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ABSTRACT 
The development of coherent and dynamic behaviors for mobile 
robots is an exceedingly complex endeavor ruled by task 
objectives, environmental dynamics and the interactions within 
the behavior structure. This paper discusses the use of the unified 
behavior framework to allow for the construction of hierarchical 
structures using interchangeable behaviors and arbitration 
techniques. Given the number of possible variations provided by 
the framework, evolutionary programming is used to evolve the 
behavior design. Competitive evolution of the behavior 
population is used to incrementally develop feasible solutions for 
the domain through competitive ranking. By developing and 
implementing many simple behaviors independently and then 
evolving a complex behavior structure suited to the domain, this 
approach allows for the reuse of elemental behaviors and eases 
the complexity of development for a given domain. Additionally, 
this approach has the ability to locate a behavior structure which a 
developer may not have previously considered, and whose ability 
exceeds expectations. The evolution of the behavior structure is 
demonstrated using agents in the Robocode environment, with the 
evolved structures performing up to 122 percent better than that 
of an expert. 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and Techniques – 
Object Oriented design methods; D.2.13 [Software 
Engineering]: Reusable Software – domain engineering and 
reuse models; I.2.9 [Artificial Intelligence]: Robotics – 
autonomous vehicles. 

General Terms 
Algorithms, Design, Experimentation, Theory, Verification 

Keywords 
Evolutionary Computation, Optimization of Multi-Objective 
Problems, Genetic Programming, Behavior Based Robotics, 
Unified Behavior Framework, Reactive Behavior Hierarchies 

1. INTRODUCTION 
Mobile robots inherently exist in dynamic environments and are 
expected to react well in unpredictable situations while 
performing their task(s). Currently, most robots employ some 
form of reactive behavior architecture [18]. To cope with the 
variety in the environment, agents are implemented with a broad 

set of skills, or behaviors. The goal of fusing several behaviors 
into a single complex behavior is to deliver a coherent sequence 
of actions that are ultimately more effective in a given 
environment than any single behavior [20]. Such attempts have 
proven to be a significant endeavor for two reasons. The first is 
that the code complexity of a behavior grows exponentially as 
additional traits are added. The second is that development of a 
behavior that tries to maximize some criteria while minimizing 
others is the optimization of a multi-objective problem [6]. 
To ease the complexity of designing and coding a behavior, a 
behavior framework is introduced such that simple and 
independent behaviors can be interchangeably arranged into an 
arbitrated hierarchy. The goal of using the framework is to allow 
for: parallel development of elemental behaviors and arbitration 
units, to restrict the complexity of implementation to the 
development of elemental behaviors, to encourage code reuse 
within the domain, and to allow the application of an evolutionary 
algorithm to discover sets of near-optimal behavior structures for 
the domain. 
By using the unified behavior framework (UBF) [21] to provide 
behavioral logic to robots operating in the Robocode domain, 
various behavior structures are possible based on a pool of simple 
elemental behaviors and interchangeable arbiter components. 
While many formations are poor choices, some unexpected 
combinations may be quite good. By using the environment as an 
evolutionary pressure, an initial population of randomly formed 
structures is able to organize itself into coherent behaviors that are 
well suited to combat. Through the repetitive application of 
ranking each member and then evolving the population by 
application of a genetic programming algorithm, behavior 
structures emerge that are effective on an absolute scale [14]. 

2. BACKGROUND 
The basis of this paper’s research draws on previous work related 
to both evolutionary computation and behavior based robotics. 

2.1 Evolutionary Algorithms (EA) 
The class of stochastic, global search & optimization algorithms 
that use the repetitive application of seemingly simple rules to 
discover emergent behaviors are known as evolutionary 
algorithms (EA). Such techniques loosely imitate natural 
evolution and the Darwinian concept of Survival of the Fittest 
[11]. EA techniques are especially effective in large search spaces 
because, they have a random element that makes them less 
susceptible to becoming trapped in a local minimum. Since 
evolutionary pressures are directing the search, they provide good 
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solutions to a wide range of optimization problems that traditional 
deterministic search methods find difficult [12]. 
In nature, the evolutionary process occurs when the following 
four conditions are satisfied: 1) an entity has the ability to 
reproduce itself, 2) there is a population of such self-reproducing 
entities, 3) there is some variety among the self-reproducing 
entities, and 4) some difference in ability to survive in the 
environment is associated with the variety [14]. 
One particular subset of EA algorithms is genetic programming 
(GP). This subset is defined by its ability to manage the 
adaptation of complex structures. Typically the structures are 
hierarchical in nature, stored as trees, rather than sequentially as 
in genetic algorithms. Since the organization and ordering of a 
member’s structure is important, it must be preserved during 
crossover (or sexual recombination). A single GP cycle, referred 
to as an epoch, consists of five major events: 1) a fitness 
evaluation of each member’s ability to cope in the environment, 
2) a ranked ordering of the population, 3) a period of 
recombination where the strongest members have the greatest 
probability of reproducing, thus propagating successful attributes, 
4) an opportunity for mutation, which is optionally used to 
introduce variety and avoid local minima and 5) a pruning of the 
population size by removing unfit members. Once one epoch is 
complete a new epoch begins [6, 14]. 
Many times an environment is competitive and adversarial in 
nature, meaning that the members of a population must gain their 
fitness measure at the expense of another. Such competitive 
evolutions rank individuals in the population relative to their 
peers. This approach is beneficial because despite the members of 
the initial population being highly unfit, over a period of time, 
members evolve and rise to higher levels of performance as 
measured in terms of absolute fitness. What is interesting is that 
such a process is a self-organizing, mutually bootstrapping 
process that is driven only by relative fitness (and not by absolute 
fitness) [14]. 

2.2 Behavior Based Robotics 
Research efforts in robotics through about 1985 focused almost 
exclusively on planning and world modeling [10] in an attempt to 
develop completely rational mobile robots [18]. The sense-plan-
act approach, Figure 1a, proved inadequate in dynamic and 
unpredictable environments, where the robot finds itself in trouble 
when its internal state loses sync with the reality that it is intended 
to represent [2]. This is because anything approaching a real 
world model typically requires so much time to maintain and 
develop plans for, that the state of the environment changes 
before the actions can be carried out, effectively nullifying the 
action sequence. The main problem is that a traditional Lorenz 
control loop [19] directly links the rate at which a robot can 
evaluate its environment to the computational time requirements 
of the planning module. 
The need to alleviate this planning bottleneck led tasks to be 
decomposed into collections of low-level primitive behaviors. 
This approach took on the self-contradictory term, reactive 
planning [10]. The ideas behind reactive planning stem from 
arguments such as Braitenberg’s, who argues that the complex 
behavior of natural organisms may be the result of simple 
behaviors. Braitenberg further argues that by combining simple 
behaviors, more complex behaviors and attributes are possible [3]. 

In equivalent research Brooks claims that for many tasks, robots 
do not need traditional reasoning, only a tight coupling of sensing 
to action. He backs that claim with robust autonomous robots 
using the Subsumption architecture [4, 5]. 

 
Figure 1: Two organization decompositions for robot control 
(A) Sequential execution of functional modules; (B) A task-
based decomposition into parallel execution modules. 

Subsumption is the canonical architecture that advocates for a 
layered control system based on task decomposition, an approach 
which is radically different from previous research. Figure 1 
highlights this quintessential paradigm shift, with the sense-plan-
act architecture shown in (A) and the new horizontal structure of 
Subsumption shown in (B). This parallel organization naturally 
promotes concurrent and asynchronous responses to sensor input. 
Each individual layer works to achieve its particular goal. 
Coordination between layers is achieved when complex actions 
(or higher layers) subsume simpler actions, or when low-level 
behaviors inhibit higher layers. From this work other distinct 
behavior architectures emerged: motor schemas [1], circuit 
architecture [13], action-selection [15], colony architecture [7], 
animate agent architecture [8], DAMN [17] and utility fusion 
[18].  
Traditionally, a mobile robot design implements a single behavior 
architecture, thus binding its performance to the strengths and 
weaknesses of that architecture. The unified behavior framework 
(UBF) [21] incorporates the critical ideas and concepts of these 
eight existing reactive controllers, demonstrating that each can be 
represented using a single straightforward framework. At is core 
the UBF uses an abstract behavior interface to define a family of 
behavioral algorithms that can be used interchangeably regardless 
of the underlying behavior architecture.  
Additionally, the UBF supports the construction of new behaviors 
as compositions of existing behavior modules, the reuse of 
subcomponents is also encouraged in the UBF via a mechanism 
modeled on the composite pattern [9]. The composite pattern 
allows new control structures to be formed as arbitrated 
hierarchies of existing behaviors, with the resulting structure 
being usable as a behavior [21]. 
The software design mechanisms of the strategy and composite 
patterns encourage a developer to use modular approaches that 
ease the complexity of designing, testing and implementing a 
collection of reactive behaviors, while providing the ability to 



form larger hierarchies of behaviors. This isolates code 
complexity to the atomic (or leaf) behaviors. The freedom to join 
existing behaviors as compositions encourages experimentation 
with various structural arrangements of elemental behaviors, 
arbitration components and existing behavior structures [21]. 
Under the UBF, behavioral structures are formed by joining 
groups of behaviors together at arbitrated nodes. At a structure’s 
lowest levels are the leaf behaviors, which capture the simple 
logical skills of the system. Each leaf passes an action 
recommendation to the joining node above. Each joining node 
uses its arbiter to consolidate the recommendations of its sub-
behaviors into a single action recommendation that is passed to 
the joining node above. Such a hierarchical structure ensures that 
the root of the behavior will only present a single action 
recommendation to the robot controller. For longer descriptions of 
the arbiters and the behaviors used in this experiment, refer to 
section 3.5. 

3. IMPLEMENTATION 
The discussion of this experiment’s design and implementation is 
presented first as a high level design followed by an explanation 
of the Robocode adaptation, the fitness function, the genetic 
program, and concludes with a description of the elemental 
behavior/arbiter components. 

3.1 High-Level Design 
Because the UBF behavior structures are trees, consisting of root 
nodes with arbiters and leaf behaviors, the mapping to a genetic 
programming representation is straightforward. The high-level 
design of the evolutionary system used to automate the discovery 
of effective behavior structures is centered on the fitness function 
and the evolution engine. An adaptation of the Robocode robot 
battle simulator forms the basis of the fitness function which 
interacts with the evolution engine via input and output files. Each 
epoch of the evolutionary process is established by the repetition 
of four execution stages: Stage I enacts the relative fitness 
function described in section 3.3.1 to evaluate the relative fitness 
of individuals in a population. Stage II is the evolutionary engine 
that advances a population by one generational time, i.e. from P(t) 
to P(t+1). Stage III enacts the absolute fitness function described 
in section 3.3.2 to measure a population’s current level of fitness, 
in reference to an unchanging benchmark behavior. Stage IV is a 
simple parser that maintains a historical record of each 
population’s evolutionary progress. This four step cycle is shown 
in Figure 2. 

 
Figure 2: Cyclical progression of Stages I through IV. 

3.2 Robocode Adaptation 
Robocode [16] was chosen as a simulation environment because it 
provides a dynamic, straightforward environment for comparing 
different control architectures. However, it is not as useful for 

experimenting with established robot control architectures 
because rather than accepting motor commands, commands are 
discrete requests that set a robot to turn left 90 degrees, or travel a 
set distance and then stop. This motor interface is atypical of 
standard robot motor control mechanisms. For this reason, the 
motor interface of Robocode version 1.0.7 was adapted to allow 
for a velocity based approach, it now accepts commands that 
specify the desired velocity and rate of turn for the chassis as well 
as the turn rate for the gun turret and the radar. Once set, these 
rate based values persist until changed. 

3.3 Fitness Function 
The scoring mechanism provided in Robocode provides a 
quantifiable metric that indicates the relative fitness that two or 
more behavior structures have in a given environment. In this 
experiment the fitness function is configurable to operate in either 
a relative or an absolute fitness evaluation mode. The first is used 
during Stage I to rank the individuals in a population relative to 
each other. The second evaluation mode is used in Stage III to 
capture a population’s absolute fitness relative to an unchanging 
benchmark behavior. This section concludes with a discussion of 
the noise parameters inherent in using a nondeterministic fitness 
function and presents the standards for this experiment. 

3.3.1 Relative Fitness 
The relative fitness mode is the evaluation mode used during 
Stage I and ranks individuals in the population relative to their 
peers, regardless of their absolute fitness. The Robocode 
application is configured using the melee battle file and places ten 
robots on the battlefield for a twenty-five round, all-for-one 
melee. Because individuals advance their score by exploiting 
other members, the scores that result from this sequence provide a 
means of stratifying the members of a population relative to each 
other. Each member’s rating is calculated as the percent 
difference of a nominal score; values above zero indicate superior 
combat skills while below zero ratings indicate an inferior level of 
performance. The probability of selection for an individual is 
based on their fraction of the total score. 
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An individual’s rating and probability of selection are defined by 
equations (1) and (2) respectively, where n denotes the number of 
members in a population and k is a specific individual. 

3.3.2 Absolute Fitness 
The absolute fitness mode is the evaluation mode used during 
Stage III to gain insight into how subsequent generations of a 
population are progressing over time by ranking it against a fixed 
benchmark behavior. This evaluation is used to observe the fitness 
of a population on an absolute scale and is never used to drive the 
direction of the evolution. In this mode, the Robocode application 
is configured to set the population’s fittest member against the 
benchmark behavior for a twenty-five round, one-on-one battle. 
In most cases this approach provides a good estimate of absolute 
fitness. However, in some cases, a population can discover 
structures that are particularly good at defeating the benchmark 
without being a globally optimal solution. For this reason, these 



values only serve as an indicator of how a population is 
progressing towards the notion of absolute fitness. 
The benchmark behavior, as generated by a user expert, is shown 
in Figure 3 and consists of the behaviors Wander v3, Charge, 
Dodge and Fire v1 joined by an activation fusion arbiter. The 
benchmark’s observed behavior has three operating modes: one 
that executes a random S-wander pattern across the battlefield 
while attempting to track and shoot opponents, another which 
aggressively charges towards a nearby weaker opponent with 
guns blazing, and an evasive behavior that emerges above the 
other two when the benchmark is taking fire from unseen 
opponents. 

 
Figure 3: The control structure of the benchmark behavior.  

3.3.3 Noise Parameter 
The jitter inherent in the absolute fitness function is caused by the 
stochastic variance in the simulator’s ability to accurately stratify 
members relative to each other. The nondeterministic progression 
of battles in Robocode is caused by random starting postures and 
the dynamic interaction of opposing behavior algorithms. The 
results of any battle will have some level of uncertainty, where 
the more rounds per battle, the smaller the uncertainty. To 
demonstrate this, a sequence of battles is created with the 
benchmark facing itself in combat. On average, when identical 
behavior structures are set against each other, neither one should 
score better than the other. When battles consist of five rounds 
each, the average relative fitness measured is 0.6% with a 
standard deviation of 40.2%. When battles consist of twenty-five 
rounds each, the average relative fitness is 0.5% and the standard 
deviation drops to 17.6%. These results are shown in Figure 4 as 
(A) and (B) respectively. 

 
Figure 4a: Noise for Benchmark vs. Benchmark (5-rounds). 

 
Figure 4b: Noise for Benchmark vs. Benchmark (25-rounds). 

 
Figure 4c: A 10-tap moving average dampens variance, shows 
trends over time and establishes the experiment’s noise floor. 

Although, increasing the number of rounds per battle reduces 
jitter and more accurately stratifies an individual’s relative fitness, 
this approach is prohibitive due to time requirements. To keep the 
speed of the evolutionary cycles manageable, twenty-five round 
battles are established as the standard for this experiment, setting 
the fitness function’s noise parameter at plus or minus 17.6% per 
battle. To provide a cleaner representation of how sequences of 
battles are progressing, a ten-tap moving average is applied to 
smooth the results and establish a noise floor. Applying this filter 
to the data in Figure 4b establishes a noise floor expectation with 
a near zero average and a jitter of 5.45%. The effect of using this 
approach is illustrated in Figure 4c. 

3.4 Genetic Program (GP) 
The hierarchical nature of behavior structures under the UBF 
allows a genetic program (GP) to perform a stochastic search of 
the solution space. The GP in this experiment maintains a fixed 
population of ten members and uses elitism, mutation and 
generational recombination to guide the search from an initial 
random population towards a set of behavior structures that are 
coherent for the domain. The GP’s parameter settings are 
specified in Table 1. 

Table 1: Parameters and settings of the genetic program. 

Parameter Symbol Setting 
Population Size n 10 
Elitism Rate (%) E 10% 

Mutation Rate (%) M 10% 
Generation Rate (%) G 80% 
Contributing Set Size r G · n 

Variance (%) v ± 10% 
Max Branching b 4 

Max Depth d 7 
Number of Generations X 1000 

 
The Elitism rate (E) provides the GP a means of propagating 
successful structures as they are discovered. By advancing a 
fraction of the population with highest fitness directly from 
population P(t) into P(t+1), the GP partially becomes hill 
climbing. 
The Mutation rate (M) adds a random element to the search, 
attempting to avoid becoming trapped in local minimum. This 
fraction of the population P(t+1) are randomly generated behavior 
structure intended to maintain the genetic diversity of the 
population and promote exploration throughout the course of the 
search. 



The Generation rate (G) specifies the rate of generational 
recombination. This fraction of the population P(t+1) are new 
behavioral structures formed by the crossover of members in the 
contributing set. Recombination is a two step process consisting 
of a selection step and a crossover step: 
The selection process uses stochastic universal selection (SUS) 
[2] to choose the contributing members from the population P(t). 
SUS uses r equally spaced markers across the population’s score 
distribution. The selection markers shift within the selection space 
based on the initial value (or seed). The seed is a randomly 
selected value between zero and 1/r. 
During crossover, pairs of individuals are randomly selected from 
the contributing set of members and through the process of 
genetic recombination, each pair forms two new individuals that 
are ultimately introduced into the population P(t+1). During a 
crossover event, a randomly chosen branch from each 
contributing UBF tree is removed and given to the other. By 
swapping behavioral sub-structures, two offspring are created 
where the donated portion is replaced by the acquired structure. 
The resulting offspring are then pruned at the maximum depth (d) 
to limit their complexity and are given additional variation (v) 
through fluctuations in the behavior weights held by each arbiter. 
The new generation of members is then introduced into the 
population P(t+1).  

3.5 Description of Elemental Components 
Using the UBF interface, thirteen elemental behaviors and seven 
arbiters are developed and tested as independent components. The 
functionality of each component is briefly described below and 
then used as the pool of genetic material from which members of 
the population are formed. The behaviors are: 
Charge—when another robot (with a lower energy level) is 
detected, this behavior causes our robot to turn towards the other 
and charge towards it, attempting to cause damage by hitting it. 
Dodge—when hit by a bullet or by another robot, this behavior 
causes our robot to respond with an evasive maneuver based on 
the type of attack and afflicted quadrant. 
Fire v1—has three operating modes. When no target is detected, 
the default mode turns the turret in a clockwise direction. When a 
target is detected, the target tracking algorithm causes the gun 
turret rotation to slow or reverse its direction in an attempt to 
continue tracking the target. In addition to target tracking, when 
the target is less than three degrees off boar site our robot will fire 
on another, the power committed to the bullet is reduced as a 
function of the target off boar site angle. 
Fire v2—is exactly like Fire v1 with the exception that the 
maximum power is always committed to the bullet. 
Return Fire—holds a grudge against another that has previously 
attacked our robot. When no specific target is set, the default 
mode behaves exactly like Fire v2 until our robot is shot or hit by 
another. When an aggressive opponent is specified, only that 
target is engaged. The aggressor remains the target until it is 
killed. 
Scan Left—turns the gun turret and the radar counterclockwise. 
Scan Right—turns the gun turret and the radar clockwise. 

Short Range Fire—is based on Fire v1, but only fires at targets 
that are at close range and are less than fifteen degrees off boar 
site. Maximum power is always given to the bullet. 
Sitting Duck—will always recommend that our robot stop all 
motion, including the motion of the gun and the radar. 
Sniper Fire—is adapted from Fire v1 and is specialized to attack 
slow moving targets at long ranges. When a target is found to be 
stopped or moving slowly it recommends that our robot stop its 
movement and track the target until it is less than one half of a 
degree off boar site. Maximum power is always given to the 
bullet. 
Wander v1—circumnavigates the perimeter of the board. Our 
robot’s current velocity is maintained unless it is less than the 
minimum. 
Wander v2—simulates Brownian motion by randomly executing a 
series of fifty degree arcs. When a wall is detected, the current 
velocity is flipped to reverse our direction. 
Wander v3—performs a series of "S" turns. Random selection is 
used to set the length of the arc to be between thirty and one 
hundred twenty degrees before changing the turn direction. When 
a wall is found, the current velocity is reversed to change our 
direction.  
The available arbitration techniques are: 
Activation Fusion—is a semi-cooperative arbiter that uses a 
highest activation selection approach on a per motor command 
basis. Unlike highest activation, activation fusion builds a new 
action set, allowing the motor commands left unspecified by the 
behavior with highest level of activation to be set using the 
recommendations of behaviors with lower activation levels. When 
used with market based systems, this technique is easily referred 
to as utility fusion, but risks confusion with Rosenblatt’s utility 
fusion [18] behavior architecture. 
Command Fusion—is derivation of the motor schema architecture 
[1], a cooperative arbitration approach that uses summation and 
normalization of proposed motor commands to derive the 
resultant set of motor commands. The input of all contributing 
behaviors are used on a per motor command basis to form the 
resultant command vector. 
Highest Activation—is a winner-take-all arbiter that returns the 
action set with the highest vote value. Inspired by the action-
selection architecture [15], this approach provides a dynamic 
mechanism for competitive selection by allowing behaviors to 
indicate their urgency for activation. Associated behavior weights 
are used to internally tune global performance by scaling the 
votes of behaviors that either over or under vote. The concept of 
activation levels is synonymous with the concept of utility in 
market based systems. 
Highest Priority—is a winner-take-all arbiter that returns the 
action set of the highest priority behavior indicating a desire to 
act, regardless of vote value. Like Subsumption [4, 5], the 
recommendations of lower priority behaviors only execute if 
higher priority behaviors abstain. 
Monte Carlo—is a stochastic arbitration technique that uses 
fitness proportional random selection to activate one sub-behavior 
for a period of time. At the end of the period another random 
selection occurs, activating the chosen sub-behavior for the 
current period.  



Null Arbiter—always passes an empty action back, regardless of 
the action set passed in. Using this arbiter deactivates the branch 
of control where it is applied. 
Priority Fusion—is a semi-cooperative arbiter that uses priority 
based arbitration on a per motor command basis. Unlike the 
highest priority arbiter above, priority fusion builds a new action 
set that allows the unspecified action fields of higher priority 
behaviors to be filled by lower priority action requests. 

4. RESULTS 
In this experiment, eight behavior populations are independently 
evolved over the course of 1,000 generations. While the initial 
populations are collections of randomly generated behavior 
structures and are generally unfit on an absolute scale, they 
introduce variety into the population. Through the repetitive 
ranking, selection and recombination of the members within a 
population, initially random structures organize themselves into 
populations of structures that are measurably effective on an 
absolute scale [14]. 

In this experiment each of the eight initial populations converges 
on relatively simple solutions that exploit similar aspects of the 
Robocode domain. This section discusses how the populations’ 
absolute fitness progresses over time, then discusses the critical 
aspect of the Robocode domain that acts as the evolutionary 
pressure shaping the solutions, and finally concludes with a 
comparison of how the individual solution structures rate relative 
to each other. 
The absolute fitness of each population is a measurement of the 
population’s performance against the fixed behavior structure, 
which allows the progress of independent evolutions to be 
compared directly. The fitness rating is calculated as the percent 
difference of a nominal score; values above zero indicate superior 
combat skills while below zero ratings indicate an inferior level of 
performance. The trend graph presented in Figure 5a is a 
progression of the eight individual populations as they evolve 
over time. 

 
Figure 5a: Progression of eight individual populations, measured relative to the benchmark. 
 

 
Figure 5b: Progression of average of fitness for all populations, measured relative to the benchmark. 



The use of a fixed benchmark behavior to evaluate absolute 
fitness is somewhat misleading, because it allows configurations 
that are exceedingly effective against the benchmark to achieve 
high fitness ratings without being an effective solution in general. 
This anomaly presents itself during run eight which initially 
favors a configuration that displays a high level of fitness against 
the benchmark (see generations 100 through 300 in Figure 5a), 
but later abandons that family of configurations in favor of 
structures that are more successful in general. To reduce the 
affects of such anomalies and achieve a better indication of how 
the populations are progressing towards absolute fitness, the 
average progress of the eight populations is used. Figure 5b 
presents the average progress of the eight populations as 
measured against the benchmark. 
Looking at the progression of average fitness during the course of 
one-thousand generations, a notable period of improvement 
occurs during the initial two-hundred generations where fitness 
improves from a nominal rating to a rating of 78%. The remainder 
of the evolution is relatively stable, maintaining an average rating 
of 94% against the benchmark and ends with a rating of 101%. 
While the evolution of eight independent populations converges 
on a variety of solutions, each structure captures a similar aspect 
of the Robocode domain. The populations naturally move towards 
somewhat passive solutions that are capable of attacking a target 
when conditions are favorable. This approach is effective because 
a robot must commit a fraction of its energy when shooting at an 
opponent. Like gambling, it benefits a robot to shoot when there 
is a reasonable expectation of hitting a target. If the shot misses, 
the committed energy is lost. If the shot hits a target, the target’s 
energy is reduced by that amount and the shooter claims twice the 
energy committed. Observations made during the fitness 
evaluations in Stage III show that the aggressive nature of the 
benchmark behavior is self-defeating because it often fires from 
long distances where there is little expectation of scoring a hit. 
The more conservative behavior allows members to achieve high 
relative fitness ratings by simply evading the benchmark until it 
cripples itself by draining its own energy reserves. 

 
Figure 6: Behavior structures discovered from the evolution 
of eight randomly generated behavior populations. 

The solution structures discovered by each of the eight 
populations are shown in Figure 6. At first glance, the common 
thread between the solutions is that they each employ a motion 
behavior and a tracking/shooting behavior joined by a fusion 
based arbiter. The use of a fusion based arbiter allows the robot to 
pursue multiple objectives simultaneously. 
Conspicuously missing from the solutions above are the shooting 
behaviors: Return Fire, Fire v1 and Sniper Fire. Having identified 
the importance of using a more conservative shooting approach, 
Fire v1 and Return Fire are undesirable because they impose no 
range restriction and take unlikely shots at distant targets. The 
Sniper Fire behavior, a highly specialized behavior for shooting 
unmoving targets at long range, is likely to become obsolete 
because a population adopts continuous motion as a minimal 
requirement for survival. 
Of the motion based behaviors, Wander v2, Charge and Dodge 
each fail to make an appearance in the solution set. Wander v2, 
which simulates Brownian motion, was intended to produce 
erratic movements that can not be effectively tracked by an 
opponent. In reality, it produces erratic motion in a localized area, 
making shots in the general direction more likely to score a hit. 
As noted above, somewhat passive behaviors are able to conserve 
their energy and achieve higher mortality rates, thus a behavior, 
like Charge, that moves our robot into an opponent’s effective 
radius is also unfavorable. The absence of the Dodge behavior 
suggests that an ability to sustain continuous motion can act as a 
passive means of evading incoming attacks and indicates that 
such defensive measures are “good enough.” 
Observations of the solution structures in Figure 6 during battle 
shows that each is coherent, meaning that the behavior has the 
ability to perform basic elements of combat like tracking and 
shooting targets while moving within the battlefield without 
impeding its own progress towards the immediate goal and is able 
to consistently demonstrate a level of fitness that is superior to the 
benchmark. The real question is, “How good are these solutions 
on an absolute scale?” 
To better understand how the eight solutions rank on an absolute 
scale, the eight solutions are compared in an eight-on-eight battle 
to discover the fitness of each solution structure relative to the 
others. This approach uses a series of 1,000 battles to create an 
inter-population fitness evaluation and the results are shown in 
Figure 7. Rather than separating into bands, where some solutions 
consistently achieve higher performance ratings than others, they 
are (with the exception of run 5) tightly interwoven, indicating 
that the solutions presented by the individual evolutions are 
equally matched. With a performance variance equal to the noise 
floor, seven of the resulting behavior structures are considered to 
be equivalent solutions. 

 
Figure 7: Relative fitness of the eight population runs, where 
seven of the solutions are considered equivalent. 



The solutions presented by each run are relatively simple 
structures, lacking the depth and complexity typically associated 
with genetic programming solutions. Each solution structure 
presents a clear pairing of one motion behavior with one or two 
shooting behaviors. The lack of multiple skills within successful 
structures indicates that the scope of the elemental behaviors is 
too large. The behaviors provided, while incomplete for the 
domain, prefer to act alone and do not act as generic operators 
that can be composed by an EA to form deeper and more intricate 
solution structures that have coherent outward operations. 

5. CONCLUSIONS 
The ability of the unified behavior framework (UBF) to simplify 
the development and testing of behaviors for a given domain is 
demonstrated through the use of a genetic program to automate 
the discovery of effective behavior structures from a pool of 
simple behavior and arbitration elements. In this experiment, a 
genetic program is used to discover combinations of elemental 
components that contribute to the robots motion and its ability to 
track and shoot targets. The ability of the UBF to support the 
composition and recombination of behavior structures by the 
genetic program validates its ability to form structures that are 
logically correct, if not semantically coherent for a given domain. 
In robotic behavior based system development, the optimal 
solution is unknown and potentially changes with the introduction 
of new components. Along with the broad capabilities of the 
UBF, the use of a stochastic search discovers good solutions and 
is recommended as a useful tool for developing behavior based 
systems. The results show that this method is more effective than 
relying on raw human cleverness to achieve an optimal 
configuration directly. Additionally, the close relative fitness of 
the solution structures indicates that many equivalently good 
solutions exist within a domain, and that the approach is feasible 
for other robotic domains. 
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