
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Faculty Publications

7-2010

Simulating Windows-Based Cyber Attacks Using Live Virtual Simulating Windows-Based Cyber Attacks Using Live Virtual

Machine Introspection Machine Introspection

Dustyn A. Dodge
Air Force Institute of Technology

Barry E. Mullins
Air Force Institute of Technology

Gilbert L. Peterson
Air Force Institute of Technology

James S. Okolica
Air Force Institute of Technology

Follow this and additional works at: https://scholar.afit.edu/facpub

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Dustyn A. Dodge, Barry E. Mullins, Gilbert L. Peterson, and James S. Okolica. 2010. Simulating windows-
based cyber attacks using live virtual machine introspection. In Proceedings of the 2010 Summer
Computer Simulation Conference (SCSC '10). Society for Computer Simulation International, San Diego,
CA, USA, 550–555. https://dl.acm.org/doi/10.5555/1999416.1999487

This Conference Proceeding is brought to you for free and open access by AFIT Scholar. It has been accepted for
inclusion in Faculty Publications by an authorized administrator of AFIT Scholar. For more information, please
contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/facpub
https://scholar.afit.edu/facpub?utm_source=scholar.afit.edu%2Ffacpub%2F1202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Ffacpub%2F1202&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

Simulating Windows-Based Cyber Attacks

Using Live Virtual Machine Introspection

Dustyn A. Dodge, Barry E. Mullins, Gilbert L. Peterson, James S. Okolica

Air Force Institute of Technology

Wright Patterson AFB, Ohio

{ dustyn.dodge, barry.mullins, gilbert.peterson, james.okolica.ctr } @afit.edu

Keywords: Virtual machine introspection, virtualization,

Xen

Abstract

Static memory analysis has been proven a valuable

technique for digital forensics. However, the memory

capture technique halts the system causing the loss of

important dynamic system data. As a result, live analysis

techniques have emerged to complement static analysis.

In this paper, a compiled memory analysis tool for

virtualization (CMAT-V) is presented as a virtual

machine introspection (VMI) utility to conduct live

analysis during simulated cyber attacks. CMAT-V

leverages static memory dump analysis techniques to

provide live system state awareness. CMAT-V parses an

arbitrary memory dump from a simulated guest operating

system (OS) to extract user information, network usage,

active process information and registry files. Unlike some

VMI applications, CMAT-V bridges the semantic gap

using derivation techniques. This provides increased

operating system compatibility for current and future

operating systems. This research demonstrates the

usefulness of CMAT-V as a situational awareness tool

during simulated cyber attacks and measures the overall

performance of CMAT-V.

1. Limitations of Existing Analysis Techniques

Static analysis is commonly used by computer

forensic investigators to extract valuable intelligence data.

This procedure traditionally involves shutting down the

system to prevent observer effects that might corrupt

system data or trigger time-bomb attacks that detect

probing and erase the contents of the hard drive. Then, an

image of the disk is created and analyzed using static

analysis tools [1] [2]. Though this approach produces

valuable results, it does not capture dynamic system data

such as random access memory (RAM), open network

connections or active processes. Many types of malware

exist that leverage volatile system memory [3]. As a

result, live analysis techniques have emerged to provide a

more complete picture of the system state.

Live analysis can be implemented through

software-based monitoring applications (anti-virus,

spyware, etc) [4] or hardware-based devices [5]. These

approaches however have significant limitations.

Software applications, whether installed on the target

system or executed using an imported device (CDROM,

USB, etc), cannot be executed without making changes to

the system. These observer effects prevent investigators

from obtaining an objective view of the system state. In

addition, many types of malware hide themselves from

being detected. If the target system is compromised by

malware, data reported from the system itself might not

be trustworthy. Live analysis that is detectable by

malware is also a problem. Malware could be designed to

cause increased damage if application-based monitoring

systems are detected. This has been shown possible using

hardware-based monitoring techniques [6].

Not only does live analysis apply in the realm of

forensic analysis but in modeling and simulation (M&S)

as well. Previous work in cyber attack M&S create

environments for but do not focus on observing the

system state itself. For example, work by Kuhl and Sudit

uses a simulated computer network with synthetic

network traffic to test IDS sensors [7]. Though this

approach is useful to test network situational awareness,

synthetic environments may not reflect real world

operation [8]. To overcome these limitations,

virtualization has been identified as a more realistic

simulation environment for live analysis to occur.

2. Virtualization

Virtualization, originally introduced in the 1970’s [9]

has seen an emergence since 1990 due to advancements in

operating system compatibility and hardware support

[10]. Virtualization simulates multiple guest operating

systems (OSs) enabling them to use the same physical

hardware resources. The simulated guest OS, or virtual

machine (VM), interfaces with the underlying physical

hardware through a virtual machine manager (VMM).

The VMM resides in privilege ring 0, a kernel-level

domain defined by the x86 architecture [11]. Operating in

this privileged domain, the VMM actively coordinates the

use of hardware resources for each VM. Consequently,

the VMM has complete oversight over the state of all

guest VMs. The VMM is abstracted from the guest VMs

providing VMM-to-VM as well as VM-to-VM isolation.

mailto:dustyn.dodge@afit.edu
mailto:barry.mullins,
mailto:gilbert.peterson@afit.edu
mailto:james.okolica.ctr@afit.edu

In light of these characteristics, virtualization has

been identified as an efficient and contained simulation

environment for cyberwarfare training [12] [13] [14].

Using a virtualized environment, realistic cyber attack

simulations can be run to develop cyberwarfare strategies

for detecting malware, analyzing its behavior and

defeating current and future threats. However, effective

malware analysis requires complete situational awareness

of the dynamic VM state. As a result, research in live VM

analysis or virtual machine introspection (VMI) has

emerged.

3. Virtual Machine Introspection

 VMI involves monitoring the state of a VM during

execution and provides an inherently more secure

environment for analysis to take place. Utilizing the

VMM’s privileged position, VMI allows isolation from

user-level attack, complete VM oversight and the ability

to intervene on VM activities. In spite of these advantages

however, a significant challenge in VMI development is

overcoming the semantic gap [15]. The semantic gap

describes the disconnect between the raw data gathered by

a VMI utility and the meaning of the data within the

context of the VM. Though the VMM can access raw data

from memory, interpreting the data provided is not as

straightforward. OS-specific data structures, like page

tables used to map logical addresses to physical for

example, are not explicitly provided to the VMM. These

data structures can vary between OS distributions and

even between service packs. Several approaches have

been used to overcome this inherent semantic gap. These

approaches, along with other VMI characteristics, will

now be discussed.

3.1 Related Work

VMI systems have been categorized by their level of

VM interference, how semantic awareness is achieved,

and the ability for VM playback [16]. This paper uses

these categories as a guide for differentiating VMI

utilities but with slightly different criteria.

In this paper, VMI interference is defined as any

detectable change in state or operation of the system

being monitored. A technique used by some VMI utilities

is to place software hooks within the system to act as a

tripwire to signal when specific events occur [17]. Other

approaches have used process runtime modification to

identify hidden rootkits within a process list [18]. These

are effective approaches; however they are subject to

observer effects. Any direct modifications to the VM

contaminate the system state. Some less invasive

approaches pause the VM for data consistency [19] or for

creating VM checkpoints [20] [21]. Though it has yet to

be shown, suspending the VM itself could cause abnormal

execution timing or page fault events [22]. Non-

interfering VM tools use purely passive VM monitoring

[23] [24]. Though these preserve VM state, there are

limitations to these approaches as well. Passive VMI

systems rely solely on the user to respond to threats

detected. Also, without suspending the system, there is no

guarantee that by the time events are reported, the system

state has not changed.

Semantic awareness can be achieved by observing

events specific to either the software or hardware

architectures. Observing software-specific architectures

involves extracting data such as active processes, threads,

register or user information. As such, this approach

requires OS-specific semantic information. This

information can be explicitly provided a priori via

OS-specific offsets [23] or OS libraries [15].

Alternatively, semantic information can also be derived

from data collected by the VMI utility (i.e., memory

dump). However, even derivation methods detect patterns

based on previous knowledge about a particular OS.

Observing hardware architectures removes the need for

OS-specific semantic information. These techniques focus

on observing events at the microprocessor level such as

page faults, interrupts, and I/O requests [20] [25] [26].

This approach is OS independent. This may seem like the

ideal solution; however interpretation of hardware-level

activity is notably more difficult. Without any user-level

context for the hardware-level events observed,

conclusions made about the system state are limited in

scope [27].

Finally, some VMI systems provide event replay.

This allows investigators to step through past VM

execution to strategically analyze changes in system state.

Replay applications use event logging [20] or

checkpointing [21] to revert the VM to a previous state.

This also allows investigators to alter the execution during

replay and allows the VM execution to run under different

scenarios. However, by altering the execution state,

previous execution from that point forward is lost.

4. Methodology

The following sections outline the problem

definition, approach and experimental design for this

research.

4.1 Problem Definition

Many VMI systems provide forensic analysis

techniques to provide situational awareness of the VM

state. These techniques extract dynamic system data

during cyber attack modeling and simulation. However, in

order to provide meaning to the data, precompiled

OS-specific semantic information must be provided. This

limits the portability of VMI systems to particular OS

distributions or service packs. Those VMI applications

that derive OS semantics are mainly shown to operate on

Linux-based guest VMs. Others, that are Windows

specific, target a specific data structure which offers a

limited view of the dynamic system state. This research

attempts to create a novel Windows-based VMI utility for

monitoring cyber attacks that not only derives OS-specific

semantic information, but provides multidimensional

views of the live system state. In addition, all of the

system’s dynamic memory will be parsed without

interfering with the VM itself. As such, the goals of this

research are the following:

 Create a Windows-based VMI application

 Verify live-analysis functionality using various

cyber attack scenarios

 Evaluate VMI performance and system overhead

4.2 Approach

The following sections describe the approach used

for VMI development. The CMAT-V memory analysis

tool is described then assumptions made are discussed.

4.2.1 CMAT-V

CMAT-V builds upon CMAT, a compiled memory

analysis tool for static forensic analysis [28]. CMAT-V is

a prototype VMI application designed to conduct live

forensic analysis of Windows-based guest VMs. Though

the static analysis techniques used are applicable for most

virtualization software packages, CMAT-V is designed

for compatibility with Xen [29] virtualization software.

CMAT-V also uses a modified version of XenAccess [23]

as a framework to interface between Xen and CMAT.

Both Xen and XenAccess were chosen due their open

source availability. Figure 1 shows the overall CMAT-V

architecture.

Figure 1 . CMAT-V Architecture

Xen uses privilege levels that correlate to particular

Intel protection rings. Xen’s privileged domain (Dom0)

correlates to ring 0 while the user domain (DomU)

correlates protection levels of rings 1-3. CMAT-V utilizes

Xen’s built in hypervisor management API to manage and

monitor VM guests. The interface for the hypervisor

management API resides in a trusted Dom0 guest. For this

research the CentOS 5 operating system is used to

manage user-level domains.

Xen supports both paravirtualization and full

virtualization modes. In paravirtualization mode, the guest

OS kernel is modified so that rather than making native

system calls that must be translated by the VMM,

hypercalls are made directly to Xen-supported physical

hardware. This significantly reduces the overhead

required by the VMM. For some proprietary guest OSs

however, modifying the OS source code is not an option.

As an alternative, full virtualization mode can be used.

Full virtualization leverages hardware assisted

virtualization (HAV) to allow the guest OS to use native

system calls that are sent directly to the physical

hardware. Intel-VT [11] and AMD-V [30] are the two

most prominent HAV platforms in use today. Like

paravirtualization, full virtualization also allows for

reduced VMM overhead. Because CMAT-V targets

proprietary Windows-based guests, Xen is run in full

virtualization mode.

CMAT-V uses the XenAccess application

programming interface (API) to configure and call Xen’s

built in VM management functions. In particular,

CMAT-V uses a modified version of the XenAccess

function xa_access_pa() which returns a mapped

page and offset to a desired VM physical address. By

default, XenAccess requires two user-provided

files to call xa_access_pa(). The first file,

xenaccess.conf, contains explicit VM configuration

information like VM name, OS distribution and OS

specific offsets to key data structures. This gives

XenAccess exact locations to begin searching memory.

The second file, System.map, contains OS specific data

structure information. This information provides

XenAccess a roadmap to strategically navigate through

memory. In contrast, CMAT-V modifies XenAccess by

removing the dependence on these user provided files.

Instead, semantic information is derived from the memory

itself. Subsequently, OS-specific symbol information is

downloaded from the Microsoft Symbol Server [31].

 After important semantic information has been

established, CMAT-V leverages the static memory

analysis techniques from CMAT to provide a

multidimensional view of the state of dynamic system

memory. Using these techniques CMAT-V is able to

reconstruct the following:

 Logged on Users and Credentials

 Network Status Information

 Active Process Information

 Driver Information

 Open Files and Registry Keys

Xen Hypervisor | VMM

HAV

Physical Hardware

Virtual Machine 1

D
o

m
U

D

o
m

0

CMAT

XenAccess

Hypervisor
Management API

Virtual Machine 2

Unlike CMAT however, instead of accessing previously

extracted memory dump data from a file, CMAT-V

directly accesses the VM’s dynamic memory. In addition,

CMAT-V is able to simultaneously monitor multiple VMs

on a single physical system. The system views created by

CMAT-V also use cross-view validation [32] to identify

inconsistencies in information that the VM reports and the

information collected by VMI.

4.2.2 Assumptions

There are several assumptions made during this

effort. First, it is assumed that the VMM itself has not

been compromised. As such, any reported information

from Dom0 is considered a trustworthy view of the VM

system state. Also, though the same techniques can be

applied for guest VMs running Linux it is assumed that

the VM is using a Windows-based OS. As such,

CMAT-V uses Microsoft’s Symbol Server to retrieve

updated OS information once the operating system

distribution and version have been derived. Finally, it is

assumed that malware within the VM is completely

isolated from the VMM such that it cannot detect it is

being monitored by a VMI application. If VMI is

detectable, the malware running on the VM could then

hide itself or simply shut down.

4.3 Experimental Design

Experiments are conducted on a Dell Latitude D630

laptop with an Intel Core 2 Duo T7300 processor, 2 GB of

memory and a 120 GB hard drive. The processor includes

Intel-VT technology which allows HAV mode operation.

The VM guests are Windows XP SP3 with 512 MB of

RAM. Once implemented, three tests which verify threat

detection, quantify application performance and

measuring CMAT-V impact on the overall system

evaluate CMAT-V performance.

4.3.1 Threat Awareness

As previously discussed, the primary advantage of

monitoring a VM from the hypervisor level is its

complete and objective view of the system. This allows

VMI utilities to uncover malware such as rootkits that

hide execution activity from the guest OS [3]. For

example, many Windows rootkits (e.g., direct kernel

object manipulation (DKOM) rootkits) can be designed to

modify a data structure called the executive process block

or EPROCESS block to hide their existence from the user.

EPROCESS uses a linked list to keep track of active

processes. This linked list is shown in Figure 2.

Within the EPROCESS block is another block called

KPROCESS that contains information needed to schedule

the process for execution. When Windows utilities such

as task manager are run, the EPROCESS list is searched

to retrieve a list of all active processes.

Figure 2. EPROCESS Structure

In order for a rootkit to remove a process from

EPROCESS list, the links between the preceding and

following process are modified to skip the target process

altogether. This is shown in Figure 3. With the rootkit in

place, utilities that rely on the EPROCESS linked list can

no longer detect that the process is running.

Figure 3. EPROCESS Rootkit

CMAT-V does not use the EPROCESS list as its

primary method for process detection. Instead, it searches

memory for known string patterns that indicate a

KPROCESS block has been found. Once all valid

KPROCESS blocks have been found, it can reconstruct

the process list, exposing hidden processes. To simulate

such an attack, a sample rootkit will be installed on a VM.

The CMAT-V utility will then monitor the state of the

VM. Based on reported information, classifications will

then be made on CMAT-V’s ability to provide evidence

of the attack to the user.

4.3.2 Application Performance
A series of tests will be conducted to measure the

performance of specific CMAT-V functions. Using a

timing measurement such as the POSIX

clock_gettime function, the number of CPU cycles

required for CMAT-V functions will be measured. The

FLINK

BLINK

LIST_ENTRY

EPROCESS

FLINK

BLINK

LIST_ENTRY

EPROCESS

FLINK

BLINK

LIST_ENTRY

EPROCESS

KPROCESS

KPROCESS

KPROCESS

FLINK

BLINK

LIST_ENTRY

EPROCESS

FLINK

BLINK

LIST_ENTRY

EPROCESS

FLINK

BLINK

LIST_ENTRY

EPROCESS

KPROCESS

KPROCESS

KPROCESS

functions tested include initialization, OS detection and

memory scanning routines. Using this information, the

performance of CMAT-V will be characterized to

quantify the overhead required for particular routines

within the program. It is hypothesized that once semantic

information has been derived and initialization has been

completed that CMAT-V will be able to more quickly

access known data structures.

4.3.3 System Impact
To evaluate the overall system overhead of running

CMAT-V, several benchmarks will be run. These tests

will use the Phoronix Test Suite [33] to conduct several

Linux-based benchmarks within Xen’s hypervisor

management API. Phoronix was chosen because it is

open source and contains a wide variety of benchmark

workloads. First, the system will be configured to

minimize all unessential processes running in the

background. Then, baseline benchmarks will be run

in the Dom0 guest VM to characterize stand-alone

performance. Those same benchmarks will then be run

while CMAT-V is executing. After all benchmarks have

been run, baseline and experimental timing measurements

will be compared. Any decrease in performance

will then be assumed to have been caused by CMAT-V

operation.

5. Conclusion and Work in Progress

This paper described CMAT-V, a VMI utility for live

memory analysis of a guest VM. CMAT-V provides

situational awareness during simulated cyber attack

scenarios. Using static forensic analysis techniques,

CMAT-V derives semantically relevant information from

an arbitrary Windows memory dump. This information is

then reported to the user to classify the state of the

system. A methodology for system development and

performance analysis was presented.

Current work in progress is focused on integrating

CMAT’s memory parsing functions with those defined in

XenAccess. This work will focus on creating a

customized version of XenAccess such that configuration

files are not required to access physical memory. Once it

is shown that CMAT-V can call XenAccess mapping

functions, it can implicitly derive the configuration

information needed. Once this is completed, CMAT will

be modified to call the XenAccess API instead of a

memory dump file. Finally, focus will turn to program

optimization, sample rootkit development and

performance testing.

6. References

[1] Access Data. Forensic Toolkit. (Last Accessed:

March 2010).

http://www.accessdata.com/forensictoolkit.html

[2] Guidance Software, Inc. EnCase. (Last Accessed:

March 2010). http://www.guidancesoftware.com/

[3] G. Hoglund and J. Butler, Rootkits. Stoughton:

Pearson Education, Inc., 2006.

[4] Symantec Corporation. AntiVirus, Anti-Spyware,

Endpoint Security, Backup, Storage Solutions.

(Last Accessed: March 2010).

 http://www.symantec.com/index.jsp

[5] H. Carvey, Windows Forensic Analysis.

Burlington: Syngress Publishing, Inc., 2009.

[6] J. Rutkowska, "Beyond the CPU: Defeating

Hardware Based RAM Acquisition," COSEINC

Advanced Malware Labs Presentation, 2007.

[7] M. E. Kuhl and M. Sudit, "Cyber Attack Modeling

and Simulation for Network Security Analysis," in

Proceedings of the 39th Conference on Winter

Simulation: 40 years! The best is yet to come,

Washington D.C., 2007, pp. 1180-1188.

[8] A. Mukosi, J. A. van der Poll, and R. M. Jolliffe,

"A Virtual Integrated Network Emulator on Xen

(viNEX)," in Proceedings of the 2nd International

Conference on Simulation Tools and Techniques,

Rome, 2009.

[9] R. P. Goldberg, "Survey of Virtual Machine

Research," Computer, vol. 7, no. 6, pp. 34-45, Jun.

1974.

[10] M. Rosenblum, "The Reincarnation of Virtual

Machines," Queue, vol. 2, no. 5, pp. 34-40, Jul.

2004.

[11] Intel Corporation. Intel 64 and IA-32 Architectures

Software Developer's Manuals. (Last Accessed:

March 2010).

http://www.intel.com/products/processor/manuals/

[12] K. Stewart, J. W. Humphries, and T. Andel,

"Developing a Virtualization Platform for Courses

in Networking, Systems Administration and Cyber

Security Education," in Proceedings of the 2009

Spring Simulation Multiconference, San Diego,

2009.

[13] A. Futoransky, F. Miranda, and J. Orlicki,

"Simulating Cyber-Attacks for Fun and Profit," in

Proceedings of the 2nd International Conference

on Simulation Tools and Techniques, Rome, 2009.

[14] M. G. Wabiszewski, T. R. Andel, B. E. Mullins,

http://www.accessdata.com/forensictoolkit.html
http://www.guidancesoftware.com/
http://www.symantec.com/index.jsp
http://www.intel.com/products/processor/manuals/

and R. W. Thomas, "Enhancing Hands-on Network

Training in a Virtual Environment," in Proceedings

of the 2009 Spring Simulation Multiconference, San

Diego, 2009.

[15] T. Garfinkel and M. Rosenblum, "A Virtual

Machine Introspection Based Architecture for

Intrusion Detection," in Network and Distributed

System Security Symposium, San Diego, 2003.

[16] K. Nance, B. Hay, and M. Bishop, "Virtual

Machine Introspection: Observation or

Interference," IEEE Security and Privacy, vol. 6,

no. 5, pp. 32-37, Sep. 2008.

[17] B. D. Payne, M. Carbone, M. Sharif, and W. Lee,

"Lares: An Architecture for Secure Active

Monitoring Using Virtualization," in Proceedings -

IEEE Symposium on Security and Privacy,

Oakland, 2008, pp. 233-247.

[18] S. T. Jones, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau, "VMM-based Hidden Process

Detection and Identification using Lycosid," in

ACM/Usenix International Conference On Virtual

Execution Environments, Seattle, 2008, pp. 91-100.

[19] B. N. K. Hay, "Forensics Examination of Volatile

System Data Using Virtual Introspection," in ACM

SIGOPS Operating Systems Review, New York,

2008, vol. 42, no. 5, pp. 74-82.

[20] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai,

and P. M. Chen, "ReVirt: Enabling Intrusion

Analysis through Virtual-Machine Replay," in

OSDI'02: Proceedings of the 5th Symposium on

Operating Systems Design and Implementation,

New York, 2002, pp. 211-224.

[21] A. Joshi, S. T. King, G. W. Dunlap, and P. M.

Chen, "Detecting Past and Present Intrusions

through Vulnerability-Specific Predicates," in ACM

Symposium on Operating Systems Principles,

Brighton, 2005, pp. 91-104.

[22] B. Hay, K. Nance, and M. Bishop, "Live Analysis:

Progress and Challenges," IEEE Security and

Privacy, vol. 7, no. 2, pp. 30-37, 2009.

[23] B. D. Payne, M. D. P. d. Carbone, and W. Lee,

"Secure and Flexible Monitoring of Virtual

Machines," in Annual Computer Security

Applications Conference, ACSAC, Miami Beach,

2007, pp. 385-397.

[24] L. Litty, H. Lagar-Cavilla, and D. Lie, "Hypervisor

Support for Identifying Covertly Executing

Binaries," in SS'08: Proceedings of the 17th

conference on Security symposium, Berkley, 2008,

pp. 243-258.

[25] L. Litty and D. Lie, "Manitou: A Layer-Below

Approach to Fighting Malware," in Proceedings of

the 1st Workshop on Architectural and System

Support for Improving Software Dependability, San

Jose, 2006, pp. 6-11.

[26] S. T. Jones, A. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau, "Antfarm: Tracking Processes in a Virtual

Machine Environment," in Proceedings of the 2006

USENIX Annual Technical Conference, Boston,

2006, pp. 1-14.

[27] J. Pfoh, C. Schneider, and C. Eckert, "A Formal

Model for Virtual Machine Introspection," in

VMSec'09: Proceedings of the 1st ACM Workshop

on Virtual Machine Security, Chicago, 2009, pp. 1-9.

[28] J. S. Okolica and G. L. Peterson, "A Compiled

Memory Analysis Tool," in Research Advances in

Digital Forensics VI. New York: Springer

Science+Business Media, 2010, InPublication.

[29] J. N. Matthews, et al., Running Xen. Boston, USA:

Pearson Education, Inc., 2008.

[30] Advanced Micro Devices Inc. AMD64 Architecture

Programmers Manual. (Last Accessed: April 2010).

http://support.amd.com/us/Processor_TechDocs

/26569.pdf

[31] J. Okolica and G. Peterson, "Windows Operating

Systems Agnostic Memory Analysis," in

Proceedings of the Digital Forensic Research

Workshop Conference (DFRWS), 2010.

[32] Y. M. Wang, D. Beck, B. Vo, R. Roussev, and C.

Verbowski, "Detecting Stealth Software with Strider

Ghostbuster," in International Conference on

Dependable Systems and Networks, Redmond, 2005,

pp. 368-377.

[33] Phoronix Media. Phoronix Test Suite. (Last

Accessed: April 2010). http://tests.phoronix-test-

suite.com/

http://tests.phoronix-test-suite.com/
http://tests.phoronix-test-suite.com/

	Simulating Windows-Based Cyber Attacks Using Live Virtual Machine Introspection
	Recommended Citation

	Simulating Windows-Based Cyber Attacks Using Live Virtual Machine Introspection

