






Table 2. This table displays the STD of the residual for all data cubes and all targets.
It also presents the mean STD over the targets for each data cube and the mean over
all targets and data cubes. The green boxes represent the lowest STD out of the four
atmospheres. The NOMADS atmosphere resulted in the lowest mean STD over all
data cubes and targets, while the ExPERT atmosphere had the most green boxes. The
differences in mean STD between NOMADS and ExPERT are within the uncertainty,
while the difference between NOMADS and radiosonde is not within uncertainty, and
MLS in not within the uncertainty for any other atmosphere.
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(b) Upwelling Radiance
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(c) Downwelling Radiance

Figure 9. Figures 9a, 9b, and 9c plot the iterated spectra for the transmission, up-
welling, and downwelling radiance respectively. The transmission spectra for all at-
mospheres is fairly consistent, while the radiance spectra are more spread out. The
iteration changes water content at two altitudes in the profiles but cannot change the
total water column, leading to slightly different radiance spectra.
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Figure 10. Figure showing the extracted emissivity of the low emissivity target after
iteration. All of the extracted spectra are close to the truth spectra.
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(a) 8/12/2014 at 17:53
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(b) 8/12/2014 at 20:00

Figure 11. This figure shows the mean RMS error at each iteration number for the di-
verse pixels matched to the forward modeled library spectra. This data was used to try
and determine if any atmosphere converged to an optimal solution with less iterations
than another. Figure 11a shows the NOMADS atmosphere converging around twenty
iterations and the radiosonde converging around seven. This result was not shown in
the other data however, as can be seen in Figure 11b.
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(d) Dew Point, Adjusted

Figure 12. Figure showing the atmospheric profiles after ground weather adjustments.
It can be seen that the adjusted temperature profiles share the same ground temper-
ature but retain their original lapse rate. The dew point plot also retains its original
shape after being adjusted for the measured surface water content.

Table 3. This table displays the mean RMS error of the extracted emissivity spectra
over all targets and data cubes of the initial atmospheric compensation, iterated, ini-
tial using ground weather, and iterated using ground weather. Iteration brings the
error for all of the atmospheres together so that the difference in errors is statistically
insignificant. Using measured ground weather to adjust the temperature and water
content had a negative effect on all atmospheres.
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(a) Low Emissivity Target With Ground Adjustments
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(b) Low Emissivity Target Iterated and With Ground Adjustments

Figure 13. Figure showing the extracted emissivity of the low emissivity target before
and after iteration and using ground measurements. Adjusting the atmospheric profiles
with known ground weather hurt the performance of all atmospheric profiles. It is
suspected that there was an error in atmospheric water content unit conversions using
empirical formulas. The drop in emissivity at the edges of the band in Figure 13a
indicates a large error in the amount of water in the atmosphere.
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Table 4. This table displays the mean STD of the residual of the extracted emissiv-
ity spectra over all targets and data cubes of the initial atmospheric compensation,
iterated, initial using ground weather, and iterated using ground weather. Iteration
brings the STD for all of the atmospheres together so that the difference is statistically
insignificant. There is no statistical difference between the STD of the NOMADS first
guess and the NOMADS iterated results. Using measured ground weather to adjust
the temperature and water content had a negative effect on all atmospheres.
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V. Conclusions

The results show that using the NOMADS or ExPERT atmospheric profiles as

a first guess consistently provided improved emissivity estimates over using MLS

for atmospheric compensation. In terms of RMS error and STD of the residual,

NOMADS and ExPERT generally outperformed the results obtained using radiosonde

data and MLS. The radiosonde presented larger RMS error and STD of the residual

because of time differences between the balloon launch and the data collection and

because of latitude and longitude balloon drift during its ascent.

The atmospheres were iterated with a Nelder-Mead minimization fifty times which

resulted in no statistical difference between the four atmospheric profiles. An interest-

ing result shown by the iterations was that the NOMADS first guess and NOMADS

iterated atmospheres resulted in the same STD of the residual. Although there is not

enough information here to make conclusions about target detection performance,

this result should be examined in a target detection scenario in future work.

There was no definitive answer to the question posed about which atmospheric

profile would converge to an optimal solution in the fewest iterations. There was

only one out of seven data sets that suggested that the NOMADS atmosphere would

converge around twenty iterations. The remaining six data sets gave no indication

that any of the atmospheres converged faster than another. It was determined that

the Nelder-Mead minimization was not appropriate for this type of analysis. A com-

bination of Nelder-Mead and gradient based solutions could likely produce a more

interesting result.

Using known ground weather to adjust the temperature and water content of the

atmospheric profiles caused a degradation in performance for all atmospheres. The

reason for this is suspected to lie in how the water content adjustment was performed.

In these simulations, MODTRAN used relative humidity as the input for atmospheric
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water content. In order to adjust this, the relative humidity was converted to parts-

per-million by volume using an empirically modeled equation. The profile was then

adjusted using Equation 23 and converted back to relative humidity. Any error in

this conversion equation would be doubled, and could result in larger RMS error and

STD. The low emissivity at the edges of the band in the extracted spectra indicate

that there is an error in the amount of atmospheric water. This could be avoided in

future studies by using parts-per-million by volume as the input to MODTRAN.

There are many things that can be done in the future to confirm and widen the

validity range of these results. Performing this study over a larger number of data

cubes and weather conditions would help to confirm these conclusions. Using different

standard model atmospheres and data cubes collected over other geological locations

would widen the validity range of these results.
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