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Lightning forecast from chaotic
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using wavelet de-noising

and spatiotemporal kriging
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Department of Operational Sciences, Air Force Institute of Technology,

Wright-Patterson AFB, Ohio, USA, and

Eric Chicken
Department of Statistics, Florida State University, Tallahassee, Florida, USA

Abstract

Purpose –Present amethod to imputemissing data from a chaotic time series, in this case lightning prediction
data, and then use that completed dataset to create lightning prediction forecasts.
Design/methodology/approach – Using the technique of spatiotemporal kriging to estimate data that is
autocorrelated but in space and time. Using the estimated data in an imputation methodology completes a
dataset used in lightning prediction.
Findings – The techniques provided prove robust to the chaotic nature of the data, and the resulting time
series displays evidence of smoothing while also preserving the signal of interest for lightning prediction.
Research limitations/implications – The research is limited to the data collected in support of weather
prediction work through the 45th Weather Squadron of the United States Air Force.
Practical implications – These methods are important due to the increasing reliance on sensor systems.
These systems often provide incomplete and chaotic data, which must be used despite collection limitations.
This work establishes a viable data imputation methodology.
Social implications – Improved lightning prediction, as with any improved prediction methods for natural
weather events, can save lives and resources due to timely, cautious behaviors as a result of the predictions.
Originality/value –Based on the authors’ knowledge, this is a novel application of these imputationmethods
and the forecasting methods.

Keywords Forecasting, Imputation, Wavelets, Kriging

Paper type Research paper

1. Introduction
Forecasters develop a risk assessment of lightning activity at Kennedy Space Center and
Cape Canaveral Space Force Station (KSC/CCSFS) using a dense array of electric field mill
(EFM) sensors. These sensors measure the ground-level electric potential within the
atmosphere directly overhead each sensor, indicating changes in electromagnetic energy.
These changes are phenomena shown to be predictive of future lightning activity (Aranguren
et al., 2012; Lopez et al., 2012). The EFMnetwork records data at 50 Hz, resulting in very large
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data structures that are of high frequency and high volume. Furthermore, these datasets are
autocorrelated in regards to both temporal timestamps and spatial distancing of the fixed
EFM sensor sites.

While probabilistic methods and time series models have been used to try to exploit the
EFM data for lightning prediction (Nystrom, 2021), recently machine learning approaches
have been found promising. Hill (2018), Speranza (2019) and Cheng (2020) examined neural
network approaches and achieved good prediction accuracy. Nystrom et al. (2021) used
wavelet methods and further improved the prediction accuracy over the machine learning
methods. However, each of these efforts was plagued by missing data issues.

As it is common across many types of sensors, the EFM sites periodically experience
periods of time missing measurements. This can be due to routine site maintenance, sensor
malfunction or a purposeful shutdown due to local disturbances that would perturb the
sensor readings. These gaps in collection prove to be problematic in some machine learning
and artificial intelligence applications as some methods are not robust to periods of missing
data andwill fail to learn properly. Deletions of incomplete records or imputationmethods are
used to preprocess the data for the machine learning algorithm. This study applies
imputation methods on the spatially-based EFM time series, making use of the inherent
autocorrelation structure in the data, resulting in improvedmodeling using machine learning
and artificial intelligence techniques.

Imputation is a data preprocessing method which substitutes missing entries with
estimated values. There are many imputation methods available based upon data type and
application. The simplest imputation methods use a representative value for all missing
entries, such as the mean, median or mode of available data. Time series imputation is a sub-
discipline which takes into account the autocorrelation between timestamped values. For
instance, use of time stamped observations of air pollutants to produce an estimate for
missing values (Junger andDe Leon, 2015). Autocorrelation in time series is the dependence of
values between time-stamped observations. This results in a great deal of redundancy of the
information within time series data, and if not accounted for can result in a model that
overstates fit (Eshel, 2012). Time series imputation approaches include use of moving
averages, extension of nearest observation, Kalman smoothing and linear or spline
interpolation (Moritz and Bartz-Beielstein, 2017). Likewise, spatial imputation methods are a
subdiscipline that estimatesmissing data valueswhile accounting for autocorrelation present
between spatially correlated measurements: For instance, the estimate of tree density
measurements from nearby measurement sites within an especially dense forest (Robinson
and Hamann, 2011).

This paper employs a spatiotemporal imputation technique that simultaneously accounts
for autocorrelation between spatially correlated measurements collected as a time series.
Waveletmethods are used as an additional preprocessing step, serving to de-noise the chaotic
EFM measurements to allow faster convergence and estimation of spatiotemporal models.
Instead of a purely time series or spatial model, spacetime approaches use all available data to
infer predicted values. These methods prove to be highly useful in situations in which large
amounts of a particular time series are missing and need to be estimated. Although complex
in application, such methods are of increasing importance due to the increasing prevalence of
modern sensor systems. Section 2 provides an overview of the EFMdataset, wavelet methods
for de-noising a time series and spatiotemporal modeling techniques. Section 3 presents the
methodology and results of wavelet techniques and spatiotemporal modeling as an
imputation method. Section 4 applies the EFM dataset, to include values estimated by
spatiotemporal kriging, using an existing methodology and compared to a baseline
imputation method. Conclusions and applications for future research are provided in
Section 5.
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2. Methodology
2.1 EFM sensor network
Lightning activity is particularly concentrated in the KSC/CCSFS region of central Florida, as
can be seen in the heat-map of Figure 1. Accurate and timely forecasts of lightning activity are
essential to inform operational risk assessments that guide both flight line and space launch
activities. Current studies indicate EFM networks can be predictive of lightning activity
through either a relatively sudden change of polarity or an increase in magnitude of the
atmospheric electric potential (Aranguren et al., 2012; Lopez et al., 2012). However, constant
movement and churning actions within the atmosphere result in a chaotic response of
electrostatic potential by the EFM network (Krider, 1989). Figure 2 provides three examples
of typical and chaotic EFM measurements prior to observed lightning within KSC/CCSFS.
Current literature also indicates a diurnal cycle to the EFM network at KSC/CCSFS

Figure 1.
Cloud-to-ground
lightning flash density
(1997–2010) for the
USA from the national
lightning detection
network

Figure 2.
Top subplot is binary
response of observed
lightning, followed by
three typical EFM
measurements chosen
randomly across the
entire KSC/CCSFS
region over time in
seconds
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(Lucas et al., 2017). The highly chaotic EFM response stored in very large datasets has
confounded many attempts to create models to support lightning prediction.

Figure 3 provides a map of the KSC/CCSFS region with the location of all 31 EFM sensors.
No significant shift in EFMmeasurements are noted at the 50 Hz rate, so the data is reduced
by summarizing by the per minute mean of the 50 Hz signal to reduce overall data size.

For evaluation of the imputation method, data for field mill 25 is extracted from the main
data frame. The data for field mill 25 is estimated using spatiotemporal imputation methods,
and then compared against the actual observed response.

2.2 Wavelet de-noising
Wavelet techniques are used as a part of data preprocessing to reduce chaotic noisewithin the
EFM response. Similar to the Fourier transform, a wavelet transforms model function in
terms of its constituent frequencies. However, wavelet methods employ a family of unique
functions that localize this approximation in time. This allows for the simultaneous
approximation of a function in terms of frequency and time. Wavelet methods accomplish

Figure 3.
KSC/CCSFS map with

locations of EFM
sensors
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this by projecting approximations of a function into a series of nested subspaces, each
providing a different resolution in time.

A discrete wavelet transform (DWT) can be applied to a discrete time series to produce an
additive decomposition having constituent detailed time series (ψ j,k), reflecting variations at
resolution level j and a smoothed version of the time series (fj,k), reflecting averages at
resolution level j (Percival andWalden, 2006). Let f represent the father wavelet function and
ψ represent the mother wavelet function. Daubechies (1992) provides a wide variety of
choices for functions which generate an orthonormal basis. With wavelets defined as

fj;kðtÞ ¼ 2j=2f
�
2jt � k

�
(1)

ψ j;kðtÞ ¼ 2j=2ψ
�
2jt � k

�
(2)

a function of time can be represented as

f ðtÞ ¼
X
j

X
k

dj;kψ j;kðtÞ þ
X
k

sj0 ;kfj0;k
ðtÞ (3)

where sj,k5 Cf, fj,kD, dj,k5 Cf, ψ j,kD and j; k∈Z. The time series is thus represented as a linear
combination of the shifted and scaled versions of thewavelet functions as estimated using the
wavelet coefficients sj,k and dj,k. An important consequence of Equation (3) is the separation of
the approximation and detailed representations of a signal.

This study employs amaximal overlap discrete wavelet transform (MODWT), a variant of
wavelet transformwell-suited for applications in the time series analysis. Unlike the standard
DWT, which requires a dyadic sample size, theMODWT is well defined for any sized sample.
Also unlike the DWT, theMODWT is shift invariant. Thismeans that the DWT requires, and
sample size in integer is a multiple of 2j while the MODTW is defined for any sample size.
Thus, the wavelet coefficients remain aligned in time with the original time series. A Haar
wavelet basis is used in this implementation due to its ability to model jumps in the response
signal. Figure 4 provides a visual representation of the MODWT decomposition for three
detail coefficient levels and a smooth level. These properties allow the wavelet coefficients to

Figure 4.
Depiction of a three-
level MODWT
decomposition of
signal X to wavelet
coefficients W
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remain aligned with regards to the temporal position of the original time series. However, the
MODWT is a redundant transform that results in OðN log2NÞ required computations or a
cost of Oðlog2NÞwhen compared to the DWT.

2.2.1 Wavelet thresholding. A DWT or MODWT results in a sparse representation of the
decomposed signal in the form of detail and smooth wavelet coefficient levels. This sparse
approximation contains all the power of the original signal within relatively few wavelet
coefficients. The remainder of the coefficients are either zero or of relatively lowmagnitude, and
predominantly represent stochastic noise in the original time series. Thresholdingmanipulates
these coefficients to reduce how stochastic noise is represented in the wavelet model.

This paper uses global thresholding, where a single threshold value λ is applied uniformly
to all or nearly all coefficients. Consider a given threshold value λ and setbf λðtÞ ¼ X

j

X
k

Ifjdj;kj>λgdj;kψ j;kðtÞ (4)

where I represents the indicator function (Ogden, 1997). This method is known as hard (H)
thresholding, where the policy is to set coefficients to zero if less than or equal to the given
value of λ. The result is that only those highmagnitude coefficients are kept that represent the
original signal. Then, defining the thresholded coefficients asbdj;k ¼ δλðdj;kÞ (5)

allows for representation of the hard (H) thresholding rules as

δHλ ðxÞ ¼
x if jxj > λ
0 otherwise

�
(6)

Donoho and Johnstone (1994) propose an alternative method of soft (S) thresholding
defined as

δSλ ðxÞ ¼
x� λ if x > λ
0 if jxj≤ λ
xþ λ if x < �λ

8<
: (7)

Soft thresholding is similar to hardmethods, but values are shrunk toward zero by an amount
equal to the threshold λ (Ogden, 1997).

2.3 Spatiotemporal modeling
Spatiotemporal modeling assumes a Gaussian spatiotemporal random field Z defined over a
spatial domain S and a temporal domain T (Gr€aler et al., 2016). A vector of samples
z ¼ zð ðs1; t1Þ; . . . ; ðzðsn; tnÞÞ is then a collection of n measurements at distinct locations and

times ðs1; t1Þ; . . . ; ðsn; tnÞ∈S3 T ⊂R2 3R (Gr€aler et al., 2016). Measurements may include
repeated values over time for the same location or multiple values for various locations at the
exact same time. Estimated values for unmeasured points (s0, t0) can be made since z can be
assumed to be the realization of a spatiotemporal random function.

Spatiotemporal kriging is a modeling approach that produces estimated values for
unmeasured locations and time using the values from the surrounding area. The method is
named after Danie Krige, who developed the technique to improve the accuracy of predicting
the location of underground ore reserves (Armstrong, 1998). Kriging requires the assumption
that the response is a continuous randomvariable over the region of interestS3 T (Robinson
and Hamann, 2011). Furthermore, this modeling approach requires an assumption of
stationary and spatially isotropic values across the domain of interest (Gr€aler et al., 2016).
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Thismeans independence between the univariate probability, equal probability of occurrence
regardless of location and the bivariate probability law, where the value of the underlying
random function between two points depends only upon their relative distance (Isaaks and
Srivastava, 1989).

The field Z can then be characterized with a covariance function Cst, where covariance
depends only upon distance h∈R and time u∈R (Gr€aler et al., 2016). The general
spatiotemporal covariance function can thus be given as

Cstðh; uÞ ¼ Cov Zðs; tÞ; Z ~s;~t
� �� �

(8)

for any pair of points ðs; tÞ; ð~s;~tÞ∈S3 T where ks−~sk ¼ h and jt −~tj ¼ u (Gr€aler
et al., 2016).

Kriging modeling parameters retain the original nomenclature from geostatistics as seen
in Figure 5. The nugget effect is the point at which the semivariogram intersects the y-axis
representing semivariance. Although ideally a semivariogram would intersect at the origin,
in application measurement error may result in variance amongst spatially similar
measurements. The nugget effect could also be due to variations at distances smaller than
the sampling distances. The range is the distance at which the semivariogram function levels
off, representing the distance at which measurements are no longer autocorrelated. The sill is
the value of semivariance for the range.

In practice, the covariance is modeled using a series of variograms. Model estimation is
performed using the gstat package for R (Pebesma, 2004; Gr€aler et al., 2016). First, the
observed data are used to derive an empirical variogram that depicts the spatial and temporal
autocorrelation of the sample points. This empirical variogram is then used as an input to a
fitting routine for a generalized variogrammodel capable of describing covariance at varying
spatial distances and times.

There are classes of generalized covariance models such as the separable covariance
model, product-sum model, metric covariance model, sum-metric covariance model and
simplified sum-metric covariance model (Gr€aler et al., 2016). Each class includes a tradeoff
between required assumptions and computational complexity. For instance, the separable
covariance model assumes spatiotemporal covariance can be represented as

Figure 5.
Example spatial
semivariogram plot
from gstat package
(Gr€aler et al., 2016;
Pebesma, 2004)
annotated to include
location of key kriging
parameters nugget, sill
and range
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Csepðh; uÞ ¼ CsðhÞCtðuÞ

or the product of the spatial and temporal term (Gr€aler et al., 2016). This result in the
variogram represented as

γsepðh; uÞ ¼ sill$
�
γsðhÞ þ γtðuÞ � γsðhÞγtðuÞ

�
with standardized spatial and temporal variograms, γs and γt, with separate nugget effects
and joint sill of 1 (Gr€aler et al., 2016). This study employs the Simple Sum-Metric model as it
provides the best prediction values. This modeling approach assumes identical spatial and
temporal covariance functions only with spatio-temporal anisotropy (Gr€aler et al., 2016).
Space and time are then matched using an anisotropy correction κ. The Simple Sum-Metric
model is calculated by

γssmðh; uÞ ¼ nug$1h>0∨u>0 þ γsðhÞ þ γtðuÞ þ γjoint

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ ðκ$uÞ2

q� �

which uses a single nugget effect for the spatial, temporal and joint variograms (Gr€aler
et al., 2016).

The stationary assumption of ordinary kriging further implies an assumption for an
unknown and constant mean over a search neighborhood about the estimation point. This
differs from simple kriging which assumes a known mean over the entire domain of interest.
Ordinary kriging is a best linear unbiased estimator of an estimated point bzðs0; t0Þ as

bzðs0; t0Þ ¼ Xn

i¼1

wi * zðsi; tiÞ

where wi are the spatiotemporal kriging weights, which are allowed to change across time and
location (Isaaks and Srivastava, 1989). The optimal krigingweights are then found via a search
neighborhood of n points about the estimation point by solving the system of equationsXn

j¼1

wjCstðsi � sj; ti � tjÞ þ μ ¼ Cstðsi � s0; ti � t0Þ; ∀i ¼ 1; . . . n

Xn

i¼1

wi ¼ 1

8>>><
>>>:

where μ is the Lagrange parameter (Isaaks and Srivastava, 1989; Ruybal et al., 2019).
Representing the ordinary kriging system of equations in matrix form results in

C $ w ¼ D

~C11 . . . ~C1n 1

..

.
1 ..

. ..
.

~Cn1 . . . ~Cnn 1

1 . . . 1 0

2
6666664

3
7777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðnþ1Þ3 ðnþ1Þ

$

w1

..

.

wn

u

2
6666664

3
7777775

|fflfflffl{zfflfflffl}
ðnþ1Þ3 1

¼

~C10

..

.

~Cn0

1

2
6666664

3
7777775

|fflfflfflffl{zfflfflfflffl}
ðnþ1Þ3 1

whose solution, in the form w 5 C�1 $D, yields the kriging weights (Isaaks and
Srivastava, 1989).
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3. Imputation results and discussion
This new methodology is evaluated by applying it to the EFM dataset. First, the raw EFM
data are summarized to the minute to reduce the overall size of the EFM data structure. Time
series data for field mill 25 is removed and stored for later comparison against the estimates
produced by spatiotemporal kriging.

A MODWT transform is applied to each individual EFM time series, hard thresholding
applied and an inverse MODWT is conducted to reproduce the de-noised time series. This
preprocessing step reduces chaotic noisewithin the time series, facilitatingmore accurate and
efficient convergence in later machine learning and artificial intelligence applications.

Spatiotemporal modeling is accomplished using the gstat package. An empirical
spatiotemporal variogram is estimated from the EFM dataset. All available variogram
models in the gstat package are fit and assessed. The simple sum-metric model results in the
best fit by RMSE, and is thus chosen for application. Spatiotemporal kriging is then applied to
interpolate values for the geodesic position of the missing field mill site.

Figure 6 provides a visual example of the estimated response (red) against the actual observed
response (black). Despite the chaotic nature of EFM data, the spatiotemporal modeling technique
reconstructsmuchof the signal for fieldmill 25,with an observed themean squared error (MSE) of
0.474 and root mean squared error (RMSE) of 0.688, which in our experience with this data is a
very good fit to the data. Many of the perturbations in the response are captured and modeled
correctly, if not always to the full magnitude of the original observed response. This is possibly
due to either the chaotic nature of the EFM data or wavelet thresholding. However, this may be a
desirable property as the interpolated signal is relatively smooth andwell-behaved in comparison
to the chaotic raw signal. The benefit of this smoothing would depend entirely on the impact on
any further application using machine learning or artificial intelligence.

Some modeling formulations using EFM for lightning forecasting employ mean
imputation to fill for periods of lost sensor data. Mean imputation applies the mean of the
existing time series to missing timestamped data points. Although this method appears to
provide MSE of 0.6651 and RMSE of 0.8155, the constant response fails to provide any of the
signal perturbations indicative of impending lightning activity. Furthermore, the relatively
high assessed levels of MSE and RMSE are simply due to the EFM signal predominantly
existing at a steady state measurement. The spikes out of steady state are the artifacts of
interest in EFM applications, and are the indicators required in forecasting using machine
learning or artificial intelligence.

Figure 6.
Observed data for field
mill 25 (black) and
estimated values (red)
using a simple sum-
metric model and
spatiotemporal kriging
for 1–19 June 2013,
MSE 5 0.474 and
RMSE 5 0.688
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4. Application of imputed data
The fully estimated datasets are applied to the methodology of Nystrom et al. (2021) to evaluate
the impact of using a fully imputed dataset. This methodology uses the same EFM data but with
greatly reduced range of the time series to only those periods with a high proportion of EFM
sensors active. Large blocks of data estimated by mean imputation caused the model to behave
erratically. The application in this study seeks to apply the methodology using spatiotemporal
imputation and without regard for any periods of EFM inactivity. Figure 7 provides the count of
missing data points byminute for the EFMnetwork in June 2013 as used in Nystrom et al. (2021).
Amajority of the sensors are missing data from short periods of less than 30minwhen the entire
network is inoperable. Linear interpolation is used to complete these time series, as there is nodata
available for more complex interpolation. The spatiotemporal kriging methodology is then
applied to the remaining time series to interpolate missing values.

Table 1 provides the results of lightning prediction using both mean imputation and
spatiotemporal imputation on the original EFM dataset. Results are presented in a confusion
matrix, where the predicted state of no lightning “0” or lightning “1” is paired against actual
lightning conditions observed for the same period at KSC/CCSFS. Model results predicting a
lack of lightning are comparable between the two datasets. Spatiotemporal imputation
results in a marked increase in the prediction accuracy for the presence of lightning (1,1) from
92.5% to 95.6%. Furthermore, this lowers the false alarm rate (1,0) that could reduce the
operational impact of unnecessary lightning warnings. These improvements in model
performance both increase safety for launch conditions and increase operational efficiency of
launch and space flight line activities. This increase in accuracy is most likely due to the
preservation of perturbations within the EFM dataset using spatiotemporal kriging,
providing the semi-parametric model the key indicators for impending lightning activity.

Figure 8 provides a visual representation of the model’s prediction response against the
actual observed lightning at KSC/CCSFS for 10–30 June 2013. This predicted response is
estimated using the spatiotemporal imputed EFM dataset. The model provides a predictive
response to nearly all the observed lightning, with three apparent false alarms during the
period. Some further analysis indicates the false alarm predictions align with lightning

0

5000

10000

15000

KS
C

17

KS
C

8

KS
C

16

KS
C

9

KS
C

13

KS
C

30

KS
C

24

KS
C

14

KS
C

18

KS
C

1

KS
C

19

KS
C

4

KS
C

10

KS
C

11

KS
C

22

KS
C

15

KS
C

31

KS
C

27

KS
C

2

KS
C

29

KS
C

7

KS
C

28

KS
C

32

KS
C

6

KS
C

26

KS
C

5

KS
C

21

KS
C

34

KS
C

20

KS
C

12

KS
C

25

EFM Sensors

C
ou

nt
 o

f M
is

si
ng

 M
in

ut
es

 o
f D

at
a

Source(s): Figure courtesy of authors

Note(s): Sensor KSC25 is missing the most with 17,061 min of missing data, or about 39%
of all data for the month

Figure 7.
Count of missing data
by minute for all 31
EFM sensors in June
2013, sorted by count
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storms within the KSC/CCSFS region that did not produce lightning within the lightning
warning circle under consideration for themodel. Future extensions of this workwill focus on
reducing the impact of regional lightning storms.

Table 2 provides the results of a naı€ve model based upon persistence, where the model
predicts the state of lightning for time tþ 1 based exclusively on the state of lightning at time t.

Observed Observed
0 1 0 1

Predicted 0 27,597/27,708 111/27,708 Predicted 0 27,578/27,708 130/27,708
99.5% 0.5% 99.5% 0.5%

1 87/1,164 1,077/1,164 1 51/1,164 1,113/1,164
7.5% 92.5% 4.4% 95.6%

Mean imputation Spatiotemporal imputation

Note(s):A prediction or observed value of “0” corresponds to no lightning, whereas a “1” denotes observed or
predicted lightning within the lightning warning circle. Results indicate sizable improvements in the positive
identification of lightning when spatiotemporal imputation is used to complete the EFM dataset
Source(s): Table courtesy of authors

Observed
0 1

Predicted 0 13,698/13,814 116/13,814
99.16% 0.84%

1 116/586 470/586
19.8% 80.2%

Note(s):Thismodel develops a forecast using only the lightning state of the previous timestamp. For instance,
if there is no lightning at time t, then the model predicts no lightning at t þ 1. The wavelet enabled semi-
parametric modeling approach outperforms a naı€ve model in this implementation and indicates this new
methodology has explanatory power in the prediction of lightning phenomena
Source(s): Table courtesy of authors

Table 1.
Confusion matrices for
model predictions
using EFM data 60 min
prior to any observed
lightning within the
central cape lightning
warning circle for
28,872 observations
during 10–30 June 2013

Figure 8.
Predicted model
response (green) using
imputed EMF dataset
against actual
observed lightning
(black) on Cape
Canaveral, June 2013

Table 2.
Confusion matrix for
performance of the
naı€ve
persistence model
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This manner of comparison is common in themeteorological literature, and shows whether the
model under evaluation is providing explanatory insights toweather phenomena. Thewavelet-
enabled semi-parametric modeling approach outperforms the persistence model, most notably
in the identification of the presence of lightning.

5. Conclusion
Spatiotemporal kriging provides an excellent method to recreate a missing time series that
includes spatial autocorrelation. The technique proved robust, despite the chaotic nature of
EFM measures of atmospheric electrostatic potential. Furthermore, the interpolated time
series displays evidence of some smoothing while also preserving the signal of interest for
lightning prediction. Both of these qualities may aid in convergence in additional machine
learning or artificial intelligence applications while still facilitating accurate and timely
predictions.
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