseudospectral method

because it would also require that constraints between phases also be met on

top of the optimal control problem within each phase.

• Use another optimization method, such as a hybrid heuristic optimization method

to solving indirectly with a shooting method using Particle Swarm Optimization

on the costates. Another optimization method would allow a comparison to the

robustness of the pseudospectral method. By seeing how another optimization

method compares in a comparable scenario will allow the success and robustness

of the pseudospectral method to be directly evaluated relative to other optimal

control methods.

5.3 Conclusion

As the expansion of space capabilities increases and the need for more resiliency

increases, the CR3BP provides an alternative environment to expand operations. It

is important to understand mission design and methodologies in this environment

before the CR3BP domain becomes a contested arena. The pseudospectral method

used within GPOPS seems to be a beneficial tool for evaluating optimal trajectories

in the CR3BP. However, further analysis needs to be completed to understand the

limitations of the pseudospectral method within the CR3BP, so the pseudospectral

method’s efficacy can be improved within the environment. The results and analysis

developed in this work will need to be expanded to determine an optimal mission

design methodology in the CR3BP environment to ensure future capabilities in this

region.
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there is no closed-form analytical solution and the dynamics are chaotic. Methods to search for optimal trajectories within the CR3BP are analyzed to
determine viability in rapid mission development. A direct orthogonal collocation pseudospectral method is utilized to generate fuel- and time- optimal
trajectories within the CR3BP. These results are compared to benchmarks from two-body dynamics, such as Hohmann transfers. Numerical approaches to
finding optimal solutions are highly dependent on initial guesses to converge on candidate optimal solutions. To compound this issue, the chaotic dynamics in
the CR3BP mean small variations in the initial conditions could lead to wildly varying trajectories. The results from the current research provide a
methodology to establish a framework for rapid mission development in a dynamical environment, which may be essential to maintain space superiority and
responsiveness.
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