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Abstract 

Static memory analysis has been proven a valuable 

technique for digital forensics. However, the memory 

capture technique halts the system causing the loss of 

important dynamic system data. As a result, live analysis 

techniques have emerged to complement static analysis. 

In this paper, a compiled memory analysis tool for 

virtualization (CMAT-V) is presented as a virtual 

machine introspection (VMI) utility to conduct live 

analysis during simulated cyber attacks. CMAT-V 

leverages static memory dump analysis techniques to 

provide live system state awareness. CMAT-V parses an 

arbitrary memory dump from a simulated guest operating 

system (OS) to extract user information, network usage, 

active process information and registry files. Unlike some 

VMI applications, CMAT-V bridges the semantic gap 

using derivation techniques. This provides increased 

operating system compatibility for current and future 

operating systems. This research demonstrates the 

usefulness of CMAT-V as a situational awareness tool 

during simulated cyber attacks and measures the overall 

performance of CMAT-V. 

 

1. Limitations of Existing Analysis Techniques 

Static analysis is commonly used by computer 

forensic investigators to extract valuable intelligence data. 

This procedure traditionally involves shutting down the 

system to prevent observer effects that might corrupt 

system data or trigger time-bomb attacks that detect 

probing and erase the contents of the hard drive. Then, an 

image of the disk is created and analyzed using static 

analysis tools [1] [2]. Though this approach produces 

valuable results, it does not capture dynamic system data 

such as random access memory (RAM), open network 

connections or active processes. Many types of malware 

exist that leverage volatile system memory [3]. As a 

result, live analysis techniques have emerged to provide a 

more complete picture of the system state. 

Live analysis can be implemented through  

software-based monitoring applications (anti-virus, 

spyware, etc) [4] or hardware-based devices [5]. These 

approaches however have significant limitations. 

Software applications, whether installed on the target 

system or executed using an imported device (CDROM, 

USB, etc), cannot be executed without making changes to 

the system. These observer effects prevent investigators 

from obtaining an objective view of the system state. In 

addition, many types of malware hide themselves from 

being detected. If the target system is compromised by 

malware, data reported from the system itself might not 

be trustworthy. Live analysis that is detectable by 

malware is also a problem. Malware could be designed to 

cause increased damage if application-based monitoring 

systems are detected. This has been shown possible using 

hardware-based monitoring techniques [6].  

Not only does live analysis apply in the realm of 

forensic analysis but in modeling and simulation (M&S) 

as well. Previous work in cyber attack M&S create 

environments for but do not focus on observing the 

system state itself. For example, work by Kuhl and Sudit 

uses a simulated computer network with synthetic 

network traffic to test IDS sensors [7]. Though this 

approach is useful to test network situational awareness, 

synthetic environments may not reflect real world 

operation [8]. To overcome these limitations, 

virtualization has been identified as a more realistic 

simulation environment for live analysis to occur. 

 

2. Virtualization 

Virtualization, originally introduced in the 1970’s [9] 

has seen an emergence since 1990 due to advancements in 

operating system compatibility and hardware support 

[10]. Virtualization simulates multiple guest operating 

systems (OSs) enabling them to use the same physical 

hardware resources. The simulated guest OS, or virtual 

machine (VM), interfaces with the underlying physical 

hardware through a virtual machine manager (VMM). 

The VMM resides in privilege ring 0, a kernel-level 

domain defined by the x86 architecture [11]. Operating in 

this privileged domain, the VMM actively coordinates the 

use of hardware resources for each VM. Consequently, 

the VMM has complete oversight over the state of all 

guest VMs. The VMM is abstracted from the guest VMs 

providing VMM-to-VM as well as VM-to-VM isolation.  
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In light of these characteristics, virtualization has 

been identified as an efficient and contained simulation 

environment for cyberwarfare training [12] [13] [14]. 

Using a virtualized environment, realistic cyber attack 

simulations can be run to develop cyberwarfare strategies 

for detecting malware, analyzing its behavior and 

defeating current and future threats. However, effective 

malware analysis requires complete situational awareness 

of the dynamic VM state. As a result, research in live VM 

analysis or virtual machine introspection (VMI) has 

emerged. 

 

3. Virtual Machine Introspection 

 VMI involves monitoring the state of a VM during 

execution and provides an inherently more secure 

environment for analysis to take place. Utilizing the 

VMM’s privileged position, VMI allows isolation from 

user-level attack, complete VM oversight and the ability 

to intervene on VM activities. In spite of these advantages 

however, a significant challenge in VMI development is 

overcoming the semantic gap [15]. The semantic gap 

describes the disconnect between the raw data gathered by 

a VMI utility and the meaning of the data within the 

context of the VM. Though the VMM can access raw data 

from memory, interpreting the data provided is not as 

straightforward. OS-specific data structures, like page 

tables used to map logical addresses to physical for 

example, are not explicitly provided to the VMM. These 

data structures can vary between OS distributions and 

even between service packs. Several approaches have 

been used to overcome this inherent semantic gap. These 

approaches, along with other VMI characteristics, will 

now be discussed.  

 

3.1 Related Work 

VMI systems have been categorized by their level of 

VM interference, how semantic awareness is achieved, 

and the ability for VM playback [16]. This paper uses 

these categories as a guide for differentiating VMI 

utilities but with slightly different criteria. 

In this paper, VMI interference is defined as any 

detectable change in state or operation of the system 

being monitored. A technique used by some VMI utilities 

is to place software hooks within the system to act as a 

tripwire to signal when specific events occur [17]. Other 

approaches have used process runtime modification to 

identify hidden rootkits within a process list [18]. These 

are effective approaches; however they are subject to 

observer effects. Any direct modifications to the VM 

contaminate the system state. Some less invasive 

approaches pause the VM for data consistency [19] or for 

creating VM checkpoints [20] [21]. Though it has yet to 

be shown, suspending the VM itself could cause abnormal 

execution timing or page fault events [22]. Non-

interfering VM tools use purely passive VM monitoring 

[23] [24]. Though these preserve VM state, there are 

limitations to these approaches as well. Passive VMI 

systems rely solely on the user to respond to threats 

detected. Also, without suspending the system, there is no 

guarantee that by the time events are reported, the system 

state has not changed.  

Semantic awareness can be achieved by observing 

events specific to either the software or hardware 

architectures. Observing software-specific architectures 

involves extracting data such as active processes, threads, 

register or user information. As such, this approach 

requires OS-specific semantic information. This 

information can be explicitly provided a priori via  

OS-specific offsets [23] or OS libraries [15]. 

Alternatively, semantic information can also be derived 

from data collected by the VMI utility (i.e., memory 

dump). However, even derivation methods detect patterns 

based on previous knowledge about a particular OS. 

Observing hardware architectures removes the need for 

OS-specific semantic information. These techniques focus 

on observing events at the microprocessor level such as 

page faults, interrupts, and I/O requests [20] [25] [26]. 

This approach is OS independent. This may seem like the 

ideal solution; however interpretation of hardware-level 

activity is notably more difficult. Without any user-level 

context for the hardware-level events observed, 

conclusions made about the system state are limited in 

scope [27]. 

Finally, some VMI systems provide event replay. 

This allows investigators to step through past VM 

execution to strategically analyze changes in system state. 

Replay applications use event logging [20] or 

checkpointing [21] to revert the VM to a previous state. 

This also allows investigators to alter the execution during 

replay and allows the VM execution to run under different 

scenarios. However, by altering the execution state, 

previous execution from that point forward is lost. 

 

4. Methodology 

The following sections outline the problem 

definition, approach and experimental design for this 

research. 

 

4.1 Problem Definition 

Many VMI systems provide forensic analysis 

techniques to provide situational awareness of the VM 

state. These techniques extract dynamic system data 

during cyber attack modeling and simulation. However, in 

order to provide meaning to the data, precompiled  

OS-specific semantic information must be provided. This 

limits the portability of VMI systems to particular OS 

distributions or service packs. Those VMI applications 

that derive OS semantics are mainly shown to operate on 



Linux-based guest VMs. Others, that are Windows 

specific, target a specific data structure which offers a 

limited view of the dynamic system state. This research 

attempts to create a novel Windows-based VMI utility for 

monitoring cyber attacks that not only derives OS-specific 

semantic information, but provides multidimensional 

views of the live system state. In addition, all of the 

system’s dynamic memory will be parsed without 

interfering with the VM itself. As such, the goals of this 

research are the following: 

 

 Create a Windows-based VMI application 

 Verify live-analysis functionality using various 

cyber attack scenarios 

 Evaluate VMI performance and system overhead 

 

4.2 Approach 

The following sections describe the approach used 

for VMI development. The CMAT-V memory analysis 

tool is described then assumptions made are discussed. 

 

4.2.1 CMAT-V  

CMAT-V builds upon CMAT, a compiled memory 

analysis tool for static forensic analysis [28]. CMAT-V is 

a prototype VMI application designed to conduct live 

forensic analysis of Windows-based guest VMs. Though 

the static analysis techniques used are applicable for most 

virtualization software packages, CMAT-V is designed 

for compatibility with Xen [29] virtualization software. 

CMAT-V also uses a modified version of XenAccess [23] 

as a framework to interface between Xen and CMAT. 

Both Xen and XenAccess were chosen due their open 

source availability.  Figure 1 shows the overall CMAT-V 

architecture. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 . CMAT-V Architecture 

 

Xen uses privilege levels that correlate to particular 

Intel protection rings. Xen’s privileged domain (Dom0) 

correlates to ring 0 while the user domain (DomU) 

correlates protection levels of rings 1-3. CMAT-V utilizes 

Xen’s built in hypervisor management API to manage and 

monitor VM guests. The interface for the hypervisor 

management API resides in a trusted Dom0 guest. For this 

research the CentOS 5 operating system is used to 

manage user-level domains. 

Xen supports both paravirtualization and full 

virtualization modes. In paravirtualization mode, the guest 

OS kernel is modified so that rather than making native 

system calls that must be translated by the VMM, 

hypercalls are made directly to Xen-supported physical 

hardware. This significantly reduces the overhead 

required by the VMM. For some proprietary guest OSs 

however, modifying the OS source code is not an option. 

As an alternative, full virtualization mode can be used. 

Full virtualization leverages hardware assisted 

virtualization (HAV) to allow the guest OS to use native 

system calls that are sent directly to the physical 

hardware. Intel-VT [11] and AMD-V [30] are the two 

most prominent HAV platforms in use today. Like 

paravirtualization, full virtualization also allows for 

reduced VMM overhead. Because CMAT-V targets 

proprietary Windows-based guests, Xen is run in full 

virtualization mode. 

CMAT-V uses the XenAccess application 

programming interface (API) to configure and call Xen’s 

built in VM management functions.  In particular, 

CMAT-V uses a modified version of the XenAccess 

function xa_access_pa() which returns a mapped 

page and offset to a desired VM physical address. By 

default, XenAccess requires two user-provided  

files to call xa_access_pa(). The first file, 

xenaccess.conf, contains explicit VM configuration 

information like VM name, OS distribution and OS 

specific offsets to key data structures. This gives 

XenAccess exact locations to begin searching memory. 

The second file, System.map, contains OS specific data 

structure information. This information provides 

XenAccess a roadmap to strategically navigate through 

memory. In contrast, CMAT-V modifies XenAccess by 

removing the dependence on these user provided files. 

Instead, semantic information is derived from the memory 

itself. Subsequently, OS-specific symbol information is 

downloaded from the Microsoft Symbol Server [31]. 

        After important semantic information has been 

established, CMAT-V leverages the static memory 

analysis techniques from CMAT to provide a 

multidimensional view of the state of dynamic system 

memory. Using these techniques CMAT-V is able to 

reconstruct the following: 
 

 Logged on Users and Credentials 

 Network Status Information 

 Active Process Information 

 Driver Information 

 Open Files and Registry Keys 
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Unlike CMAT however, instead of accessing previously 

extracted memory dump data from a file, CMAT-V 

directly accesses the VM’s dynamic memory. In addition, 

CMAT-V is able to simultaneously monitor multiple VMs 

on a single physical system. The system views created by 

CMAT-V also use cross-view validation [32] to identify 

inconsistencies in information that the VM reports and the 

information collected by VMI. 

 

4.2.2 Assumptions 

There are several assumptions made during this 

effort. First, it is assumed that the VMM itself has not 

been compromised. As such, any reported information 

from Dom0 is considered a trustworthy view of the VM 

system state. Also, though the same techniques can be 

applied for guest VMs running Linux it is assumed that 

the VM is using a Windows-based OS. As such,  

CMAT-V uses Microsoft’s Symbol Server to retrieve 

updated OS information once the operating system 

distribution and version have been derived. Finally, it is 

assumed that malware within the VM is completely 

isolated from the VMM such that it cannot detect it is 

being monitored by a VMI application. If VMI is 

detectable, the malware running on the VM could then 

hide itself or simply shut down. 

 

4.3  Experimental Design 

Experiments are conducted on a Dell Latitude D630 

laptop with an Intel Core 2 Duo T7300 processor, 2 GB of 

memory and a 120 GB hard drive. The processor includes 

Intel-VT technology which allows HAV mode operation. 

The VM guests are Windows XP SP3 with 512 MB of 

RAM. Once implemented, three tests which verify threat 

detection, quantify application performance and 

measuring CMAT-V impact on the overall system 

evaluate CMAT-V performance. 

 

4.3.1 Threat Awareness 

As previously discussed, the primary advantage of 

monitoring a VM from the hypervisor level is its 

complete and objective view of the system. This allows 

VMI utilities to uncover malware such as rootkits that 

hide execution activity from the guest OS [3]. For 

example, many Windows rootkits (e.g., direct kernel 

object manipulation (DKOM) rootkits) can be designed to 

modify a data structure called the executive process block 

or EPROCESS block to hide their existence from the user. 

EPROCESS uses a linked list to keep track of active 

processes. This linked list is shown in Figure 2.  

Within the EPROCESS block is another block called 

KPROCESS that contains information needed to schedule 

the process for execution. When Windows utilities such 

as task manager are run, the EPROCESS list is searched 

to retrieve a list of all active processes.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. EPROCESS Structure 

 

In order for a rootkit to remove a process from 

EPROCESS list, the links between the preceding and 

following process are modified to skip the target process 

altogether. This is shown in Figure 3. With the rootkit in 

place, utilities that rely on the EPROCESS linked list can 

no longer detect that the process is running. 

  
Figure 3. EPROCESS Rootkit 

 

CMAT-V does not use the EPROCESS list as its 

primary method for process detection. Instead, it searches 

memory for known string patterns that indicate a 

KPROCESS block has been found. Once all valid 

KPROCESS blocks have been found, it can reconstruct 

the process list, exposing hidden processes. To simulate 

such an attack, a sample rootkit will be installed on a VM. 

The CMAT-V utility will then monitor the state of the 

VM. Based on reported information, classifications will 

then be made on CMAT-V’s ability to provide evidence 

of the attack to the user. 

 

4.3.2 Application Performance 
A series of tests will be conducted to measure the 

performance of specific CMAT-V functions. Using a 

timing measurement such as the POSIX 

clock_gettime function, the number of CPU cycles 

required for CMAT-V functions will be measured. The 
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functions tested include initialization, OS detection and 

memory scanning routines. Using this information, the 

performance of CMAT-V will be characterized to 

quantify the overhead required for particular routines 

within the program. It is hypothesized that once semantic 

information has been derived and initialization has been 

completed that CMAT-V will be able to more quickly 

access known data structures. 

 

4.3.3 System Impact 
To evaluate the overall system overhead of running 

CMAT-V, several benchmarks will be run. These tests 

will use the Phoronix Test Suite [33] to conduct several 

Linux-based benchmarks within Xen’s hypervisor 

management API.  Phoronix was chosen because it is 

open source and contains a wide variety of benchmark 

workloads. First, the system will be configured to 

minimize all unessential processes running in the 

background. Then, baseline benchmarks will be run  

in the Dom0 guest VM to characterize stand-alone 

performance. Those same benchmarks will then be run 

while CMAT-V is executing. After all benchmarks have 

been run, baseline and experimental timing measurements 

will be compared. Any decrease in performance  

will then be assumed to have been caused by CMAT-V 

operation. 

 

5. Conclusion and Work in Progress 

This paper described CMAT-V, a VMI utility for live 

memory analysis of a guest VM. CMAT-V provides 

situational awareness during simulated cyber attack 

scenarios. Using static forensic analysis techniques, 

CMAT-V derives semantically relevant information from 

an arbitrary Windows memory dump. This information is 

then reported to the user to classify the state of the 

system. A methodology for system development and 

performance analysis was presented.  

Current work in progress is focused on integrating 

CMAT’s memory parsing functions with those defined in 

XenAccess. This work will focus on creating a 

customized version of XenAccess such that configuration 

files are not required to access physical memory. Once it 

is shown that CMAT-V can call XenAccess mapping 

functions, it can implicitly derive the configuration 

information needed. Once this is completed, CMAT will 

be modified to call the XenAccess API instead of a 

memory dump file.  Finally, focus will turn to program 

optimization, sample rootkit development and 

performance testing. 
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