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Abstract

Solutions to the one-dimensional and two-dimensional nonlinear Schrodinger (NLS)

equation are obtained numerically using methods based on radial basis functions

(RBFs). Periodic boundary conditions are enforced with a non-periodic initial condi-

tion over varying domain sizes. The spatial structure of the solutions is represented

using RBFs while several explicit and implicit iterative methods for solving ordinary

di�erential equations (ODEs) are used in temporal discretization for the approximate

solutions to the NLS equation. Splitting schemes, integration factors and hypervis-

cosity are used to stabilize the time-stepping schemes and are compared with one

another in terms of computational e�ciency and accuracy. This thesis shows that

RBFs can be used to numerically solve the NLS with reasonable accuracy. Integration

factors and splitting methods yield improvements in stability at the cost of computa-

tion time; both methods produce solutions of similar accuracy while splitting methods

are slightly less expensive to implement than integration factors (computation times

were of the same order of magnitude). The use of hyperviscosity can lead to an im-

provement in stability but can also lead to increased errors if the relevant parameters

are not chosen carefully.
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RADIAL BASIS FUNCTION GENERATED FINITE DIFFERENCES FOR THE

NONLINEAR SCHRODINGER EQUATION

I. Introduction

The work presented in this thesis documents the use of radial basis functions

(RBFs) in solving partial di�erential equations (PDEs). In particular, RBF based

numerical methods for solving the nonlinear Schrodinger equation (NLS) are con-

sidered. This chapter provides the relevant literature and background information

required to carry out this research; in no way is this literature review intended to be

exhaustive.

1.1 Motivation

The NLS equation arises in various physical contexts. It appears in the �elds

of nonlinear waves, electromagnetics and plasma physics where it represents a wave

packet equation [1]. The equation of interest is of the form

i
∂u

∂t
= 4u+ κ|u|2u, i2 = −1, (1)

where u is a complex valued function and κ is a real-valued scalar. The application

of primary concern is the propagation of a laser through a medium. Equation (1) can

be used to model the propagation of a high energy laser (HEL) beam in a medium

whose index of refraction depends on the wave amplitude in the form of the paraxial

equation [1, 2, 3]. The paraxial equation is essentially (1), but with di�erent scaling

and with |u|2 replaced by a di�erent potential [3]. In the context of HEL, equation
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(1) models the electromagnetic �eld, u(x, t), with t ∈ R being the direction of the

beam propagation and x ∈ Rd the transverse direction [1]. The dimension, d, is taken

to be 1 or 2 in this work and the Laplacian is only in the transverse directions.

Although analytical consideration of various aspects of the NLS equation has

historically been of great interest (see, e.g. [2]), this will not be the primary focus of

this thesis. Let x = [x1 x2 . . . xd]
T . We will only be interested in periodic numerical

solutions de�ned by the periodic boundary condition

u(x1 + T1, x2, . . . , xd, t) = u(x1, x2 + T2, . . . , xd, t) = . . . = u(x, t), (2)

where Ti is the period of the ith spatial coordinate, i = 1, 2, . . . , d.

This thesis will produce numerical solutions by discretizing the spatial domain of

equation (1) by means of RBF-generated �nite di�erences and then using standard

numerical techniques for solving ordinary di�erential equations (ODEs) to evolve the

solution in t. Ultimately, the results of this thesis will be used to inform a laser

modeling e�ort that couples the NLS equation to the Navier-Stokes equations, so

a novel integrating factors method and split-step methods for solving equation (1),

as well as numerical instabilities will be of great concern to improve computational

e�ciency. The remainder of this chapter will introduce RBFs and the motivation

behind using them for solving equation (1).

1.2 Radial Basis Functions

A Brief History.

RBFs have been used to solve PDEs with high accuracy for d = 1, 2, 3 [4]. These

methods can be easily extended to higher dimensions, which, in some cases, make

them superior to traditional numerical methodologies for solving PDEs that arise
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in the physical sciences [4]. The RBF-based approach to solving PDEs originated

from Hardy's work in 1971 when he proposed using RBFs for multi-dimensional in-

terpolation with scattered data [5]. Numerical methods such as �nite-di�erence and

�nite-element methods (FEM) rely on data points that are connected together by a

topological map called a mesh. In such a mesh, the connection between each data

point in the simulation domain is used to de�ne di�erential operators to solve PDEs.

RBFs do not require any information on the relationship between nodes to construct

mathematical operators. Instead, they rely on the interaction of each node with all

of the data points in the domain to establish a system of algebraic equations for the

whole domain of the problem without the need for a prede�ned mesh, making them

ideal for scattered nodes. The utility that RBFs provided in interpolating scattered

data naturally led to meshfree methods for solving PDEs. In 1990, Kansa showed

that RBFs were capable of providing accurate derivative approximations given known

function values at scattered data locations, which opened up the door for using RBFs

for approximating solutions to PDEs over meshless grids given their outstanding ge-

ometric �exibility and potential for spectral accuracy [6].

Interpolation.

In many areas of applied mathematics, it is necessary to determine an unknown

function given only discrete samples of the function or equations governing the be-

havior of the unknown function (e.g. algebraic equations, ODEs or PDEs). To deter-

mine the unknown function, a set of basis functions (e.g. polynomials, trigonometric

functions or Bessel functions) whose span forms a subspace of the set of continuous

functions is chosen. The unknown function is then approximated as a linear combi-

nation of the basis functions, with the weights of the linear combination chosen to

satisfy the governing equations, or so that the approximation matches the discrete
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samples exactly (i.e. interpolation).

Given a set of basis functions {Fj(x)}Nj=1, the linear combination

s(x) =
N∑
j=1

cjFj(x) = c1F1(x) + · · ·+ cNFN(x), (3)

is an interpolant of f(x) if the unknown coe�cients {cj}Nj=1 are chosen so that

s(xj) = f(xj) (4)

at a set of N points {xj}Nj=1. In general, equations (4) can be written as N linear

equations for the N unknown weights. That is, constraining the interpolant to the

data f(xj) at location xj for j = 1, . . . , N , we obtain the following linear system



F1(x1) F2(x1) · · · FN(x1)

F1(x2) F2(x2) · · · FN(x2)

...
...

. . .
...

F1(xN) F2(xN) · · · FN(xN)





c1

c2

...

cN


=



f(x1)

f(x2)

...

f(xN)


.

In multidimensional interpolation, there are some considerations: is the data scattered

or located on a grid? Can the basis set actually approximate the unknown continuous

function?

A natural choice for the basis in one-dimension is polynomials. Because of this,

when approximating a multivariate function (e.g. surfaces), one may consider the use

of multivariate polynomials. However, interpolating data with location-independent

basis functions, such as multivariate polynomials, is an ill-posed problem [7]. For

multi-dimensional data sets, two nodes can be moved continuously along a closed

path so that they end up interchanged. As a result, two rows are interchanged in the

matrix of the linear system that arises from (3), i.e. the determinant of the coe�cient
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matrix changed sign. Thus, by continuity, the determinant is zero at some point

along the path. This is true for all closed paths connecting the two points that do

not contain any of the nodes other than the two being interchanged, implying that

singular systems can arise from a plethora of di�erent node con�gurations. RBFs do

not su�er from this issue since the de�nition of the basis function depends explicitly

on the data [4]. RBFs can also be used on mesh-free data sets where data nodes may

be scattered; they provide total geometric �exibility [4].

Table 1 lists several examples of RBFs. The non-negative parameter ε a�ects the

shape of in�nitely smooth RBFs and m is a natural number. The argument r of the

Table 1. Examples of Radial Basis Functions φ(r)

Piecewise Smooth RBFs

Monomial (MN) r2m+1

Thin Plate Spline (TPS) r2m ln r

In�nitely Smooth RBFs

Gaussian (GA) e−(εr)2

Multiquadric (MQ)
√

1 + (εr)2

Inverse Multiquadric (IMQ) 1/
√

1 + (εr)2

Hyperbolic Secant (HS) sech(εr)

RBFs is a radial argument that measures the distance from a given point, often called

a center, under a given norm on Rd. The most common choice is rj(x) = ‖x− xj‖2

(with xj being the center). When considering interpolation, the points xj are the

interpolation points. Hence, the interpolant becomes

s(x) =
N∑
j=1

cjφ(‖x− xj‖). (5)

The weights cj are determined by the N interpolation conditions

f(xi) = s(xi) =
N∑
j=1

cjφ(‖xi − xj‖), i = 1, . . . , N,
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which give rise to the following linear system

Ac =



φ(‖x1 − x1‖) φ(‖x1 − x2‖) · · · φ(‖x1 − xN‖)

φ(‖x2 − x1‖) φ(‖x2 − x2‖) · · · φ(‖x2 − xN‖)
...

...
. . .

...

φ(‖xN − x1‖) φ(‖xN − x2‖) · · · φ(‖xN − xN‖)





c1

c2

...

cN


=



f(x1)

f(x2)

...

f(xN)


= f.

(6)

Typically, A is a symmetric N × N matrix and c can be found using row-reduction

algorithms.

Augmentation of Polynomial Terms.

The coe�cient vector c is guaranteed to exist and be unique if A is invertible. In

the case of GA, MQ, IMQ and HS RBFs where ε > 0, the matrix is non-singular [4].

However, interpolation using MN and TPS RBFs can often lead to a singular matrix.

To remedy this, the basis set is augmented by polynomial terms and some extra

constraints are introduced to guarantee a positive de�nite interpolation matrix, which

is a much stronger condition than non-singularity [4]. Even when A is guaranteed

to be non-singular, it is often still useful to modify (5) to, for instance, include

polynomial terms to reduce Runge phenomenon-type boundary oscillations [8], for

instance. In this case, (5) becomes

s(x) =
N∑
j=1

cjφ(‖x− xj‖) +
M∑
k=1

cpkπk(x) (7)

with the constraints

N∑
j=1

cjπk(xj) = 0, for k = 1, . . . ,M, (8)
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whereM is the total number of additional polynomial terms and depends on the max-

imum order of the multivariate polynomials and {πk}Mk=1 is the set of polynomials in

Rd up to degreem. The constraint (8) forces the weight vector to be orthogonal to the

polynomial space, which guarantees non-singularity [4]. The inclusion of polynomials

up to linear terms for x ∈ R2, x = [x y]T , yields the interpolant

s(x) =
N∑
j=1

cjφ(‖x− xj‖) + cp1 + cp2x+ cp3y,

with the following constraints:

N∑
j=1

cj = 0,
N∑
j=1

cjxj = 0,
N∑
j=1

cjyj = 0.

In this two-dimensional example, M = (m + 1)(m + 2)/2 where m is the highest

degree of the augmented bivariate polynomials. In general, (7) and (8) produces the

linear system

Âĉ =

 A P

P T 0M×M


 c
cp

 =

 f

0M×1

 = f̂, (9)

where

P =



π1(x1) π2(x1) π3(x1) · · · πM(x1)

π1(x2) π2(x2) π3(x2) · · · πM(x2)

...
...

...
. . .

...

π1(xN) π2(xN) π3(xN) · · · πM(xN)


, cp =



cp1

cp2
...

cpM


.

The coe�cients cpk can be interpreted as Lagrange multipliers that constrain the RBF

coe�cients to the space P Tc = 0 so that (9) is guaranteed to have a unique solution

[9]�this idea will be expanded upon in the following subsection. Including low-order

polynomials, even just up to linear terms, can signi�cantly improve the accuracy of

the RBF interpolant at domain boundaries [4, 9]. Additionally, they can also improve
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the accuracy of derivative approximations [4].

Linear Operator Approximation.

Function approximation and interpolation is, again, useful when a set of equa-

tions governing an unknown function is given. These equations often involve linear

operators whose actions on the basis set is taken to approximate the action on the

unknown function. Consider the linear operator L and let

Φ(i) =
[
Lφ(‖x− x1‖)

∣∣
x=xi

. . . Lφ(‖x− xN‖)
∣∣
x=xi

. . . Lπ1(x)
∣∣
x=xi

. . . LπM(x)
∣∣
x=xi

]T
for each i = 1, . . . , N . Assuming that Â is invertible and given that it is symmetric,

applying L to (7) at location xi gives

Lf(x)
∣∣
x=xi
≈ Ls(x)

∣∣
x=xi

=

[
N∑
j=1

cjLφ(‖x− xj‖) +
M∑
k=1

cpkLπk(x)

] ∣∣∣∣
x=xi

(10)

= ĉTΦ(i)

=
(
Â−1f̂

)T
Φ(i)

= f̂
T

(ÂT )−1Φ(i)

= f̂
T
Â−1Φ(i)

= f̂
T
w(i),

where

w(i) = [w1 . . . wN wN+1 . . . wN+M ]T

and

Âw(i) = Φ(i). (11)
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Hence, as long as Â is invertible, computing the approximation (10) at x = xi reduces

to solving the linear system (11). This means that an approximation to Lf(x) can be

found without computing the interpolation coe�cients. In the case of a local operation

like a derivative, the weights wj, j = 1, . . . , N , may be used to approximate the linear

operator L at location xi or Ls(x)|x=xi
. Notice that the N + 1, N + 2, . . . , N + M

entries of f̂ are zero so Lf(x)
∣∣
x=xi

= f̂Tw(i) =
∑N

j=1 f(xj)w
(i)
j and we �nd that only

the weights w1, . . . , wN should be used; wN+1, . . . , wN+M are "dummy" entries [4].

See Section 5.1.4 of [4] for a discussion on why only the weights w1, . . . , wN are used.

All in all, approximating L at each node requires solving (11) for each i = 1, . . . , N

to obtain L ≈ [w(1) w(2) · · · w(N)]T .

In [9], it is noted that the weight vector w(i) can be viewed as the solution to the

constrained linear least-squares problem

min
w

(i)

∥∥∥∥1

2

(
w(i)

)T
Âw(i) −w(i)Φ(i)

∥∥∥∥ subject to P Tw(i) = p(i), (12)

where p(i) =
[
Lπ1(x)

∣∣
x=xi

Lπ2(x)
∣∣
x=xi

. . . LπM(x)
∣∣
x=xi

]T
. The constraint here can

be thought of as enforcing exactness for polynomials up to degree m of the approxi-

mate operator. Treating the polynomial coe�cients (i.e. cp) as Lagrange multipliers,

(12) can be solved by �nding the minimum with respect to w(i) and cp of the La-

grangian

L(w(i), cp) =
1

2

(
w(i)

)T
Âw(i) −w(i)Φ(i) + (cp)T

(
P Tw(i) − p(i)

)
. (13)

The Lagrangian (13) is convex and has a unique minimum [9], so it follows that

∇
w

(i),cpL(w(i), cp) = 0 is equivalent to the system (11).
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Motivating the Use of RBF-Generated Finite Di�erences.

Since calculating the weights for each location costs O((N+M)3) operations using

traditional row-reduction algorithms, approximating L globally costs O(N(N +M)3)

operations. This cost can be reduced if the LU decomposition of Â is obtained prior

to computing the weights. In this case, the preprocessing cost of decomposing Â into

LU is O(N + M)3. Computing the weights for each xi reduces to solving Ly = Φ(i)

for y by forward substitution, which costs O(N + M)2 operations, and then solving

Uw(i) = y for w(i) by back substitution, which costs another O(N +M)2 operations.

Hence, computing the weights for each node only costs O((N + M)2) operations.

Approximating L globally reduces to O(N(N +M)2) operations with a preprocessing

cost of O(N +M)3.

Computational costs can be reduced by means of RBF-generated �nite di�erences

(RBF-FD). RBF-FD generates approximate linear operators in a similar manner to

�nite di�erences, that is, by considering piecewise instead of global interpolation.

Given a point xi, L is instead approximated for each node locally by considering

an interpolant of f(x) over the set containing xi and its n − 1 nearest neighbors.

Conceptually, with N nodes across the entire domain, separate domains surrounding

each node composed of its n − 1 nearest neighbors are overlapped. For practical

purposes, it is assumed that n � N . In general, a k-d tree algorithm (knnsearch

in MATLAB's statistical toolbox) is used to �nd the n − 1 nearest neighbors of

a node when calculating the weights for L. Solving (11) for each xi in this case

produces one row of the approximate operator, so there are N linear systems of size

(n + M) × (n + M) to solve. Thus, the total cost of approximating L using this

local method is O(N(n + M)3), which is a signi�cant improvement over O(N(N +

M)2) when N is large and n is reasonably chosen. In general, for a �xed level of

accuracy, a global approximation will typically require fewer nodes than an RBF-FD
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approximation, but approximations at each node will require more computation time

[4]. It is worth mentioning that the di�erences between an RBF-FD approach and a

global RBF approach for approximating derivatives is comparable to those between

�nite di�erences and Fourier-based pseudospectral approximations [4].

The resulting RBF-FD matrix that approximates L is quite sparse since each row

contains only n nonzero entries. Further improvements in computational e�ciency

can be achieved by applying bandwidth reduction algorithms (symrcm or symamd in

MATLAB) [4]. The result of the reverse Cuthill-Mckee algorithm (symrcm in MAT-

LAB) applied to an RBF-FD matrix is shown in �gure 1. This algorithm permutes

sparse matrices so that nonzero elements are closer to the diagonal.

1.3 Theory of Ordinary Di�erential Equations

For a time-dependent PDE such as equation (1), once the spatial domain is prop-

erly discretized, solutions may be obtained by treating the semi-discrete PDE as an

ODE. Only �rst-order ODEs will be discussed in this thesis. First-order ODEs of the

Figure 1. E�ects of a bandwidth reduction algorithm on the sparsity pattern of the RBF-FD
Matrix using a 1000-node stencil and a k-d tree algorithm to �nd the nearest 25 neighbors. The
reverse Cuthill-Mckee algorithm was used to permute the sparse RBF-FD matrix into band matrix
form with smaller bandwidth
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form

du

dt
= g(t, u),

may be solved with numerical schemes if the initial condition (t0, u(t0)) is explicitly

given. Numerical schemes or ODE solvers give approximate solutions at distinct

values of t. The numerical solution at a mesh point, tj, is denoted ũj and is di�erent

from the exact solution u(tj).

Runge-Kutta Methods.

Runge-Kutta methods are a family of single-step ODE solvers that have the form

ũj+1 = ũj + kξ,

where k is the temporal step size or the distance between two general mesh points,

i.e. k = tj+1 − tj, and

ξ = a1h1 + a2h2 + · · ·+ aphp

where hi are slope estimates, ai are the associated weights of the slope estimates and

p is the number of estimates used [10]. The most widely used Runge-Kutta method,

also known as fourth-order Runge-Kutta or simply RK4, uses p = 4 with

h1 = g(tn, ũj),

h2 = g

(
tj +

k

2
, ũj +

k

2
h1

)
,

h3 = g

(
tj +

k

2
, ũj +

k

2
h2

)
,

h4 = g (tj + k, ũj + kh3) ,

ξ =
1

6
(h1 + 2h2 + 2h3 + h4) .
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In general, a Runge-Kutta method becomes increasingly accurate as more slope es-

timates are used, and larger step sizes can be used to maintain a given accuracy.

However, the number of function evaluations also increases with p. Also, the numer-

ical scheme is not guaranteed to behave in a controlled fashion. Hence, the behavior

of the numerical solution for a �xed value t > 0 as k → 0 must be considered.

Stability and Sti�ness.

When solving an ODE (e.g. a semi-discrete initial boundary value problem), it

is useful to know if a numerical scheme exhibits stability. A method is de�ned to be

stable if slight changes in the initial data produces slight changes in the numerical

solution [10]. Further, a numerical method is said to be absolutely stable if the slight

perturbations in the numerical solution are bounded and shrink over time [10]. Thus,

a numerical method that is absolutely stable is extremely desirable.

Suppose that a given numerical method, with step-size k, is used to solve the

linear ODE

dy

dt
= λy, t ≥ 0, y(0) = y0,

where λ may be complex. Allowing λ to be complex comes from the fact that in

practice, we are usually solving systems of ODEs. The region of absolutely stability

of the numerical method is the region in the complex plane, D, such that if λk ∈ D,

then y(t) → 0 as t → ∞ for all initial values y0. Figure 2 illustrates the stability

regions for the Runge-Kutta methods of orders 2 and 4. These two explicit methods

will be used throughout this work to solve the NLS equation.

When considering dispersive equations like the NLS equation, it is important to

discern how far along the imaginary axis the region of absolute stability extends

to encompass the purely imaginary eigenvalues of the dispersive operator [11]. The

step size k is chosen so that the spectrum of a di�erential operator is scaled within
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Figure 2. Stability regions of the Runge-Kutta methods of orders 2 and 4 in the complex plane.
The region in red illustrates the values of λk for which RK4 is unstable; RK4 is stable for all values
of λk within the green and cyan region. RK2 is only stable for λk contained within the cyan region.

the stability domain. Ideally, an ODE solver's stability region would encompass the

entire left-half plane, i.e. Re(λ) ≤ 0 so that numerical solutions do not grow in

time. In this case, k can be chosen based on accuracy considerations, rather than

on stability considerations. In [11], it was shown that the region of absolute stability

of the Adams-Bashforth (AB) and Adams-Moulton (AM) predictor-corrector method

of order 1 extends along the imaginary axis, making it useful for approximating

solutions to �rst-order di�erential equations containing dispersive terms�this �rst

order multistep method (AB1-AM1) will be used throughout this work. The stability

region for AB1-AM1 is shown in �gure 3 and is depicted in green. The stability

domain in green contains a portion of the imaginary axis, making it viable for solving

the NLS equation.

The stability domain of a numerical scheme ultimately sheds light on how large of

a step size one can take and also gives insight on how to modify a problem to manip-

ulate its eigenvalues appropriately. This can lead to improvements in computational
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Figure 3. The region of absolute stability for AB1-AM1. Values of λk for which the method is
stable are contained within the stability domain in green.

e�ciency. Hence, the region of absolute stability of a numerical method for solving

ODEs is one of the most important factors determining its performance.

Further complicating the selection of ODE solvers is the notion of sti�ness. A

sti� di�erential equation can be de�ned as a di�erential equation for which certain

numerical methods for solving the equation are unstable, that is, the problem has

poorly scattered eigenvalues, i.e. an unfeasible spectrum [10]. In this case, the step

size can be taken to be extremely small, but this is not always practical or ideal.

Equation (1) is sti�, which we will see in the next section. For this reason, stability

requirements, rather than those of accuracy, will constrain our time steps.

Handling Instability.

It is important to know that the stability regions of implicit numerical schemes

used for solving ODEs typically encompass a larger portion of the left-half plane com-

pared to explicit schemes. Hence, implicit methods have better stability properties
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than explicit methods. An implicit method that will be used throughout this work is

the backward di�erentiation formula (BDF) of order 2, or BDF2. The stability region

for BDF2 is shown in �gure 4 and is depicted in green. The stability region of BDF2

encompasses the entire left-half plane, making it suitable for producing numerical

solutions to sti� equations. Moreover, the method will not exhibit instabilities that

are often seen when explicit methods are used with larger step sizes.

Figure 4. Stability region of BDF2, an implicit method. BDF2 is stable for all values of λk outside
the region colored in red.

Although implicit methods allow for larger time steps and better stability, they

can potentially be more computationally demanding since they often generate root

�nding problems or require other sophisticated algorithms [10]. On the other hand,

explicit methods, albeit less stable, produce numerical solutions in terms of known

quantities at previous time steps which makes them less computationally expensive.

Operator splitting, or the fractional step method, is a popular method used to deal

with ODEs that are sti� by combining the stability properties of implicit methods

with the computational simplicity of explicit methods. In splitting, an ODE is treated

as an equation with a sti� linear term coupled with a nonlinear term. Conceptually,
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instead of employing a single explicit or implicit method to solve an ODE, an implicit

method is applied to the sti� term and an explicit method is applied to the non-sti�

term. A popular splitting method, known as Strang splitting, gives approximations

that are of second-order accuracy [12]. More attention will be given to splitting

methods in chapter II.

Another technique used to stabilize time-stepping schemes involves adding or sub-

tracting a constant multiple of a high-order Laplacian to the right-hand side of a

semi-discrete PDE, also known as a hyperviscosity �lter [4]. For purely dispersive

problems, this approach controls sti�ness or the scatter of eigenvalues by shifting

the eigenvalues of the di�erential operator from the right-half plane to the left-half

plane while keeping them reasonably close to the imaginary axis [13, 14]. Hypervis-

cosity will be used to handle the sti�ness of the di�erential operator associated with

equation (1) in chapters II and III.

1.4 Previous Work

Previous treatments of the NLS include Fourier collocation methods [15, 16] and

�nite-di�erence methods [15, 17]. The split-step method was used to discretize the

time variable for the numerical solution of the NLS in [15]. In [18], a Fourier col-

location method was used to discretize the spatial domain of the two-dimensional

NLS equation and integrating factors were used for time integration to reduce com-

putational costs without a signi�cant reduction in accuracy. The NLS equation was

solved numerically using radial basis functions in [19] to compare the errors associ-

ated with di�erent RBFs; given an optimal shape parameter, it was found that GA

RBFs yielded smaller errors than MQ and IMQ RBFs. In [20], a variant of the NLS

equation was solved using three Fourier-based methods to compare the errors associ-

ated with each method. Duo and Zhang showed that the split-step Fourier method
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was more accurate for studying the long-term behaviors of solutions when compared

to the Crank-Nicolson Fourier method and the relaxation Fourier method and has a

lower computational cost than the two other methods [20].

1.5 Organization of Thesis

The goal of this thesis is to investigate computationally e�cient uses of RBFs

for solving (1). Chapter II presents an analysis of numerical solutions to the one-

dimensional variant of (1) produced by RBF-FD methods in terms of accuracy and

stability. Both explicit and implicit schemes are considered to propagate solutions in

time. Integrating factors and hyperviscosity are also considered to stabilize such time-

stepping schemes. Solutions to the two-dimensional variant of (1) are then analyzed

in chapter III, which will be produced using methods similar to those introduced in

chapter II.
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II. The One-Dimensional Case

In this section, the accuracy and stability of several methods used to numerically

solve the one-dimensional variant of (1) where x ∈ Ω ⊂ R1 are analyzed. Thus, (1)

reduces to

∂

∂t
u(x, t) = −i

(
∂2

∂x2
u(x, t) + κ|u(x, t)|2u(x, t)

)
, (14)

where u depends only on x and t, and the periodic boundary condition de�ned by (2)

is enforced. The use of integrating factors and hyperviscosity to remedy the sti�ness

of the equation is also discussed.

2.1 Methodology

As mentioned in chapter I, di�erential operators can be approximated with RBFs

either locally or globally and both cases will require N nodes across the full domain.

We de�ne a stencil to be the geometric arrangement of points that is used to compute

a numerical approximation at a particular node, e.g. the collection of the node and

its n − 1 nearest neighbors. Global approximation requires that the total number

of weights calculated within the global stencil of N nodes be equal to N . This

requires solving (6), a problem with a large, full matrix, to calculate all the weights

for the operator. Local approximation of the operator using RBF-FD becomes much

more attractive when the the number of nodes n in each local stencil (i.e. the set

containing a node and its n − 1 nearest neighbors) is much less than N . For this

reason, only RBF-FD will be used to solve (1) by approximating the term containing

the Laplacian operator�we will call this �nite-dimensional operator D from here on

19



out. With κ = 2, this approach transforms (14) into the following system of ODEs:

∂

∂t
u(t) = −i


Du(t) + 2



|u(x1, t)|2 0 · · · 0

0 |u(x2, t)|2 · · · 0

...
...

. . .
...

0 0 · · · |u(xN , t)|2


u(t)


, (15)

where

u(t) =



u(x1, t)

u(x2, t)

...

u(xN , t)


(16)

given the N nodes x1,x2, . . . ,xN ∈ Ω used to construct D.

The RBF-FD matrix D is found by �rst discretizing the domain Ω into N nodes.

Starting with the �rst node x1, a local stencil Ω1 is created containing x1 and its n−1

nearest neighbors. The operator L in equation (10) is replaced with the Laplacian

operator ∆ (in this chapter, ∆ = ∂2

∂x2
) and the system (11) is then solved for each

element within Ω1 to produce the weights for an approximation of ∆u(x, t) over Ω1.

The weights used for the approximation of ∆u(x, t)
∣∣
x=x1

within the local stencil are

stored in the �rst row of D; the weights must be stored so that the column indices

of the weights within D agree with the row indices of u(x, t) evaluated at x1 and its

n−1 nearest neighbors in the vector (16). For instance, if xk1 ,xk2 ,xk3 , . . . ,xk(n−1)
are

the nearest neighbors of xk, then row k of D has zeros except for entries k1, k2, . . . , kn,

where w1, w2, . . . , wn are placed instead. This process is repeated until weights are

computed and stored within D for every node in Ω.

With the initial condition u(x, 0) = sech(x − T
2
) exp

(
i(x− T

2

)
/2), (14) has the
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solitary wave solution [19, 21]

u(x, t) = sech

((
x− T

2

)
+ t

)
ei(

1
2(x−T

2 )− 3
4
t). (17)

Numerical solutions with and without hyperviscosity using T1 = 8π will be compared

to (17).

All work in this section will be carried out using GA RBFs. The choice of the

shape parameter ε is highly dependent on N and n [4]. In order to account for this,

ε is chosen such that condition number of the matrix in (11), Â, is kept below 108 as

N increases. This is achieved by choosing a small initial value for ε and increasing ε

until the condition number is within the tolerance of 108.

2.2 Hyperviscosity

Since (1) is a dispersion-type PDE, we should expect a purely imaginary spectrum

[4]. It would be ideal to step the equation in time with a classical numerical method

for ODEs whose stability region extends far along the imaginary axis. However, using

RBF-FD-based spatial discretization causes the eigenvalues of D to scatter into the

right half of the complex plane, producing solutions that grow unbounded with time

even if extremely small step sizes are used [13]. The scattering of these eigenvalues gets

worse as N increases [13]. As N increases, the eigenvalues for which Re(λ) > 0 causes

exponential growth in the solution. This issue is compounded when the eigenvalues

are not su�ciently close to the imaginary axis [4]. If D has eigenvalues that are

not su�ciently close to the imaginary axis and/or have large positive real parts, a

hyperviscosity �lter can be applied to minimize the exponential growth of solutions.

A method that is becoming increasingly common to stabilize RBF-FD for disper-

sive PDEs adds or subtracts a constant multiple of a high-order Laplacian to the right
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hand side of (1) [4, 13]. Thus, the stabilized variant of (1) is

∂u

∂t
= −i

(
∆u+ 2|u|2u

)
+ (−1)β+1γN−β∆βu = −i

(
∆u+ 2|u|2u

)
+Hu,

where β ∈ N\{1} is the hyperviscosity order and γ is a scaling parameter [13]. Since

the stencil used to approximate the hyperviscosity term is the same stencil used to

produce D, there is little additional cost per time step [14]. With β and γ chosen

appropriately, the inclusion of hyperviscosity leaves the physically relevant eigenvalues

of D largely intact but shifts the ones on the right half of the complex plane to the

opposite half [13]. Although polynomial terms are used to compute D, they will not

be used to compute H in this thesis.

It is worth mentioning that there is a strategy for choosing an appropriate value

for γ. If γ is too large, there is a risk of adding too much hyperviscosity which results

in eigenvalues that end up far out in the left half-plane, which potentially decreases

the accuracy of the numerical time-stepping scheme and forces k to be small [14]. If

the e�ects of the hyperviscosity �lter are too minimal, i.e. γ is too small, there is

the possibility that eigenvalues will still exist on the right half-plane. It was found

experimentally in [13, 22] that γ ranging from O(1) to O(10−2) is reasonable enough

to stabilize PDEs with dispersive operators.

There is also a strategy for choosing an appropriate value for β. The purpose of

hyperviscosity is to suppress highly oscillatory modes and physically irrelevant modes

[22]. As the stencil size increases, the accuracy of the RBF-FD method is expected

to increase. Hence, as n or N increases, more physical modes of the problem are

being represented with greater accuracy. As the hyperviscosity order β increases,

more physical modes are preserved [4], so the order of the hyperviscosity �lter should

increase as the stencil size gets larger (see [14] for an illustration); β should typically

be in the range of 2 to 10, but could be higher [13].
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The process of computing the hyperviscosity operator can be simpli�ed if GA or

MN RBFs are used. Regular Laguerre polynomials, pβ(r), can be used to �ll in the

right hand side vector of (11) using the relation [4]

∆βφ(r) = ε2βpβ(r)φ(r)

if GA RBFs (φ(r) = e−(εr)2) are used to compute the hyperviscosity �lter in a two-

dimensional spatial domain (for d dimensions, generalized Laguerre polynomials are

used instead [4]). This approach to computing powers of the Laplacian does not

require computing derivatives or the use of the binomial theorem. This makes GA

RBFs an attractive choice since they can be used to compute hyperviscosity of any

order with relative ease. For MN RBFs (i.e. φ(r) = rm with m odd), the relation [4]

∆φ(r) = m(m+ d− 2)rm−2 (18)

can be used to compute a hyperviscosity operator of order β = 1 ifm ≥ 3 in dimension

d; equation (18) can be applied repeatedly to obtain higher orders of ∆.

To demonstrate how hyperviscosity can be used to stabilize certain numerical

schemes, (15) was solved numerically using an explicit ODE solver. The one-dimensional

Laplacian, ∂2

∂x2
, and the hyperviscosity �lter was approximated by means of RBF-FD

with N = 200, n = 20 and the maximum polynomial order set to 5. Once the spa-

tial domain was discretized with equally spaced nodes, the fourth order Runge-Kutta

(RK4) method was used to solve the equation in time with a time step of k = 5 ·10−4.

Figure 5 summarizes the results. In �gure 5, the eigenvalues of D with positive real

part seen in the bottom-left subplot are contributing to the exponential growth of

the solution observed in the top-left subplot. In the bottom-right subplot, where

a hyperviscosity �lter is used, eigenvalues with positive real part are shifted to the
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left-half plane which stabilizes the time-stepping scheme as shown by the top-right

subplot.

Figure 5. (TOP) Solutions with and without hyperviscosity and the (BOTTOM) associated spectra
of D are compared with one another to demonstrate the e�ects of hyperviscosity (β = 4, γ = 1)
on the spectrum of a di�erential operator. (BOTTOM-RIGHT) Eigenvalues with positive real part
are shifted over to the left half-plane to ensure stability. 200 nodes, 20 nearest neighbors and a
polynomial order of 5 were used to compute the RBF-FD matrix over the domain x ∈ [0, 8π] while
RK4 with a step size of 5 · 10−4 was used to propagate solutions in time

Adding hyperviscosity comes at a slight cost. Numerical errors, especially near

the peak of the propagating wave, increase with the application of the hyperviscosity

�lter. Figure 6 illustrates this drawback. Errors can be controlled by manipulating

the order of the �lter, β, and the scaling constant, γ. Achieving an optimal spectrum

and minimizing errors is ultimately a balancing act. Further research in this area

(errors associated with hyperviscosity) could be conducted and a parameter study

could be performed to �nd optimal values, but this will not be an objective of this

thesis.
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Figure 6. Log10 absolute error plot demonstrating the e�ects of hyperviscosity (β = 2, γ = 1)
on numerical approximation errors; adding hyperviscosity increases numerical errors. 180 nodes, 12
nearest neighbors and a polynomial order of 9 were used to compute the RBF-FD matrix over the
domain x ∈ [0, 8π] while RK4 with a step size of 5 · 10−3 was used to propagate solutions in time.
Errors were plotted at t = 17.1405

2.3 Integrating Factors

Much of the instability that arises from numerically solving (1) can be attributed

to the linear term, −i∆u, or the eigenvalues of D. An integrating factor can be

introduced to transform (14) into an equation with a more favorable spectrum.

Since D is diagonalizable, it can be factored as

D = V ΛV −1 (19)

where V is a square N ×N matrix whose jth column is the eigenvector vj of D and

Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues,
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i.e. Λjj = λj. Substituting (19) into (15) gives

d

dt
u(t) = −i


V ΛV −1u(t) + 2



|u(x1, t)|2 0 · · · 0

0 |u(x2, t)|2 · · · 0

...
...

. . .
...

0 0 · · · |u(xN , t)|2


u(t)


,

d

dt
V −1u(t) + iΛV −1u(t) = −2iV −1



|u(x1, t)|2 0 · · · 0

0 |u(x2, t)|2 · · · 0

...
...

. . .
...

0 0 · · · |u(xN , t)|2


u(t).

(20)

Multiplying equation (20) through by the integrating factor eiΛt (a matrix exponen-

tial) yields

eiΛt
d

dt
V −1u(t) + ieiΛtΛV −1u(t) = −2ieiΛtV −1



|u(x1, t)|2 0 · · · 0

0 |u(x2, t)|2 · · · 0

...
...

. . .
...

0 0 · · · |u(xN , t)|2


u(t),

d

dt

[
eiΛtV −1u(t)

]
= −2ieiΛtV −1



|u(x1, t)|2 0 · · · 0

0 |u(x2, t)|2 · · · 0

...
...

. . .
...

0 0 · · · |u(xN , t)|2


u(t).

(21)
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Letting W = V e−iΛt and C(t) = eiΛtV −1u(t) and substituting into (21) produces

d

dt
C(t) = −2iW−1B(t)WC(t), (22)

where B(t) is the diagonal matrix with B(t)kk =
∣∣∣∑N

j=1 Vkje
−iΛjjtC(xj, t)

∣∣∣2 and
C(xj, t) = eiΛtV −1u(xj, t). This gives the new initial condition C(0) = V −1u(0).

Thus, (22) is solved for C(t) from which u(t) can be obtained using the relation

u(t) = WC(t).

Figure 7. Comparison between solutions obtained using the integrating factor method with and
without hyperviscosity (β = 2, γ = 0.00075). 200 nodes, 20 nearest neighbors and a polynomial
order of 5 were used to compute the RBF-FD matrix over x ∈ [0, 8π] in conjunction with RK4 with
a step size of 5 · 10−2

We note that (22) no longer contains a linear term; much of the instability inherent

in (14) was due to the linear term containing the Laplacian operator. Hyperviscosity

can be used in conjunction with an integrating factor to achieve even greater im-
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provements in stability by simply replacing D in (15) with D + iH where H is the

hyperviscosity �lter. Thus, an improvement in numerical stability should be expected

when solving (22) with larger step sizes.

In �gure 7, (22) was solved with RK4 using a step size two orders of magnitude

lower than that used to solve (14). Moreover, (22) was solved for nearly the entire

length of a period (T1 = 8π) before major instabilities were observed in the case where

hyperviscosity was not applied in the top subplot of �gure 7.

Figure 8. Log10 convergence plot comparing numerical solutions at t = 1 with and without
Integrating Factors using a �rst order ODE solver (AB1-AM1 Predictor Corrector Method) for 1D
NLS. 140 nodes, 10 nearest neighbors and a polynomial order of 7 were used to compute the RBF-FD
matrix over x ∈ [0, 30] and hyperviscosity was computed with β = 3 and γ = 0.001

Figure 8 provides a summary of the comparisons between solutions produced with

and without integrating factors. Larger step sizes can be used when integrating factors

are used to solve (22). As expected, errors are larger when hyperviscosity is applied.
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Additionally, errors are also slightly higher when integrating factors are used. These

results are not just limited to �rst order ODE solvers. Figure 9 con�rms the fact that

RK4 achieves fourth order convergence when integrating factors are applied. However,

we begin to see that the accuracy of the numerical solver used is limited by the spatial

discretization because numerical errors reach a minimum and no longer decrease for

log10(k) < −3.2. It is important to also note that periodic boundary conditions are

enforced on an initial condition that is not periodic, which a�ects the accuracy of the

solutions at the boundary. This can be mitigated by increasing the domain size since

u(x, 0)→ 0 rapidly as |x| → ∞. Hence, utilizing higher order methods requires us to

increase the number of nodes and/or number of nearest neighbors used to produce D

and/or increase the domain size, which can be computationally expensive. Likewise,

as the size of the matrix D grows, so do its eigenvalues, requiring smaller step sizes

for stability. This computational cost compounds when we consider the fact that the

use of integrating factors requires computing the eigendecomposition of D, which is

a major drawback when N is large. To reconcile stability with computational costs,

we resort to splitting methods for ODEs.

2.4 Splitting Methods

As mentioned previously, much of the instability that arises in numerically solving

the NLS can be attributed to the fact that D has a wide range of eigenvalues. Since

at least one eigenvalue of D has relatively large negative real part, we require k to be

small when using an explicit solver. Therefore, it is natural to use implicit methods,

especially A-stable methods such as the backward Euler and trapezoidal methods for

sti� problems. In splitting, the sti� linear term is often best treated using an implicit

ODE solver, while the nonlinear term is best treated explicitly. Conveniently, we can

treat the NLS as a PDE with a sti� linear term coupled with a nonlinear term. We
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Figure 9. Log10 convergence plot comparing numerical solutions at t = 1 with and without
Integrating Factors using a fourth order ODE solver for 1D NLS. Accuracy of solutions without
integrating factors is limited by the spatial discretization, i.e. the RBF-FD matrix. 600 nodes, 20
nearest neighbors and a polynomial order of 10 were used to compute the RBF-FD matrix over
x ∈ [0, 50] and hyperviscosity was computed with β = 3 and γ = 0.0001

can write (15) as

∂

∂t
u(t) = Lu(t) +Nu(t), (23)

with

Lu(t) = −iDu(t) and Nu(t) = −2i



|u(x1, t)|2 0 · · · 0

0 |u(x2, t)|2 · · · 0

...
...

. . .
...

0 0 · · · |u(xN , t)|2


u(t).

30



In the method of splitting, we can approximate the solution u(t) by considering Lu(t)

and Nu(t) as acting successively. We do this by successively solving the equations

∂

∂t
u(t) = Nu(t),

∂

∂t
u(t) = Lu(t) (24)

by using the solution of the former equation as the initial condition for the latter

equation; the order in which we solve the equations does not matter. There is no

splitting error if NL = LN . But in general, N and L do not commute. In practice,

the exact operators N and L are replaced by their numerical approximations. The

splitting error is O(k2) for each time step, and has �rst order global accuracy [15]�a

convergence plot (see Figure 10) was generated to con�rm this. For simple splitting,

�gure 10 demonstrates that hyperviscosity has relatively little impact on the conver-

gence of the scheme if the hyperviscosity order is appropriately chosen (β = 2 was

used in �gure 10).

We immediately see the appeal of splitting: one may sequentially use separate

methods to evolve each physical term, using solution methods that may be highly

tuned to that particular form of operator. To demonstrate this, �rst order splitting

was used to solve (23). The forward Euler method, an explicit method, was used to

solve the nonlinear equation in (24). The backward Euler method, an implicit method,

was used in conjunction with a QR decomposition to solve the linear equation in (24).

Although �rst order splitting leads to an improvement in stability, the method is

not necessarily viable for solving NLS. In �gure 11, numerical dissipation can be ob-

served as the amplitude of the wave being propagated is being dampened as solutions

are evolved in time. This dampening e�ect can be observed regardless of whether

or not hyperviscosity is applied to the di�erential operator. In �gure 12, errors be-

come quite large as t increases. The growth in maximum absolute error appears to

slow down over time as the maximum absolute error approaches 1. Since solutions
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Figure 10. 1st order splitting convergence plot comparing solutions with and without hyperviscosity
(β = 2, γ = 0.0001) at t = 1. 120 nodes, 12 nearest neighbors and a polynomial order of 10 was used
to discretize the spatial domain. Forward Euler was used to solve the nonlinear part of the PDE
and backward Euler was used to solve the linear part

are not necessarily growing exponentially, �gure 12 shows that numerical dispersion

is present in addition to dissipation since there is a mismatch in phase between the

numerical solution and the analytical solution. Hence, it is reasonable to conclude

that �rst order splitting is not ideal for solving NLS and we must seek out a higher

order splitting scheme.

Further improvements in the splitting error can be made by considering di�er-

ent splitting schemes. We can achieve second order accuracy by employing Strang

splitting [12]. Figure 13 shows that Strang splitting is indeed a second order scheme

before errors are limited by the spatial discretization. Figure 13 also shows that hy-
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Figure 11. The maximum of u(x, t) over x plotted versus t. Solutions were produced using a 1st

order splitting scheme with k = 5 · 10−3. 120 nodes, 12 nearest neighbors and a polynomial order
of 10 was used to discretize the spatial domain while hyperviscosity was computed using β = 3 and
γ = 0.01. Forward Euler was used to solve the nonlinear part of the PDE and backward Euler was
used to solve the linear part

perviscosity can a�ect the accuracy of numerical approximations if the parameters

β and/or γ are not chosen properly. The errors produced with hyperviscosity are

higher than those produced without hyperviscosity. Additionally, errors decrease at

a lower rate when hyperviscosity is applied when reasonably optimal parameters are

not chosen.

It is worth mentioning that Strang splitting does not require much more compu-

tation than �rst order splitting. Consider the di�erential equation of the form

dy

dt
= (L1 + L2)y,

with initial condition y(0) = y0 and L1 and L2 are arbitrary operators. For each time
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Figure 12. The maximum of the absolute error over x plotted versus t. Solutions were produced
using a 1st order splitting scheme with k = 5·10−3. 120 nodes, 12 nearest neighbors and a polynomial
order of 10 was used to discretize the spatial domain while hyperviscosity was computed using β = 3
and γ = 0.01. Forward Euler was used to solve the nonlinear part of the PDE and backward Euler
was used to solve the linear part

step, we solve y′ = L1y for a half time step; then solve y′ = L2y for a full time step;

and �nally, solve y′ = L1y for a half time step. Thus, the Strang splitting scheme is

implemented as

ỹ1 = eL1k/2y0, ȳ1 =eL2kỹ1, y1 = eL1k/2ȳ1,

ỹ2 = eL1k/2y1, ȳ2 =eL2kỹ2, y2 = eL1k/2ȳ2,

...

ỹF = eL1k/2yF−1, ȳF =eL2kỹF , yF = eL1k/2ȳF ,

for F time steps. We note that yj and ỹj+1 for j = 1, . . . , F − 1 can be combined into
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Figure 13. Strang splitting convergence plot at t = 1. 120 nodes, 12 nearest neighbors and a
polynomial order of 10 was used to discretize the spatial domain while hyperviscosity was computed
using β = 5 and γ = 0.1. RK2 was used to solve the nonlinear part of the PDE and BDF-2 was
used to solve the linear part

a single step so that the scheme becomes

ỹ1 = eL1k/2y0, ȳ1 = eL2kỹ1,

ỹ2 = eL1kȳ1, ȳ2 = eL2kỹ2,

...

ỹF = eL1kȳF−1, ȳF = eL2kỹF ,

yF = eL1k/2ȳF .

Hence, to implement Strang splitting, we only need to solve y′ = L1y for a half

time step on the initial and �nal time steps. In between, we use the simple splitting
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scheme presented earlier. In this manner, we obtain second order accuracy without

much more computation. In the context of the NLS equation, the linear dispersive

operator of the equation L is treated as L1 while the nonlinear operator N is treated

as L2. We proceed by using the Strang splitting scheme to evolve (23) in time by

solving the linear part with BDF2, a multi-step implicit method, using RK2 to start

the scheme. RK2 was used to solve the nonlinear part.

Figure 14. The maximum of u(x, t) over x plotted versus t. Solutions were produced using Strang
splitting, a 2nd order splitting scheme, with k = 0.1257. 120 nodes, 12 nearest neighbors and a
polynomial order of 10 was used to discretize the spatial domain while hyperviscosity was computed
using β = 3 and γ = 0.01. RK2 was used to solve the nonlinear part of the PDE and BDF2 was
used to solve the linear part

All in all, the Strang splitting scheme produces signi�cantly better results than

the simple splitting scheme. In �gure 14, numerical dissipation is not as drastic as

that in �gure 11. In �gure 14, we observe that the peak of the wave being prop-

agated does tend to oscillate around 1, but the amplitudes of the oscillations are

reasonably low. Moreover, hyperviscosity does not appear to have an in�uence on

numerical dissipation since results produced using hyperviscosity are similar to those

produced without hyperviscosity. In �gure 15, we can observe error propagation and

the e�ect hyperviscosity has on the absolute error. For t > 4, the maximum absolute

errors over x produced using hyperviscosity are greater than those produced without

hyperviscosity�this di�erence grows as t increases, but not to the point where Strang
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Figure 15. log10 of maximum of the absolute error over x plotted versus t. Solutions were produced
using Strang splitting, a 2nd order splitting scheme, with k = 0.1257. 120 nodes, 12 nearest neighbors
and a polynomial order of 10 was used to discretize the spatial domain while hyperviscosity was
computed using β = 3 and γ = 0.01. RK2 was used to solve the nonlinear part of the PDE and
BDF2 was used to solve the linear part

splitting becomes inviable. It is also worth mentioning that we were able to produce

superior results with a signi�cantly larger step size�k = 0.1257 for Strang splitting

in �gures 14 and 15 versus k = 5 · 10−3 for simple splitting in �gures 11 and 12.

2.5 Comparison of Methods and Observations

The use of splitting schemes, integrating factors and hyperviscosity allows for

larger step sizes. In �gure 16, for log10(k) > −2.5, the scheme used without integration

factors operator splitting, or hyperviscosity was unstable when �rst order methods

were used. However, when hyperviscosity was included, there was an improvement

in stability since larger step sizes were able to be taken. This came at the cost of

increased errors for log10(k) > −2.8. As expected, larger step sizes can be taken

when using integration factors or operator splitting. When hyperviscosity used in

conjunction with integration factors or operator splitting, errors increase and are

no longer consistent with the order of method beyond a certain step size despite

providing a marginal improvement in stability. These observations agree favorably
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with the the results in �gure 16 obtained using second order methods; the Strang

splitting scheme without hyperviscosity actually attains an order of accuracy greater

than 2 for log10(k) < −3.1.

For �xed N = 500, n = 24 andm = 11, the costs of evolving solutions in time with

several �rst and second order schemes for x ∈ [0, 50] and t ∈ [0, 0.1] are illustrated in

�gure 17. Computing costs are relatively high when integrating factors are used be-

cause a larger number of matrix multiplications must be performed to solve the ODE

(22) and obtain u(t) from the relation u(t) = WC(t) = V e−iΛtC(t). The majority

of the computing costs associated with the �rst order splitting scheme comes from

the fact that a row-reduction algorithm was used to implement the implicit forward

Euler method used to solve the linear portion of the NLS equation. Hence, improved

stability or the ability to take larger step sizes comes at the cost of more operations.

Figure 17 does not account for any preprocessing costs. It is important to note that

the implicit Euler method used for operator splitting required a QR decomposition

of the RBF-FD matrix while the integration factors required its eigendecomposition,

so the total computing costs associated with these stabilization methods are much

higher than what is illustrated in �gure 17. The computation times associated with

�rst order methods in �gure 17 show a similar trend to those associated with second

order methods. When hyperviscosity is not used, splitting schemes appear to have

an advantage over integration factors in terms of accuracy. Splitting schemes also

have slightly lower computing costs than integration factors, however, this di�erence

is negligible since the computing costs are of the same order of magnitude.

Figures 16 and 17 are summarized by �gure 18. Errors produced by each method

decrease appropriately as computation time increases. For �rst order methods, the

errors decrease linearly according to computation time. The errors associated with

the second order methods behave as expected as well.
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Figure 16. Log10 convergence plots are shown comparing numerical solutions of the one-
dimensional NLS equation at t = 0.1 obtained using several methods. D was computed using
500 nodes, 24 nearest neighbors and a polynomial order of 11 were used to compute the RBF-FD
matrix over x ∈ [0, 50]. (TOP) AB1-AM1 predictor-corrector method was used to propagate so-
lutions in time for non-splitting methods. For the �rst order splitting scheme, an explicit Euler
method was used to solve the nonlinear portion while an implicit Euler scheme was used to solve
the linear portion. Hyperviscosity was computed with β = 2 and γ = 0.03. (BOTTOM) RK2 was
used to propagate solutions in time for non-splitting methods. For the Strang splitting scheme, RK2
was used to solve the nonlinear portion while BDF2 was used to solve the linear portion. Given
that BDF2 is an implicit multi-step method, unknown starting values were determined using RK2.
Hyperviscosity was computed with β = 2 and γ = 0.0001.
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Figure 17. Timing results for several methods excluding hyperviscosity; the preprocessing costs of
computing the RBF-FD matrix and its eigendecomposition were not accounted for. D was computed
using 500 nodes, 24 nearest neighbors and a polynomial order of 11 were used to compute the RBF-
FD matrix over x ∈ [0, 50]. Solutions were evolved in time from t = 0 to t = 0.1 for each method
using di�erent step sizes on a machine with an Intel Xeon E5-2687W v3 3.1 GHz 10-core (20 logical
cores) processor. Each method has rate O

(
k−1

)
for computation cost. (LEFT) AB1-AM1 predictor-

corrector method was used to propagate solutions in time for non-splitting methods. For the �rst
order splitting scheme, an explicit Euler method was used to solve the nonlinear portion while an
implicit Euler scheme was used to solve the linear portion. (RIGHT) RK2 was used to propagate
solutions in time for non-splitting methods. For the Strang splitting scheme, RK2 was used to solve
the nonlinear portion while BDF2 was used to solve the linear portion. Given that BDF2 is an
implicit multi-step method, unknown starting values were determined using RK2.
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Figure 18. Computation time versus the L∞ error for several methods�hyperviscosity was not
used. D was computed using 500 nodes, 24 nearest neighbors and a polynomial order of 11 were
used to compute the RBF-FD matrix over x ∈ [0, 50]. Solutions were evolved in time from t = 0
to t = 0.1 for each method using di�erent step sizes on a machine with an Intel Xeon E5-2687W
v3 3.1 GHz 10-core (20 logical cores) processor. (LEFT) AB1-AM1 predictor-corrector method was
used to propagate solutions in time for non-splitting methods. For the �rst order splitting scheme,
an explicit Euler method was used to solve the nonlinear portion while an implicit Euler scheme
was used to solve the linear portion. (RIGHT) RK2 was used to propagate solutions in time for
non-splitting methods. For the Strang splitting scheme, RK2 was used to solve the nonlinear portion
while BDF2 was used to solve the linear portion. Given that BDF2 is an implicit multi-step method,
unknown starting values were determined using RK2.
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III. The Two-Dimensional Case

In this section, we produce and analyze numerical solutions, with and without

hyperviscosity, of the two-dimensional variant of (1) where x = [x y]T ∈ R2 and

κ = 2,

∂

∂t
u(x, y, t) = −i

((
∂2

∂x2
+

∂2

∂y2

)
u(x, y, t) + 2|u(x, y, t)|2u(x, y, t)

)
, (25)

where periodicity in x and y will be enforced. More speci�cally, u will be Tx−periodic

in x and Ty−periodic in y. As shown in �gure 19, the initial condition that will be

used is

u(x, y, 0) = sech

(
x− Tx

2

)
exp

(
i

(
x− Tx

2

)
2

)
.

Figure 19. Modulus of the initial condition with Tx = 60 and Ty = 6

3.1 Methodology

Solutions will be produced using the MN RBF r7 while powers of the Laplacian

for the hyperviscosity term will be computed using GA RBFs. As in chapter II, ε will
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be chosen such that condition number of the matrix in (11), Â, is kept below 108 and

polynomial terms will not be used to compute hyperviscosity. It is not neccessary to

use the same type of RBF for the spatial discretization and hyperviscosity term, as

the role of hyperviscosity is simply to shift eigenvalues to the left half of the complex

plane [4], as seen in �gure 5.

Periodic boundary conditions can be enforced on (25) through the conformal map-

ping of nodes from a two-dimensional grid onto the surface of a torus as shown in

�gures 22 and 23. A speci�c node (circled in green) and its nearest neighbors (circled

in red) are shown on a two-dimensional grid in the left subplot and are shown again

in the right subplot after they are mapped onto a torus. The torus used to compute

the nearest neighbors for each node is de�ned parametrically as

u(x, y) =

(
R + r cos

(
2π

x

Tx

))
cos

(
2π

y

Ty

)
,

v(x, y) =

(
R + r cos

(
2π

x

Tx

))
sin

(
2π

y

Ty

)
,

w(x, y) = r sin

(
2π

x

Tx

)
,

where R is the distance from the center of the torus to the center of the circle that is

rotated to generate the torus and r is the radius of the circle.

Let p1 and p2 be two points on the torus and let b1 and b2 be vectors from the

origin to the points p1 and p2, respectively, and let b
(p)
1 and b

(p)
2 be the orthogonal

projections of b1 and b2 onto the u−v plane. The metric used to compute the nearest

neighbors for each node on the torus is

d(p1, p2) =
√
θ2

1 + θ2
2, (26)

where θ1 is the angle between b
(p)
1 and b

(p)
2 and θ2 is the angular distance between p1
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and p2 projected onto a circle of radius r centered at the origin on the v − w plane.

θ1 can be found by taking the inner product between vectors b
(p)
1 and b

(p)
2 by the

relation

θ1 =
Ty
2π

cos−1


〈
b

(p)
1 ,b

(p)
2

〉
∥∥∥b(p)

1

∥∥∥∥∥∥b(p)
1

∥∥∥
 .

To �nd θ2, the vectors b1 and b2 must �rst be rotated onto the v−w plane. This

is accomplished by using the transformation


cos ηi − sin ηi 0

sin ηi cos ηi 0

0 0 1

 (27)

where ηi is the angle between b
(p)
i and the v−axis for i = 1, 2. Using the appropriate

trigonometric identities, the matrix (27) can be expressed as

Ri =
1√

u2
bi

+ v2
bi


vbi

−ubi
0

ubi
vbi

0

0 0 1

 ,

where ubi
is the u−component of bi and vbi

is the v−component of bi for i = 1, 2.

Let

p1 = R1b1 and p2 = R2b2

to obtain

p̂1 = p1 −R
b

(p)
1∥∥∥b(p)
1

∥∥∥ and p̂2 = p2 −R
b

(p)
2∥∥∥b(p)
2

∥∥∥ .
Figure 20 provides an illustration of the two rotated vectors p1 and p2 in the v − w

plane while �gure 21 provides an illustration of the vectors p̂1 and p̂2.
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Figure 20. The vectors p1 and p2 are illustrated in the v−w plane. They are the rotated variants
of b1 and b2, respectively.

Figure 21. The vectors p̂1 and p̂2 are illustrated in the v−w plane. They point to the two points
p1 and p2, respectively, on a cross section of the torus centered at the origin in the v-w plane.

The angle θ2 can then be computed as

θ2 =
Tx
2π

cos−1

(
〈p̂1, p̂2〉
‖p̂1‖ ‖p̂2‖

)
.
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Figure 22. Nearest neighbors (circled in red) of a node (circled in green) on a torus with R = 1
and r = 0.5 using the custom angular distance metric de�ned by (26). Nearest neighbors from the
torus are properly mapped back onto the two-dimensional grid

The metric (26) was used to compute nearest neighbors on the torus instead of

the default Euclidean distance because the Euclidean distances between points on a

two-dimensional grid are not preserved when they are mapped onto a torus; �gures

22 and 23 illustrate why using the default Euclidean distance to compute a node's

nearest neighbors is not recommended.

Figure 23. Nearest neighbors (circled in red) of a node (circled in green) on a torus with R = 1 and
r = 0.5 using the default Euclidean distance. Since Euclidean distance is not preserved when points
are conformally mapped from a two-dimensional grid onto a torus, nearest neighbors are incorrectly
computed
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3.2 Results

Solutions of varying accuracies are given in �gures 24 and 25. As we saw in chapter

II, larger step sizes can be taken when integrating factors and splitting schemes are

employed to solve (14). Figures 24 and 25 show this to be true as well when solving

equation (25). Figure 24 compares favorably with �gure 16. Additionally, as we saw

in �gure 9, the accuracy of our solutions are limited by the spatial discretization as

seen in �gure 25 since errors neither decrease or increase and stay at around 10−4.8

regardless of what k is. Limited accuracy can also be attributed to the fact that

periodic boundary conditions are enforced on an initial condition that is not periodic,

as mentioned in chapter II. Figure 26 gives us some insight into how accurate we

should expect our solutions to be. In �gure 26, the absolute error attains a maximum

around 10−4 at roughly x = 25. Since the error between D applied to the initial

condition and ∆u(x, y, 0) is around 10−4, we expect the accuracy of our solutions to

be around the same order. This is accurately re�ected in �gure 25 where solutions

attain errors around 10−4.8.

Since the accuracy of our solutions is limited by the spatial discretization of (25),

we can simply increase N and n at the cost of computation time and memory. Ad-

ditionally, as mentioned in chapter II, increasing the domain size can also lead to

improvements in accuracy since u(x, 0)→ 0 rapidly as |x| → ∞. Figure 27 compares

solutions found using integrating factors with a large number of nodes (N = 36000)

and a large domain size (Tx = 60, Ty = 6); the accuracy of our solutions is still limited

by the error between D applied to the initial condition and ∆u(x, y, 0), but larger

step sizes can be used.

With 4000 nodes (200 in x, 20 in y), 130 nearest neighbors and a polynomial order

of 10 used to compute D over x ∈ [0, Tx]× [0, Ty], where Tx = 50 and Ty = 5, the costs

of evolving solutions in time with several �rst and second order schemes for t ∈ [0, 0.1]
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are illustrated in �gure 28. The computing costs in �gure 28 is comparable to the

computing costs illustrated in �gure 17. First and second order splitting outperforms

integration factors in terms of computing costs�this advantage is somewhat negligible

given that their computing costs are still of the same order. We note that splitting

methods also outperform integration factors in terms of accuracy based o� of �gure

24.

Figures 24 and 28 are summarized by �gure 29. Errors produced by each �rst

order method decrease appropriately as computation time increases. For second order

methods, when integrating factors or splitting are not used, errors do not follow a

familiar trend due to stability restrictions. However, errors produced with integrating

factors and splitting behave as expected. Figure 29 suggests that splitting is superior

to integration factors.
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Figure 24. Log10 convergence plots are shown comparing numerical solutions of the two-
dimensional NLS equation at t = 0.1 obtained using several methods. 4000 nodes (200 in x, 20
in y), 130 nearest neighbors and a polynomial order of 10 were used to compute the RBF-FD matrix
over x ∈ [0, Tx] × [0, Ty] where Tx = 50 and Ty = 5. (TOP) AB1-AM1 predictor-corrector method
was used to propagate solutions in time for non-splitting methods. For the �rst order splitting
scheme, an explicit Euler method was used to solve the nonlinear portion while an implicit Euler
scheme was used to solve the linear portion. Hyperviscosity was computed with β = 4 and γ = 0.01.
(BOTTOM) RK2 was used to propagate solutions in time for non-splitting methods. For the Strang
splitting scheme, RK2 was used to solve the nonlinear portion while BDF2 was used to solve the
linear portion. Given that BDF2 is an implicit multi-step method, unknown starting values were
determined using RK2. Hyperviscosity was computed with β = 5 and γ = 0.1.
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Figure 25. Comparison between numerical solutions at t = 0.1 with and without Integrating
Factors using a fourth order ODE solver (RK4) for 2D NLS. 1000 nodes were used (100 in x and
10 in y) with 72 nearest neighbors, polynomial order 7, Tx = 50 and Ty = 5. Hyperviscosity was
computed with γ = 0.05 and β = 3
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Figure 26. Error between D applied to the initial condition and ∆u(x, y, 0); 1000 nodes were used
(100 in x and 10 in y) with 72 nearest neighbors, polynomial order 7, Tx = 50 and Ty = 5. The
accuracy of solutions using higher order ODE solvers is limited by the spatial discretization, i.e. the
RBF-FD matrix D
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Figure 27. (TOP) Error between D applied to the initial condition and ∆u(x, y, 0); 36000 nodes
were used (600 in x and 60 in y) with 132 nearest neighbors, polynomial order 10, Tx = 60 and
Ty = 6. (BOTTOM) Comparison between numerical solutions at t = 0.1 with Integrating Factors
using RK4 for 2D NLS; accuracy is still limited by the spatial discretization despite the fact that
36000 nodes were used. Hyperviscosity was computed using β = 4 and γ = 2.5
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Figure 28. Timing results for several methods excluding hyperviscosity; the preprocessing costs
of computing the RBF-FD matrix and its eigendecomposition were not accounted for. 4000 nodes
(200 in x, 20 in y), 130 nearest neighbors and a polynomial order of 10 were used to compute the
RBF-FD matrix over x ∈ [0, Tx] × [0, Ty] where Tx = 50 and Ty = 5. Solutions were evolved in
time from t = 0 to t = 0.1 for each method using di�erent step sizes on a machine with an Intel
Xeon E5-2687W v3 3.1 GHz 10-core (20 logical cores) processor. Each method has rate O

(
k−1

)
for

computation cost. (LEFT) AB1-AM1 predictor-corrector method was used to propagate solutions
in time for non-splitting methods. For the �rst order splitting scheme, an explicit Euler method
was used to solve the nonlinear portion while an implicit Euler scheme was used to solve the linear
portion. (RIGHT) RK2 was used to propagate solutions in time for non-splitting methods. For the
Strang splitting scheme, RK2 was used to solve the nonlinear portion while BDF2 was used to solve
the linear portion. Given that BDF2 is an implicit multi-step method, unknown starting values were
determined using RK2.
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Figure 29. Computation time versus the L∞ error for several methods�hyperviscosity was not
used. 4000 nodes (200 in x, 20 in y), 130 nearest neighbors and a polynomial order of 10 were used
to compute the RBF-FD matrix over x ∈ [0, Tx] × [0, Ty] where Tx = 50 and Ty = 5. Solutions to
the two-dimensional variant of the NLS equation were evolved in time from t = 0 to t = 0.1 for each
method using di�erent step sizes on a machine with an Intel Xeon E5-2687W v3 3.1 GHz 10-core
(20 logical cores) processor. (LEFT) AB1-AM1 predictor-corrector method was used to propagate
solutions in time for non-splitting methods. For the �rst order splitting scheme, an explicit Euler
method was used to solve the nonlinear portion while an implicit Euler scheme was used to solve the
linear portion. (RIGHT) RK2 was used to propagate solutions in time for non-splitting methods.
For the Strang splitting scheme, RK2 was used to solve the nonlinear portion while BDF2 was used
to solve the linear portion. Given that BDF2 is an implicit multi-step method, unknown starting
values were determined using RK2.
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IV. Conclusion

4.1 Concluding Remarks

RBFs can be used to numerically solve the NLS with reasonable accuracy because

errors behave as expected based on their orders of accuracy when produced with

various ODE solvers. Hyperviscosity, operator splitting and integration factors can

be used to stabilize time-stepping schemes so that larger step sizes can be taken

when using higher order methods. Results in chapter II are in close agreement with

those in chapter III. Integrating factors and splitting schemes yield improvements in

stability at the cost of computation time. Splitting schemes have lower computing

costs and attain lower errors when compared to integration factors, making them

superior in terms of computing costs and accuracy. Larger step sizes can be taken

when hyperviscosity is employed at the expense of higher errors unless optimal values

for β and γ are used.

4.2 Future Considerations

The use of hyperviscosity as a time stabilization method allows for smaller step

sizes at the cost of increased errors. Deliberating the source of these errors is an

important avenue for future research. Hyperviscosity was not computed using any

polynomial terms in chapters II and III and the inclusion of polynomial terms can

potentially have an e�ect on the behavior of the operator. Moreover, the work here

only considered the use of GA RBFs to construct the hyperviscosity �lter. Exploring

the use of other RBFs to compute hyperviscosity should also be considered to deter-

mine the errors of hyperviscosity computed using di�erent RBFs. Lastly, a parameter

study should be conducted to determine optimal values for β and γ based o� of the

size and/or spectral gap of the RBF-FD matrix. Much of the work on hyperviscosity
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found in the literature simply gave ranges for optimal values based o� of heuristics.

The work presented only made use of �rst and second order splitting schemes.

Higher order operator splitting methods combined with RBF-FD should be consid-

ered in future work using the composition techniques discussed in [23] for potential

improvements in accuracy.

Results produced in chapters II and III using higher order methods, especially

fourth order methods, were found to be limited by the spatial discretization of the

di�erential operator. Blindly increasing the size of the domain, the polynomial order,

the number of RBF centers and nearest neighbors by means of a heuristic approach

can yield a small improvement in the accuracy of solutions at the added expense of

computation time. A parameter study should be conducted to determine an optimal

combination of the polynomial order, number of RBF centers and number of nearest

neighbors that can be used to construct the RBF-FD matrix in order to obtain a

desired degree of accuracy. Periodic initial conditions should also be considered.

Solving the NLS equation subject to periodic boundary conditions using a periodic

initial condition may lead to an improvement in accuracy at the boundary of the

domain, thus eliminating the need to increase the domain size.
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Solutions to the one-dimensional and two-dimensional nonlinear Schrodinger (NLS) equation are obtained numerically using methods based
on radial basis functions (RBFs). Periodic boundary conditions are enforced with a non-periodic initial condition over varying domain sizes.
The spatial structure of the solutions is represented using RBFs while several explicit and implicit iterative methods for solving ordinary
di�erential equations (ODEs) are used in temporal discretization for the approximate solutions to the NLS equation. Splitting schemes,
integration factors and hyperviscosity are used to stabilize the time-stepping schemes and are compared with one another in terms of
computational e�ciency and accuracy. This thesis shows that RBFs can be used to numerically solve the NLS with reasonable accuracy.
Integration factors and splitting methods yield improvements in stability at the cost of computation time; both methods produce solutions
of similar accuracy while splitting methods are slightly less expensive to implement than integration factors (computation times were of the
same order of magnitude). The use of hyperviscosity can lead to an improvement in stability but can also lead to increased errors if the
relevant parameters are not chosen carefully.
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