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ARTICLE OPEN

A computational approach for mapping electrochemical
activity of multi-principal element alloys
Jodie A. Yuwono 1,2✉, Xinyu Li 3, Tyler D. Doležal 4, Adib J. Samin4, Javen Qinfeng Shi3, Zhipeng Li2 and Nick Birbilis2,5✉

Multi principal element alloys (MPEAs) comprise an atypical class of metal alloys. MPEAs have been demonstrated to possess
several exceptional properties, including, as most relevant to the present study a high corrosion resistance. In the context of MPEA
design, the vast number of potential alloying elements and the staggering number of elemental combinations favours a
computational alloy design approach. In order to computationally assess the prospective corrosion performance of MPEA, an
approach was developed in this study. A density functional theory (DFT) – based Monte Carlo method was used for the
development of MPEA ‘structure’; with the AlCrTiV alloy used as a model. High-throughput DFT calculations were performed to
create training datasets for surface activity/selectivity towards different adsorbate species: O2-, Cl- and H+. Machine-learning (ML)
with combined representation was then utilised to predict the adsorption and vacancy energies as descriptors for surface activity/
selectivity. The capability of the combined computational methods of MC, DFT and ML, as a virtual electrochemical performance
simulator for MPEAs was established and may be useful in exploring other MPEAs.

npj Materials Degradation            (2023) 7:87 ; https://doi.org/10.1038/s41529-023-00409-7

INTRODUCTION
In conventional alloy design to date, typically a principal metallic
element is explored, accompanied by other elements in relatively
minor concentrations. Such alloy design – whilst often empirical –
has also been aided by thermodynamic calculations; the devel-
opment and use of phase diagrams; and more recently by kinetic
assessment to factor in thermally activated solid-state transforma-
tions. Whilst such approaches have developed to significant levels
of sophistication, the exploration of more complicated alloy
systems, of which no prior data exists, can make desktop alloy
design complex1 Modern alloy exploration in the form of the so-
called multi-principal element alloy (MPEAs) requires new tools
and approaches to aid in their design. As the name suggests,
MPEAs contain at least two (but often more, including >5),
principal alloying elements. One impetus for the rapid develop-
ment and research regarding MPEAs is owing to their excellent
physical properties2 and more recently, reports of their aqueous
corrosion resistance – amongst other atypical properties. Further-
more, other applications in which MPEAs are being explored
include catalysts and battery electrodes, in addition to structural
materials3. Due to the large number of possible alloying elements
available for potential MPEA production, and the myriad of
possible elemental combinations, the realm of MPEAs still remains
heavily unexplored4. If MPEA development is to continue at an
appropriate pace, conventional trial-and-error methods for alloy
development must be supplemented by objective alloy design5. In
addition to the need for rational alloy design based on tools that
can assist in prediction of structure and perhaps key properties,
the desktop computational prediction of corrosion performance
remains its own challenge. To date, there are very few mechanistic
or deterministic tools available that can generate computed
information in a manner that can aid in prediction of electro-
chemical performance. In this work, a computational methodology

(which is actually a computational workflow) is presented, in order
to estimate the electrochemical performance of an MPEA, without
the need for any empirical testing.
Integrated approaches permit computational materials discov-

ery approaches for new (objective oriented) alloy design. To date,
the calculation of phase diagrams (CALPHAD), which is based on
equilibrium thermodynamics to provide information on probable
equilibrium phases, is widely used; as is the use of density
functional theory (DFT) to provide information on phase stability.
Though CALPHAD and DFT approaches are beneficial, such
approaches may be time-consuming, computationally costly and
limited in what can be explored relative to properties of interest
and the breadth of MPEA compositions1,6. Recently, a purely
machine learning (ML) approach has been developed to accel-
erate the discovery of MPEAs, with a specific focus on alloy
development of INVAR7. This kind of ML-based method provides
the capability to build a connection between underlying physics
and composition-dependent properties7,8, allowing for the selec-
tion, design and verification of new alloys to be done an order of
magnitude faster. However, the lack of understanding regarding
how alloy composition can impact material properties for
unexplored composition space, remains a bottleneck. This level
of understanding is critical for predicting which elemental
combinations may yield optimal structural performance in various
operational environments.
When a primary property of interest is alloy electrochemistry

and/or corrosion behaviour, detailed information regarding sur-
face features is critical – as electrochemical processes occur at the
alloy surface (i.e., alloy-environment interface). Without a com-
plete understanding of the composition-dependent surface
properties in the context of electrochemistry and/or corrosion,
the verification of newly designed alloys will be tedious. For
instance, in alloys that develop local sites with different
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electrochemical activities, this may accelerate corrosion due to
micro-galvanic coupling or localised pit formation9. Herein, a
computational approach is proposed that combines Monte Carlo
(MC) methods, high-throughput DFT, and ML – to enable virtual
electrochemical characterisation of digitally designed (new) alloys.
As a proof of concept, this methodology was explored for an
MPEA with the equi-atomic composition AlCrTiV. This alloy was
selected as a representative model system, because its electro-
chemical activity has been thoroughly and well-documented in
the literature10–14. The ‘electrochemistry simulator’ is expected to
describe the relationship between surface features and surface
reactivity. Furthermore, the intent is to provide a pathway, if not a
methodology, for data collection and verification, which would
enable a knowledge-guided ML approach for materials discovery
of MPEAs with tailored electrochemical properties.

RESULTS AND DISCUSSION
First-principles investigation of bulk structure
In this study – as already ascertained from the Approach section –
exploration of the AlCrTiV MPEA was carried out, owing to the
alloy being known to exhibit the formation of only a single (bcc)
phase at room temperature, along with a reported record
regarding the contribution of each element to electrochemical
reactions. The results of our attempt at the prediction of
dissolution characteristics for AlCrTiV, using the workflow
proposed herein; follows below, including correlation with
experimental data. The (MC)2 methodology accurately predicted
the formation of a single bcc phase for AlCrTiV with an equi-
atomic configuration and a lattice constant of 3.05 Å, with two
supercells made are shown in Fig. 1a–d reveal the charge
distributions of each element in the bulk AlCrTiV. Bader charge
analysis revealed that Al and Cr becomes negatively charged with
charges of −0.20 and −0.50 e-, while Ti and V becomes positively

charged with charges of +0.63 and +0.07 e-. The final structure
matched experimental data, well, with whereby the empirically
determined lattice constant is 3.075 Å10. The empirical and
simulated x-ray diffraction patterns for AlCrTiV crystal are shown
in Fig. 1e, f.

First-principles investigation of surface electrochemistry
Using the bulk AlCrTiV alloy structure predicted by (MC)2, surface
slabs were generated and used to build a surface reactivity map
based upon the chemical interactions between different species
(i.e., H+, Cl-, and O2-) and the alloy surface. On the basis of
empirical data being available for the electrochemical activity of
AlCrTiV (which is from a bulk polycrystal), we selected the (001)
surface for the adsorption model – as it provided 32 possible
adsorption sites (i.e., atop, bridge-x, bridge-y, and hollow), along
with eight vacancy sites. Furthermore, we also employed an
extended supercell in order to minimise the lateral interaction
between adsorbed species. Despite the species being charged in
the electrolyte, we have only considered the adsorption of neutral
species on the surface in our DFT calculations (*H, *Cl and *O);
noting that the accounting for charge/electrons may be
approached using the standard hydrogen electrode method15.
To maximise atomic variation and surface structure, six different
surface slabs were created for the adsorption study and a vacancy
was created on the topmost layer to simulate a dissolution event
at the surface. From DFT calculations, we successfully established
the surface activity/selectivity that is represented using the energy
map, as shown in Fig. 2.
The results presented in Fig. 2 provide information on the early-

stage electrochemical surface activity of AlCrTiV in the presence of
different adsorbates. From the calculated adsorption and vacancy
energy, the local electrochemical activity on the surface is
observed, in which the formation of cathodic and anodic sites
can be distinguished by their selective interaction with

Fig. 1 The comparison of MPEA structures from simulation and experiment. a, b Two final bulk MPEA supercell structures consist of 128
atoms as generated from (MC) calculations. c, d The charge distribution of MPEA supercell structures. Green, dark-blue, light-blue and red
circles represent Al, Cr, Ti and V atoms, respectively. Turquoise and yellow colour isosurfaces represent the gain and loss of electrons,
respectively. e X-ray diffraction pattern from a powdered sample of the as-cast AlCrTiV alloy. Reproduced with permission from Qiu et al.10.
Copyright 2017 Elsevier. f Simulated x-ray diffraction patterns from two final bulk structures predicted using (MC) algorithm.
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adsorbates/vacancy. Red-coloured regions indicate strong inter-
action between alloy-environment, whereas blue-coloured regions
indicate weak interaction between alloy-environment. Strong
H-bonding surface denotes the preference of surface regions to
act as cathodes, whereas strong O-bonding, Cl-bonding as well as
vacancy formation denote the preference of surface regions to act
as anodes. Furthermore, we can understand the dissolution
mechanisms of the alloys, whether it undergoes direct or indirect
dissolution via salt-formation (e.g., by the formation of metal oxide
and/or metal chloride). This mapping enables surface activity/
selectivity to be inspected ‘virtually’, in a manner that is usually
only obtained using complex local electrochemical characterisa-
tion techniques such as scanning tunnelling microscopy
(STM)16,17, whilst alternatively, the scanning vibrating electrode
technique (SVET)18 or scanning electrochemical cell microscopy

(SECM)19,20 provide excellent spatial resolution at an order of
magnitude lower length scale. It is noted that the length scales of
interrogation from the calculations herein, may also be mechan-
istically advantageous on the basis of prospects for nano-
engineering alloy structures.
The selection of adsorbates explored was based on their critical

role during surface electrochemistry (namely, alloy corrosion),
such as participating in the hydrogen evolution reaction, oxide
formation and thickening, surface dissolution, and pitting. From
calculated surface maps, a different reactivity between may
distinguish between cathodic and anodic sites on the surface.
While previous studies on conventional (non MPEA) alloys have
only highlighted the competitive adsorption of such species on
the alloy surface as the coverage function21,22, in the present there
is a deliberate focus on the interaction between those species

Fig. 2 The surface activity/selectivity maps at U = 0 V and pH = 0 for different slabs. The maps showing the interactions of surface atoms
following the adsorptions of Cl, O, H and the formation of vacancy.
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with the different elements on the MPEA’s surface – allowing
identification and analysis of their roles on the surface
electrochemistry.
Figure 3 shows the least-square fitted energy values for all site

adsorption on each slab (and in which data shown in Supple-
mentary Fig. 1 shows only the atop site adsorbates). It was
revealed that *O and *Cl prefer to stay close to Ti on all surfaces,
except on B7 where *Cl also prefer to stay close to V. Meanwhile
*H prefers to stay close to Cr on A6, A8 and B6, to V on A7, B7 and
B8. From the small sampling performed, we can understand the
role of each element as anodic and cathodic sites during
electrochemical reactions. Ti is expected to be oxidised and
formed oxide layers, the anodic site, followed by V, Cr and Al. The
same order of elements for another anodic site applies for
competing oxidation/dissolution via reaction with Cl-. The
elemental order for cathodic site as predicted by hydrogen
evolution reaction is varied from the systems studied here, in
which Ti, V and Cr exhibits the capability to facilitate *H adsorption
with negative energies, excluding Al with positive energy. This
suggests that Al is more dominant and active towards any
oxidation/anodic reaction, which is consistent with experi-
ments12,13. Additionally, the role of Ti on the formation of
protective oxide layer, including the enrichment of Ti, can be
explained from its strong interaction with O2- and Cl-. The
adsorption energy difference on different slabs may be used as
the preference indicator for each slab tendency as being more or
less anodic/cathodic, as described by the adsorption of *O and *Cl
or *H, respectively.
The inspection of Fig. 3 reveals that it is difficult to clearly

distinguish the contribution of each element, due to the
complexity of alloy systems (i.e., in addition to chemical complex-
ity, there is also a variation of adsorption sites, which includes the
bridge and hollow sites that require the consideration of multiple
atoms) – as well as the limitation of slab samples investigated in

this study. We acknowledge that the electrochemical activity of
each element is atypical and not solely defined by its own intrinsic
features. Neighbouring atoms and a coordination network will
contribute to electrochemical activity, as understood from the
charge distribution of each atomic species in MPEA structure in
Fig. 1c, d. Therefore, we will refrain from quantitatively focusing on
feature rank and selection during the present work. The future
objective development of new MPEAs with controlled electro-
chemical activity will require the theoretical analysis of many
samples, which can also become an obstacle even in theoretical-
based studies. Instead, we are more interested in the ongoing
generation of datasets for training ML models to predict the
electronic energy of certain surface structures. This approach will
be beneficial for the generation and analysis of large surface
datasets, to better understand the contribution of individual
elements on surface electrochemistry – which is particularly
important for MPEAs.
From the experimental work to date studying AlCrTiV, it is

understood that ‘dynamic-passivity’ is a critical factor contributing
to corrosion resistance of AlCrTiV; including the surface film
composition, thickness and electronic properties. Various analysis
tools have confirmed that AlCrTiV exhibits excellent electroche-
mical stability, which is attributed to the ability to form passive
layer comprising of mixed metallic oxides: Al2O3, TiO2, V2O3 and
Cr2O3. The experimental techniques used to study the passive film
characteristics and electrochemical activity, include high resolu-
tion X-ray photoelectron spectroscopy (XPS) and atomic emission
spectroelectrochemistry. Using AESEC, Choudhary et al.12,13 quan-
titatively recorded the dissolution and oxidation of AlCrTiV on a
‘per element’ basis. It was revealed that elemental Al was readily
observed to preferentially dissolve (although the alloy has
stoichiometrically equal atomic proportion of all constituent
elements), as soon as the sample was exposed to the electrolyte,
as shown in Fig. 4a.

Fig. 3 The least-square fitted ETi , Ev , EAl and ECr on each slab at U= 0 V and pH = 0 for different slabs. a A6, b A7, c A8, d B6, e B7 and f B8.

J.A. Yuwono et al.

4

npj Materials Degradation (2023)    87 Published in partnership with CSCP and USTB



It is also revealed in Fig. 4b, that in the presence of an applied
potentiodynamic polarisation, that trans-passive dissolution of V
and Cr occurs, accompanied by the enrichment of Ti and its
oxidation to form TiO2 on the surface12,13. Despite the high
dissolution rate of elemental Al, results from detailed XPS analysis
revealed that Al2O3 was the major oxide present on the surface,
followed by TiO2 and then similar amounts of V2O3 and Cr2O3

13
.

The absence of mixed oxides here is also consistent with the
findings of the computational study by Samin on the thermo-
dynamics of Niobium-Titanium alloy oxidation23. In that study, it
was determined that TiO2 was found to be the most stable oxide
for most temperature-pressure combinations and mixed oxides
were never thermodynamically favourable. Key findings from such
aforementioned studies regarding corrosion resistant alloys, are
that dissolution/oxidation are non-stoichiometric, that mixed-
oxides are not present, and that the surface oxides also include a
proportion of unoxidised (M0) metal. The causality between such
characteristics and performance however remains under ongoing
investigation.

Machine-learning prediction of surface electrochemistry
In the workflow outlined for this study, the utilisation of ML was
then adopted to predict adsorption and vacancy energies. In a
previous study, Batchelor et al. used a coordination-based
representation and linear regression to predict adsorption
energies of O and OH on high entropy alloys24, resulting in an
RMSE of less than 0.1 eV. Nonetheless, that method was
developed to solely rely on surface coordination, disregarding
the identity of the adsorbed species; therefore, requiring separate
models for each adsorbate. Li et al. proposed an alternative
approach integrating both adsorbed species and surface slab
information25, thus enabled the prediction of cross-adsorbate and
cross-slab adsorption energies. That representation, however, is
limited to the most stable site and does not consider specific
adsorption sites or lateral interactions between adsorbates.
The present study enhances the combined representation by

incorporating an additional representation for the adsorption site,
enabling cross-site prediction. The improved representation is
comprised of EP to represent the single-atom adsorbate (*O, *H, or
*Cl in this study), SOAP to represent the high entropy alloy slabs26,
and GP-CAF to represent the adsorption site27 (representation
employed herein shown schematically in Fig. 5 and Supplemen-
tary Fig. 2).

Figure 6a-c compare the ML-predicted adsorption energies and
DFT calculated values using 5-fold cross validation test, and leave-
one-slab-out test (LOSO) with 20% samples from the test slab
added to the training set. The 5-fold cross validation test results
show a strong correlation between the ML predictions and DFT
calculated values, with a mean average error (MAE) of 0.197 eV,
highlighting the effectiveness of our model. In practice, it is
desirable for ML methods to have good cross-slab prediction
capabilities, as predicting the adsorption activity on new MPEAs is
a key goal of these calculations. The LOSO test was designed to
evaluate the model’s cross-slab prediction abilities, as seen in
Fig. 6b. This test resulted in a higher MAE compared to 5-fold cross
validation test and worse predictions for outliers, such as the B6
slab, where the ML model systematically underestimated the
adsorption energies. However, our model accurately distinguished
high and low adsorption energies on the test slab, indicating its
ability to correctly identify the most stable adsorption site. The
accuracy of LOSO test can be improved by adding 20% samples
from the test slab to the training set, as shown in Fig. 6c, and
would likely to be improved with more slabs in the training set as
there are only 6 slabs in this study.
Besides testing the performance of the ML model in predicting

adsorption energies, we also evaluated its capability in predicting
vacancy energies. Figure 6d–f shows a comparison between the
ML-predicted adsorption energies and DFT calculated values,
using 5-fold cross validation test, LOSO, and LOSO with 25%
samples added from the test slab to the training set (25% means 2
samples on test slab considering there are 8 vacancy sites on each
slab). Similar to the adsorption energy prediction, the model
performed best using 5-fold cross validation test, as the training
and test set have similar distributions. Also, LOSO test was
significantly worse than 5-fold cross validation testing and could
be improved by adding 25% samples from the test slab to the
training set.

Integrated computational approaches as a surface
electrochemistry simulator
We have shown the capability of ML to replace the use of high-
throughput DFT for providing data on the reactivity of the surface
models of an alloy. Such results demonstrate the effectiveness of
ML modes in accurately predicting adsorption of different species
and vacancy energies on MPEA. The key findings from the work
herein include:

Fig. 4 Experimental measurements of elemental electrochemical activity in AlCrTiV. a AESEC dissolution profile at OCP for AlCrTiV in
quiescent 0.6 M NaCl. Reproduced under Creative Commons CC-BY license from Choudhary et al.13. b AESEC polarisation profile for AlCrTiV in
quiescent 0.6 M NaCl. Reproduced with permission from Choudhary et al.12. Copyright 2020 Elsevier.
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(i) the application of the (MC)2 approach was capable of
providing a platform for subsequent DFT and ML
approaches – that are relevant to the determination of
electrochemical properties – where the prediction of
electrochemical properties has notionally been historically
challenging to model,

(ii) the workflow herein provides a visual, spatial map of
electrochemical properties from calculations entirely in-
silico,

(iii) all elements in AlCrTiV exhibit atypical properties due to
different charge distributions in MPEA compared to their
pristine crystal structure, in which Al exhibits spontaneous

Fig. 6 ML-predicted adsorption and vacancy energies against DFT-calculated adsorption and vacancy energies using different
approaches. a Five-fold cross-validation and b leave-one-slab-out test, c leave-one-slab-out with 20% samples from the test slab added to the
training set for the adsorption energies prediction. d Five-fold cross validation, e leave-one-slab-out test for vacancy and f leave-one-slab-out
with 25% samples from the test slab added to the training set for the vacancy energies prediction.

Fig. 5 Schematic of the combined representation used in this study. Elemental properties (EP) is used as adsorbate representation, group
and period-based coordination atom fingerprints (GP-CAF) as adsorption site representation and smooth overlap atom position (SOAP) as slab
representation. a The representations used for the adsorption study and (b) the representation used for the vacancy study.

J.A. Yuwono et al.
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formation of vacancy in AlCrTiV alloy that is well validated
by independent empirical data12,13 with the observation of
high Al dissolution rate,

(iv) the simulations were also able to ascertain that for AlCrTiV,
Ti has the most important contribution on the formation of
protective oxide species such as TiO2,

(v) the use of DFT and ML to model and predict AlCrTiV surface
activity/selectivity by considering different species, which
are critical for reduction oxidation reactions, enable the
investigations of nano-scale electrochemical reactions on a
complex surface.

Whilst we believe the above findings, and the pathway to
obtaining such computational results regarding surface electro-
chemistry are significant, it is also prudent to identify some of the
physical limitations. It requires future work, in order to gain the
most benefit from such approaches when applied to rationalising
MPEA behaviour. Some points that remain open and will be the
focus of future studies include:

● As also noted in this study, the corrosion performance of
MPEAs is closely linked to the nature of the surface films. The
modelling approach herein is in part, a proxy to studying
surface films on the basis that the modelling approach deals
with a ‘snapshot’ in time for an alloy surface (whereas surface
films develop dynamically). The model is indeed a major
simplification of the MPEA-electrolyte interface, as it presently
stands – however this is typical for any early model that may
evolve in complexity.

● The numbers of sample for MPEA’s surface, AlCrTiV, studied
here using DFT are small. Large datasets are necessary to
make any conclusive statement regarding elemental’s role on
the electrochemical reactions in-silico and to accurately
distinguish anodic and cathodic regions on the surface.

● Additional features, such as different crystallographic orienta-
tions, explicit modelling of electrolyte system including
cations and anions21,28, explicit treatment of temperature,
pH and applied potential21,29, will be beneficial for a more
accurate prediction of MPEA’s electrochemical activity as well
as to understand multiple competing reactions on the surface.
A detailed investigation on competing adsorptions in chan-
ging pH and applied potential21,22 either implicitly (as
described using Eqs. 5–8) or explicitly, can give insights on
the subsequent pathway (i.e., atomic dissolution, hydrogen
evolution reaction, oxide formation).

● Large datasets are highly appreciated to improve the
performance of our ML prediction algorithm, which will be
the key of such an on-the-fly approach.

The approach outlined in the study herein, whilst applied to
only a single empirical benchmark, has provided a computation
workflow that may be utilised as a virtual electrochemical

characterisation tool. Such a tool has the capacity to predict and
therefore estimate the electrochemical properties of MPEAs in-
silico, by considering composition, crystallographic orientation,
and number of samplings. As a result, the computation workflow
herein introduces a cheaper and faster approach to garner an
insight into electrochemical properties of new MPEAs with tuned
composition and phase, designed entirely from simulations; with
MPEAs revealing promising electrochemical performance labora-
tory verified accordingly.
Herein, a methodology has been presented for generating

realistic MPEA structures for AlCrTiV, using implementation of the
(MC)2 algorithm for the investigation of electrochemical activity
and development of activity/selectivity maps. Furthermore, the
work herein reports on the development and utilisation of an ML
method which capable of predicting surface electrochemical
activity via adsorption and vacancy energies. The findings for the
surface activity/selectivity of AlCrTiV (001) are based on the
investigation of six surface models originating from two bulk
models, which are expected to give a general and reproducible
trend. Independent detailed experiments were used to correlate
and verify the electrochemical properties of the AlCrTiV MPEA,
derived from the simulations herein - in which Ti has the most
important contribution on the formation of protective oxide
species such as TiO2.
The combined (MC)2 and DFT/ML approach presented in this

work is a potential candidate for intelligently exploring vast
numbers of elemental combinations (MPEA compositions); which
is both critical and necessary in providing an in-silico insight for
rationalising structure-electrochemistry relationships. The robust-
ness of the ML approach for replacing costly DFT calculations for
the collection of ‘electronic energies’ opens opportunities for
investigating a much larger number of surface models, which will
increase accuracy for prediction of MPEA surface electrochemistry.
One of the key features is the identification of active sites or the
role of each element in a MPEA via the construction of an
electrochemical activity/selectivity map. Such mechanistic under-
standing is beneficial for building an improved electrochemistry
microkinetic model for MPEAs, in which reactions are non-
uniform, and each reaction is sensitive to local surface features.
The approach developed herein is readily applicable for the
design and application to other MPEAs.

METHODS
A state-of-the-art hybrid MC and DFT approach was employed in
order to develop MPEA models sampled from equilibrium30.
Herein, the ability to predict electrochemical activity of an MPEA
using computer simulation was investigated. Three stages were
employed in this workflow (Fig. 7).

Fig. 7 The overall workflow of virtual electrochemistry simulation performed in this study and its verification.
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The phase and composition at equilibrium were obtained using
the multi-cell Monte Carlo (MC)2 method. Specifically, the existing
MC code, based on a methodology proposed by Ghazisaeidi31,
was utilised in order to predict stable phases and phase fractions
for an MPEA of choice and a given set of conditions (temperature
and pressure). Using an (MC)2 predicted structure, we then
generated surface slabs, and performed high-throughput DFT
calculations to understand the reactivity of these surfaces in
aqueous environments - ahead of developing machine-learning
(ML) models to predict the DFT-derived electronic energy. This
was followed by a survey of surface electrochemical activity on
(001) AlCrTiV surfaces with different surface features (of both the
ratio and the combination of elements). We carefully investigated
their selectivity and electronic response toward different species
in aqueous media, including H+, O2- and Cl-. We used combined
representation of elemental properties (EP)25, smooth overlap
atom position (SOAP)26 and group and period-based coordination
atom fingerprints (GP-CAF)27,32 to predict the electrochemical
activity: passive film formation and surface dissolution from a
combination of different MPEA surfaces.

Bulk calculations (MC)2 method
The bulk structure was generated using an implementation30 of the
(MC)2 algorithm31,33,34. The simulation was performed at T= 300 K,
P= 0 Pa. This condition was chosen to obtain realistic models of
AlCrTiV with composition and phase similar to the experiments10.
Four simulation cells were initialised with 64 atoms per cell in the
initial configurations of body-centred cubic (bcc), hexagonal close
packed (hcp), and face-centred cubic (fcc), respectively. During the
simulation, two types of moves were considered, a local flip or
intra-swap. A local flip is described as randomly selecting one of the
four simulation cells, then randomly selecting one atom within the
chosen simulation cell, and flipping it from its current species type
to one of the other four species types. The intra-swap consists of
randomly selecting one of the four simulation cells, then randomly
selecting two atoms whose positions are swapped. The algorithm
has been constructed to only perform an intra-swap between two
atoms of different types and should a simulation cell become 100%
of one species, the intra-swap move is rejected. DFT calculations
were executed to calculate simulation cell internal energy and
volume changes, with the simulation was performed at T= 0 K and
P= 0 Pa. The entropy correction by temperature effects was
considered from the configurational entropy. The acceptance
probabilities, based on the Metropolis criteria35, for the local flip
and intra-swap, are given in the following formulas respectively.

Pflipaccept ¼ min 1; exp �βΔHþ NΔGmð Þf g (1)

where ΔH and ΔGm are calculated as follows:

ΔH ¼ m
Xm

i¼1

U0
i þ pV0i

� �
f0i �

Xm

i¼1

ðUi þ pViÞfi (2)

ΔGm ¼ m
Pm

i¼1
f0i ln V0i

� �� filn Við Þ� �þPm

i¼1
f
0 i Pm

i¼1
X

0 i
j ln X

0 i
j

� �

� Pm

i¼1
fi
Pm

i¼1
Xijln Xi

j

� � (3)

Here, β ¼ 1=kBT, where kB is the Boltzmann constant, N is the sum
of all the particles across all simulation cells, m is the total number
of simulation cells, Ui is the energy of simulation cell i, Vi is the
volume of simulation cell i, p is the pressure (set to 0 Pa) and fi is
the molar fraction of simulation cell i. Lastly, where nij is the
number of species i in simulation cell j, Xi

j ¼ nij=
P5

k¼1n
k
j , and

represents the atomic concentration of species i in simulation cell
j. The primed coordinates indicate post-flipped values, while un-
primed are pre-flipped values. The updated phase fractions were
obtained by using the Lever rule to enforce mass conservation.

DFT calculations were performed using the Projector Augmen-
ted Wave (PAW) method as implemented by the Vienna Ab initio
Simulation Package (VASP)36,37. The calculations were completed
with a plane-wave cut-off energy of 450 eV and a 2 × 2 × 2
Monkhorst-Pack k-point mesh38. DFT calculations performed on
the simulation cells allowed for changes in the volume and atomic
positions (through setting ISIF= 3). The electronic self-consistent
calculation was converged to 1 × 10−6 eV and ionic relaxation
steps were performed using the conjugate-gradient method
(IBRION= 2) and continued until the total force on each atom
dropped below a tolerance of 1 × 10−2 eV Å−1. The generalised
gradient approximation (GGA) was used for the exchange
correlation functionals as parameterised by Perdew-Burke and
Ernzerhof (PBE)39. The PAW pseudopotentials were used with the
valence electron configurations 3s23p1, 3d34s1, 3d54s1, and
3p63d44s1 for Al, Ti, Cr and V, respectively.

Surface DFT Calculation Method
All surface DFT calculations were performed using the VASP
code;36 and core electrons in calculations treated using both the
the PAW method and the GGA-PBE exchange correlation
functionals37,39. A plane-wave cut-off energy of 500 eV and a
3 × 3 × 1 Monkhorst-Pack k-point mesh38. The electronic self-
consistent calculation was converged to 1 × 10−5 eV and ionic
relaxation steps were performed using the conjugate-gradient
method (IBRION= 2) and continued until the total force on each
atom dropped below a tolerance of 1 × 10−2 eV Å−1. A slab
method with 20 Å vacuum thickness in z-direction was used to
model (2 × 1) (001) surface and different slab thickness of 6, 7 and
8 layers were considered. During surface relaxation, the four
uppermost layers were allowed to relax, while the others were
fixed to their bulk coordinates, inducing a surface-bulk condition.
Figure 8 shows the surface of AlCrTiV MPEA which is used as the
model system explored in this study. A simplified model for local
electrochemistry investigation using DFT was used – with the
construction of slab and adsorbate, neglecting the influence of
electrical double layer.
Vacancy calculations were performed by removing one atom in

the topmost layer on each slab. Whereas, for surface adsorption
calculations, the adsorbates studied are *H, *O and *Cl, in their
dissociated forms21,40. The adsorption study only considered
single species adsorption (no co-adsorption on the surface) in
each DFT calculation, in which each species on the adsorption
sites was fixed in their planar (x and y) direction and only allowed
relax in z-direction to find their lowest energy state. A less strict
convergence criteria with total force tolerance of 5 × 10−2 eV/Å
was used to perform the scanning of surface activity/selectivity.
The adsorption energy is calculated using the following formula:

ΔEads ¼ Eads�slab � Eslab � Eadsorbate (4)

where Eads�slab is the energy of adsorbate/slab complexes, Eslab is
the energy of a pure slab and Eadsorbate is the energy of the
adsorbate. Here is Eadsorbate of H, O and Cl are defined as ½ E(H2),
E(H2O) – E(H2) and E(HCl) – ½ E(H2), respectively. The influence of
applied potential (U vs. SHE) and pH on ΔG can be considered
implicitly21,29, using the following mechanism:

� þ Hþ þ e� ! �H (5)

� þ H2Oþ HCl ! �Oþ HClþ 2Hþ þ 2e� (6)

� þ H2Oþ HCl ! �Clþ H2Oþ Hþ þ e� (7)

The scope of this study was to investigate the role of each
element in MPEA’s surface and not to study the competitive
adsorption mechanism of different species under the influence of
pH and potential. Steady-state assumption, such as used in
previous studies21,29, is beneficial for better understanding the
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effect of different pH and potential on the electrochemical activity.
Herein, we have only focused on developing a capability for
predicting electronic energies for calculating adsorption and
vacancy formation energies using ML approach, with the goal of
replacing DFT calculations and enabling high-throughput compu-
tations; which also employed bulk phase structures obtained from
the (MC)2 algorithm.
All DFT calculations performed herein employed the static DFT

method with no time dimension, for: i) predicting bulk composi-
tions and phases of MPEA using (MC)2 algorithm and ii)
benchmarking electronic energies for adsorption and vacancy
formation on the MPEA’s surface for the use in ML prediction
algorithm. It is conceded that electrochemical reactions mechan-
ism may not be fully understood from this study, since we do not
perform dynamic DFT calculations that consider the effects of
time. Nonetheless, we were primarily interested in determining
correlations between collected descriptors (i.e., adsorption and
vacancy formation energies as the function of elemental surface
and coordination number) and the electrochemical properties (i.e.,
passivation behaviour and corrosion rate). At this stage, the study
was focused on gathering surface activity/selectivity for an MPEA
by developing a methodology, which later could be used for the
prediction of electrochemical properties.
To identify the contribution of each element to the final

adsorption energy, the following formula was fit to inference each
element’s contribution:

mTiETi þmVEV þmAlEAl þmCrECr ¼ ΔE (8)

where mTi, mv, mAl, mCr are the total sum scaling normalised
coordination number, which are calculated according to:

mEle ¼ nEle =ðnTiþnVþnAlþnCrÞ for Ele in fTi; V;Al;Crg (9)

where nTi, nV, nAl, nCr is the number of coordinated Ti, V, Al, and Cr
elements, respectively. ΔE is the DFT calculated adsorption energy
of each mono atom adsorbate. ETi, EV, EAl, ECr are the energy
values that are fit using the least-squares method. Specifically, the
following expressions were employed: ΔE ¼ 1ETi for adsorption on
Ti top site, ΔE ¼ 0:5 � ETi þ 0:5 � EAl for adsorption on Ti and Al
bridge site and ΔE ¼ 0:25 � ETi þ 0:25 � EAl þ 0:25 � EV þ 0:25 �
ECr for Ti, Al, V and Cr hollow site.
It is noted that herein, the vacancy energy is calculated by the

following formula:

EVacancy ¼ ESlabwVac � ESlabwoVac � EVacE (10)

where ESlabwVac is the energy of slab with vacancy, ESlabwoVac is the
energy of slab without vacancy and EVacE is the reference energy
of element.
When comparing the vacancy energies of different elements,

the EVE plays a crucial role. In the present work, we have compared
three differently defined approached to EVacE, namely: (1) the
energy per atom of different elements in their pure crystal
structure at room temperature; (2) the energy obtained by fitting
the function

P
i2 Ti;V;Al;Crf g niEi ¼ Etotal for all vacancy and pure

slabs in this study; and (3) the energy per atom in the high
entropy alloy primary crystal, which serves as a universal
correction value. Figure 9 reveals the vacancy energy using
different vacancy element reference energy. It was determined
that V generally has the lowest vacancy energy using both the
pure crystal structure energy and fitting energy, indicating that V
is the element that could most easily form a vacancy. When
comparing the magnitude of all three methods, the crystal
structure atomic energy has the vacancy energy ranges in
0.0–2.5 eV, in comparison to −3.0 – 4.5 eV using fitted atomic
energy (2nd method) and −3.0-2 eV using HEA average atomic
energy (3rd method). However, for the AlCrTiV MPEA, empirical
work by Choudhary12,13 conducted atomic emission spectro-
electrochemistry (AESEC)41 dissolution profiling at the open circuit
potential, revealing alloy dissolution kinetics in the following
order: Al, V, Cr/Ti. In other words, the highest rate of dissolution in
a 0.6 M NaCl solution was observed for Al, and the lowest rate was
for the dissolution of Cr and Ti13. Therefore, the calculation using
approach (3), is mechanistically the most appropriate in this work.
This is also supported by the changes of charge distribution of
each element in AlCrTiV when compared to their pure bulk
phases, as shown in Fig. 4c, d. Moreover, this method provides a
similar trend with Al as the most energetically favourable element
to create a surface vacancy (Fig. 9).

ML for Surface Activity/Selectivity Prediction
In this study, we employed Kernel Ridge Regression (KRR)42, a fast
and accurate regression algorithm25,27,43, as the ML algorithm
utilised since it demonstrated high accuracy with a small number
of samples ( < 1000). The radial basis function (rbf) kernel was used
to transform the representations of ith and jth samples into a
kernel matrix K. The element in row i and column j of K is

Fig. 8 Six different (001) surfaces of AlCrTiV bcc phase as obtained from (MC)2 optimisation. Four identified adsorption sites used for high-
throughput DFT calculations of surface reactivity.
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calculated using the following formula:

K i; jð Þ ¼ exp � xi�xjð Þ2=2γ2
� �

(11)

where xi and xj represent the representations of the ith and jth

samples, γ is a length scale parameter.
The prediction form of KRR is as follow:

ypred ¼ Kw (12)

where w is a weight matrix, K is the kernel matrix.
The loss function of KRR is a quadratic function given by the

following formula:

loss ¼ jjytrue � Kwjj22 þ α=2wTKw (13)

where ytrue is the labels of the training set, α is a L2 regularisation
term. A closed form solution of the loss function can be derived, as
follow:

w ¼ Kþ Iαð Þ�1y (14)

To find the optimal hyperparameters γ and α, a grid search
technique was employed. We searched for the optimal values
using a base-2 logarithmic grid from 0.25 to 4096 for the kernel
width and a base-10 logarithmic grid from 10e−7 to 10e−7 for the
L2 regularisation term.
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