
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Faculty Publications

6-2011

WoLF Ant WoLF Ant

Gilbert L. Peterson
Air Force Institute of Technology

Christopher M. Mayer
United States Naval Academy

Kevin Cousin
Air Force Institute of Technology

Follow this and additional works at: https://scholar.afit.edu/facpub

 Part of the Computer Sciences Commons, and the Systems Engineering Commons

Recommended Citation Recommended Citation
G. L. Peterson, C. B. Mayer and K. Couśin, "WoLF Ant," 2011 IEEE Congress of Evolutionary Computation
(CEC), New Orleans, LA, USA, 2011, pp. 995-1002, https://doi.org/10.1109/CEC.2011.5949726

This Conference Proceeding is brought to you for free and open access by AFIT Scholar. It has been accepted for
inclusion in Faculty Publications by an authorized administrator of AFIT Scholar. For more information, please
contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/facpub
https://scholar.afit.edu/facpub?utm_source=scholar.afit.edu%2Ffacpub%2F1195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Ffacpub%2F1195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/309?utm_source=scholar.afit.edu%2Ffacpub%2F1195&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

1

WoLF Ant
Gilbert L. Peterson∗, Christopher B. Mayer†, and Kevin Couśin∗

∗Department of Electrical and Computer Engineering
Air Force Institute of Technology

2950 Hobson Way
Wright-Patterson AFB, OH 45431

e-mail: {gilbert.peterson, kevin.cousin}@afit.edu
†Department of Electrical and Computer Engineering

United States Naval Academy
105 Maryland Avenue
Annapolis, MD 21402

e-mail: cmayer@usna.edu

Abstract—Ant colony optimization (ACO) algorithms can gen-
erate quality solutions to combinatorial optimization problems.
However, like many stochastic algorithms, the quality of solutions
worsen as problem sizes grow. In an effort to increase perfor-
mance, we added the variable step size off-policy hill-climbing
algorithm called PDWoLF (Policy Dynamics Win or Learn Fast)
to several ant colony algorithms: Ant System, Ant Colony System,
Elitist-Ant System, Rank-based Ant System, and Max-Min Ant
System. Easily integrated into each ACO algorithm, the PDWoLF
component maintains a set of policies separate from the ant
colony’s pheromone. Similar to pheromone but with different
update rules, the PDWoLF policies provide a second estimation
of solution quality and guide the construction of solutions. Exper-
iments on large traveling salesman problems (TSPs) show that
incorporating PDWoLF with the aforementioned ACO algorithms
that do not make use of local optimizations produces shorter tours
than the ACO algorithms alone.

Index Terms—Ant Colony Optimization, Ant System, Traveling
Salesman Problem, Win or Learn Fast, Gradient Descent.

I. INTRODUCTION

Ant Colony Optimization (ACO) is a meta-heuristic based
on the natural behavior of real ants and their seeming ability to
solve minimization problems efficiently obeying a few simple
rules. ACO algorithms have produced world-class solutions to
many NP-Hard optimization problems including the Traveling
Salesman Problem (TSP) [1], [2], the Quadratic Assignment
Problem [3]–[5], and job-shop scheduling problems [6], [7].

Although variations exist, the majority of ACO implemen-
tations employ a graph structure for representing problems.
Loosely speaking, vertices represent problem states. Edges run
between vertices and contain a substance called pheromone.
The level of an edge’s pheromone represents the learned
importance of the edge in regards to connecting its vertices
as part of a desirable solution.

The views expressed in this article are those of the authors and do not
reflect the official policy or position of the U.S. Air Force, Dept. of Defense,
or the U.S. Government. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright
notation here on.

This paper was supported by the Air Force Office of Scientific Research,
project number 2311/FX.

Ants construct a solution by traversing the graph’s edges
as they link the graph’s vertices together. To move from
one vertex to another, an ant computes a value for each
outgoing edge of the current vertex by combining the edge’s
pheromone concentration and a heuristic desirability specific
to the problem being solved. The ant then normalizes the
probability of each outgoing edge and picks an edge to traverse
using a uniformly generated random number.

After connecting enough vertices together to form a solu-
tion, ants deposit pheromone on the edges traversed during
solution construction in proportion to the solution’s quality.
That is, edges critical to the best solutions receive more
pheromone than other edges. Periodic pheromone evaporation
makes non-reinforced edges less attractive over time, and acts
to weed out undesirable solutions.

Making weighted random decisions using both pheromone
(representing past good solutions) and heuristics (which guide
ants in the absence of pheromone) encourages exploration in
the neighborhood of good solutions and allows for enough
variability that distant solutions are unlikely to go unnoticed.
Excellent explanations of the ACO meta-heuristic can be found
in [1], [2], [8]

Unfortunately, ACO has the drawback that solution quality
degrades in proportion to the problem size [1]. While this is
true of all algorithms, it is particularly troublesome for ACO
because interesting problems (non-toy problems) consist of
larger search spaces. This means that ACO solutions become
generally less competitive compared to other search algorithms
as problem sizes increase.

This work improves ACO solutions for larger problems
by enhancing ACO with the off-policy learning reinforce-
ment learning technique Policy Dynamics Win or Learn Fast
(PDWoLF) [9]. PDWoLF speeds learning by using a variable
step size gradient which when the agent is winning, is small
and large when it is losing. Five legacy ACO algorithms are
updated to include a PDWoLF policy gradient: Ant System
(AS) [1], [2], [10], [11], Ant Colony System (ACS) [1],
[12], [13], Elitist-Ant System [14] (EAS), Rank-based Ant
System (RAS) [15], and Max-Min Ant System (MMAS) [16].
Each legacy algorithm implements the ACO meta-heuristic

2

The Traveling Salesman Problem

Given: A set of cities, C, a set of edges that connects
each city in C to every other city, E = C × C, and, for
each edge (i, j) ∈ E where i, j ∈ C, a weight wij that
represents the cost of traversing the edge.
Find: An ordering of edges, T , (called a tour) that starts
and ends with city s such that a walk of T visits each city
in C once, except for city s, and that the tour length, L =∑
i,j∈T wij , is minimal among all tours over C.

Fig. 1. A formulation of the Traveling Salesman Problem (TSP).

in form, but each one tweaks or adds something to make
itself unique. Due to their individual differences, the five
legacy algorithms serve as a varied testbed. With minimal
modification of ACOTSP source code available at [17], we
integrated PDWoLF into each ACO algorithm.

Experimental evaluation shows that the PDWoLF ACO
algorithms generate Traveling Salesman Problem (TSP) solu-
tions with costs that are in many cases statistically lower the
legacy ACO algorithms alone. However, because each legacy
ACO algorithm differs in how it selects edges for traversal,
deposits pheromone, and evaporates pheromone, the results
show that the PDWoLF addition functions best when the ACO
algorithm updates the trail of all of the ants and does not make
use of local optimizations.

A. Paper Focus and Outline

This paper is organized in the following manner. Section II
provides background information on the TSP, introduces ACS-
TSP, and finally ends with a summary of the policy-based,
variable-step size hill-climbing technique called PDWoLF. We
point out the algorithmic features and modifications made to
the five legacy ACO algorithms in Section III. Section IV
analyzes the performance of the modified ACO algorithms.
A survey of other hybrid ACO algorithms is contained in V.
Finally, section VI concludes by summarizing the significance
of these algorithms.

II. BACKGROUND

A. The Traveling Salesman Problem

Primarily for comparative purposes, we have chosen to
implement our two WoLF Ant algorithms in the context of
the TSP. The objective of the classic NP-Complete TSP [18]
is to find the shortest tour that connects all cities in a set of
cities, C. A tour is a closed path that visits every city in C
once. The problem’s name comes from the idea that a salesman
who must visit a number of cities would like to do so while
minimizing some travel-related cost such as distance or time.
TSP is formally defined in Fig. 1.

B. An Archetypal ACO Algorithm for TSP

Ant System (AS) [1], [2], [10], [11] was the first ACO
algorithm for solving the TSP. We consider AS to be the
archetypal ACO algorithm for TSP; the ACO algorithms we

consider in this paper can be considered variants of AS. This
section presents an overview of AS as presented in [1] but
modified slightly to match the notation used in this paper.

AS represents the TSP as a graph where vertices are cities
and edges connect cities together. In addition to the weight of
each edge, wij , (the distance between cities i and j), each edge
also has a pheromone level, τij , that is the learned desirability
that city i should follow city j in a TSP tour.

The algorithm iteratively solves the TSP in computational
rounds called timesteps. At the start of each timestep AS places
m ant agents (the “colony”) on the graph, each ant in a random
city. The number of ants, m, equals the number of cities in
the TSP, n. Each ant, k, walks the graph, constructing a tour,
Tk (a solution to the TSP), as it does. The length of ant k’s
tour, Lk, is the sum of the weight of the edges connecting the
cities in the tour.

To select the next city to add to its tour, the ant employs
the proportional transition rule of equation (1). The transition
rule computes the normalized probability that ant k at city i
selects city j as the next city to visit.

pij =
[τij]

α · [ηij]β∑
l∈Jk

i
[τil]α · [ηil]β

, (1)

In (1), Jki is the set of cities connected by an edge to city i
that ant k has not visited so far this tour. ηij is the heuristic
desirability of connecting city i to city j. Heuristic desirability
helps with edge selection early in the solving process when
pheromone is nearly uniform. Usually ηij = 1/wij ; cities that
are closer together are more desirable. The parameters α and
β weight pheromone relative to the heuristic desirability. The
pij values for the current city i form a weighted distribution
from which the ant randomly picks. The ant then moves from
city i to the newly selected city y along edge (i, y) and adds
the edge (i, y) to the tour. This process repeats until the ant
has visited all cities just once. After visiting the last city, the
tour is finalized by adding the edge that connects the last city
visited to the first city.

After all m ants have constructed their tours, pheromone
is reinforced and evaporated using the pheromone update rule
shown in equation (2) below.

τij ← (1− ρ) · τij(t) + ρ ·∆τij (2)

where

∆τij =

m∑
k=1

∆τkij (3)

and

∆τkij =

{
Q
Lk

if edge (i, j) ∈ Tk
0 otherwise.

(4)

In the above equations ρ (ρ ∈ {0, 1}) is the pheromone decay
factor and Q is a constant set to 100. Note that in AS, each
ant in the colony plays a part in updating pheromone.

The deposition and evaporation of pheromone marks the
end of one timestep. If a stopping condition has been met at
the end of a timestep, AS outputs the best tour found during
the trial and that tour’s length. The stopping condition for AS

3

was a set number of timesteps. Otherwise, another timestep
commences.

Because ACO algorithms are stochastic, many trials, each
trial consisting of many timesteps, must execute to have high
confidence of producing at least one good solution.

As mentioned earlier, the other four ACO algorithms con-
sidered in this paper (and several other ACO algorithms) are
variants, to some degree or another, of AS. Minor variations in-
clude values for constants and parameters such as the constant
Q and the number of ants in the colony, m. Major variations
include such things as the number of solutions used to update
pheromone, pheromone update rules, and edge selection rules.
Section III covers the major differences between AS and the
other four legacy algorithms.

C. Policy Dynamics Win or Learn Fast (PDWoLF)
In an effort to overcome the drawback of declining solution

quality with large problem instances, we have integrated
the variable step-size hill-climbing algorithm PDWoLF [9]
into several legacy ACO algorithms. The following reviews
off policy-based learning, variable-step hill-climbing, and
PDWoLF.

1) Policies and Hill-Climbing: Some agent-based learning
algorithms involve the notion of state-action pairs, represented
by (s, a) where s ∈ S and a ∈ A. The set of states, S, is the
particular situations/locations/places in which an agent can be
(e.g., the states of the TSP are the cities). Actions, A, are the
things an agent is allowed to do when in a certain state (e.g.,
move to another city). The agent must learn what action to
perform when it finds itself in some state so as to maximize a
reward (or alternately minimize the cost) of the problem being
solved or game being played. Generally, this manifests as the
assignment of probabilities to each (s, a) pair called a policy,
πsa. The higher the probability, the more important the action
is to the best outcome. A strategy is the collective effect of
an agent’s policies.

An agent employing a policy hill-climbing (PHC) algorithm
iteratively adjusts policy values through a value function in
response to the reward (or lack of it) received by performing
action a when in state s. Picturing the maximum reward as
sitting at the top of a hill, the algorithm “climbs the hill”
toward the reward. The amount by which policies are adjusted
is called the learning rate or step size, δ.

2) Variable Step Sizes: In general, a PHC algorithm oper-
ates using a fixed step size, though doing so is not ideal in sev-
eral respects. First, it throttles the algorithm. In other words, a
fixed step size prevents the algorithm from increasing policies
by a large amount (big step size) and, conversely, from making
small adjustments (small steps) when warranted. Second, it
has been shown that fixed step size hill-climbing algorithms
are not convergent in two-player, two-action, iterated matrix
games (so-called 2 × 2 games) [19]. Convergent means that
the agent’s policies eventually reach a steady state. Singh et
al. attempted to overcome this problem through the use of an
infinitesimally small step size [19]. While an improvement, it
was not convergent in all 2 × 2 games.

Bowling and Veloso introduced a completely convergent
hill-climbing approach called Win or Learn Fat (WoLF) [20].

WoLF uses two step sizes to update policies. Using two step
sizes enables WoLF to converge in 2×2 games.

The first step size, δw, is associated with the concept
of “winning”. A policy, or a set of policies, is said to be
“winning” when the strategy indicated by the policy or policies
by a player gives the player a decided advantage over his or her
opponent. The concept of winning is not to be confused with
the actual value of the policy itself. Indeed, an (s, a) pair with
a low policy value can be winning in the sense that the player
has learned not to perform action a when in state s. In WoLF,
winning policies are updated using a small step size since they
are already desirable and need only minor adjustment.

The other step size, δl, is associated with the idea of
“losing”. Losing is simply the opposite of winning. An agent
with a losing policy seeks to improve the policy (change it to
a winning policy) as quickly as possible. Hence, using a large
step size, where δl > δw, rapidly changes the policy value of
a losing (s, a) pair. This gives rise to the “learn fast” aspect
of WoLF.

3) PDWoLF: The desirable properties of WoLF, led Bowl-
ing and Veloso to propose a general purpose algorithm that
combined the WoLF concept with a policy hill-climbing
variant of Q-learning [21]. They called the resulting algorithm
WoLF-PHC (WoLF Policy Hill-Climbing) [20]. In Q-learning,
an agent in state s performs an action a which results in a
reward. The agent updates the Q-value for the state-action
pair, Qsa, based on the reward received. Q-values are similar
to, but not exactly the same, as ACO pheromone; both are
utility-based performance metrics, but their updating and use
in their respective algorithms are slightly different. In addition
to the Q-values, WoLF-PHC maintains a policy for each (s, a)
pair, πsa, which is adjusted according to a variable learning
rate, δ. Modified from [20] to conform with notation used in
this paper, the value of δ depends on whether or not the (s, a)
pair is winning or losing:

δ =

{
δw,

∑
a′ πsa′Qsa′ >

∑
a′ πsa′Qsa′

δl, otherwise
(5)

where a′ are the actions available from state s, Qsa is an (s, a)
pair’s Q-value, and πsa is the average policy. According to (5),
an agent is winning if his current set of policies for state s
have a greater benefit ratio than using the average policy of
state s [20].

In the Policy Dynamics Win or Learn Fast Policy Hill-
Climbing (PDWoLF-PHC) algorithm [9] Banerjee and Peng
replaced the notion of average policy contained in equation (5)
with one that uses the gradient of the policy. Otherwise, WoLF-
PHC and PDWoLF-PHC are identical. The new definition
relies on tracking the policy change rate policy velocity), ∆sa,
and policy acceleration, ∆2

sa:

δ =

{
δw, ∆sa ·∆2

sa < 0

δl, otherwise.
(6)

According to (6), the policy for an (s, a) pair is “winning” if
the policy value is increasing (positive ∆sa) while the rate
of increase is slowing down (negative ∆2

sa) or the policy
value is decreasing (negative ∆sa) when the rate is slowing

4

down (positive ∆2
sa). This definition of “winning” captures the

notion that policy value change rates should slow down as they
near their optimums. Otherwise, the pair is seen as “losing” in
the sense that the optimal policy value is still some distance
away and requires a large learning rate (large step size) to
close the gap.

The PDWoLF definition of winning and losing is based
solely on the behavior of the policy values themselves and
does not require the extra computation of an average policy.
Moreover, PDWoLF-PHC converged faster than WoLF-PHC.
For these two reasons, we demonstrate and show results of
ACO algorithms that incorporate the PDWoLF approach.

In both WoLF-PHC and PDWoLF-PHC, actions are chosen
based on policies “with suitable exploration”; policies replace
Q-values in the action selection mechanism [9]. However, Q-
values are computed, maintained, and used to update policy
values. Indeed, both WoLF-PHC and PDWoLF-PHC use the
same technique for updating policy values. The appropriate
step size δ is computed by (6) and normalized in (7) to
compute the change to the policy, ∆πsa for (s, a) shown in
(8). Note that (8) is the only place that Q-values and policies
are linked

δsa = min

(
πsa,

δ

|A| − 1

)
(7)

∆πsa =

{
−δsa a 6= argmaxa′∈AQ(s, a′)∑
a′ 6=a δsa′ otherwise

(8)

Finally, the policy for (s, a) is updated by πsa ← πsa+ ∆πsa
from (8). The changes in policy are similarly updated follow-
ing the policy update in the order ∆2

sa ← ∆πsa − ∆sa and
then ∆sa ← ∆πsa.

III. PDWOLF MODIFICATIONS TO THE FIVE LEGACY
ACO ALGORITHMS

Inspired by the success of the WoLF-PHC [20] and
PDWoLF-PHC [9] algorithms, we inserted the PDWoLF tech-
nique into five ACO algorithms for solving the TSP. This
section details the modifications common to all the ACO
algorithms in order to incorporate PDWoLF. Then using Ant
System (AS) as a baseline (Section II-B), we present the
differences between AS and the other four ACO algorithms.

A. Modifications Common to All ACO Algorithms

Changes to each ACO algorithm were limited to the fol-
lowing.

1) The addition of policy values for each edge. For exam-
ple, πij is the policy value for the edge connecting city
i with city j. Policy values are initialized to 1/n.

2) The transition rule. Rules vary between algorithms. We
give particulars for each algorithm below.

3) The mechanism to update policies. In each modified
algorithm, pheromone is updated then policies are up-
dated. Policies are updated according to Algorithm 1.
Note that the policy updating process uses equations
(9)–(11) which are just the PDWoLF policy modification
equations updated to refer to pheromone and a TSP
problem in which the set of cities, C, is fully connected.

Algorithm 1 Policy updating in the modified ACO algorithms.
1: // T is the best tour found this timestep.
2: for each (i, j) ∈ T do
3: calculate policy change ∆πij by (11)
4: πij ← πij + ∆πij
5: // normalize πi
6: for each l ∈ C do
7: πil ← πil∑

k∈C πik

8: ∆2
ij ← ∆πij −∆ij

9: ∆ij ← ∆πij

δ =

{
δw, ∆ij ·∆2

ij < 0

δl, otherwise.
(9)

δij = min

(
πij ,

δ

|C| − 1

)
(10)

∆πij =

{
−δij j 6= argmaxl∈CT

+
il

δij otherwise
(11)

Finally, the transition rule of equation (1) was changed to:

pij =
[τij]

α · [ηij]β · [πij]φ∑
l∈Jk

i
[τil]α · [ηil]β · [πil]φ

, (12)

where πij is the policy associated with edge (i, j) and φ is a
weighting factor for policies. This transition rule is common
to all the ACO algorithms except for ACS. ACS’s rule is
explained below.

B. Elitist Ant System

The elitist ant system proposed in [14] is identical to AS
except that in addition to the regular ants a set of e “elitist”
ants deposit pheromone on the edges of the best tour found
since the start of the trial, T+. Edges in T+ receive e ·Q/L+

pheromone, where L+ is the length of T+.
The proportional selection rule for AS with PDWoLF also

applies to Elitist Ant System with PDWoLF.

C. Ant Colony System

Ant Colony System (ACS) [1], [12], [13] is an extension
of Ant System (AS). In ACS, the transition rule is split into
two parts. An ant in city i selects a random number q ∈ [0, 1]
and then selects the next city j according to equation (13)
where j is the city selected by the proportional transition rule
of equation (1).

j =

{
argmaxu∈Jk

i
{[τiu(t)]α · [ηiu]β} if q ≤ q0,

J if q > q0.
(13)

We updated the ACS transition rule for policies by changing
equation (13) to

j =

{
argmaxu∈Jk

i
{[τiu(t)]α · [ηiu]β · [πiu]φ} if q ≤ q0,

J ′ if q > q0.
(14)

5

where J ′ is the city selected using the PDWoLF proportional
transition rule of equation (12).

The remaining differences between AS and ACS are not
affected by PDWoLF. Briefly, those differences are:
• Only the best solution, T+, found since the beginning of

the trial is reinforced with pheromone.
• Pheromone is locally updated as ants move about con-

structing tours. If an ant uses edge (i, j), pheromone on
that edge is updated by τij ← (1− ρ) · τij + ρ · τ0 where
τ0 is the initial amount of deposited on edges at the start
of a trial.

• Instead of considering all unvisited cities reachable from
city i ants are at first restricted to choosing from a
candidate list of the c closest cities to city i. Only when
the candidate list for a city is exhausted can an ant chose
from other cities.

• For larger problems a non-reordering 3-opt local search
algorithm is run on each ant’s tour in each timestep. This
particular version of ACS is known as ACS-3-opt.

D. Rank-based Ant System

Rank-based Ant System (RAS) [15] uses weighted elitist
strategy for depositing pheromone. After each timestep, one
of the elitist ants deposits σ · Q/L+ on the edges of the
best tour found in the current trial. The remaining σ − 1 ants
deposit pheromone based on the set of r best-ranked (shortest)
solutions of the current timestep:

∆τ rij =

σ−1∑
µ=1

∆τµij (15)

∆τµij = (σ − µ) ·Q/Lµ iff ant µ uses edge (i, j). (16)

The pheromone evaporation equation for RAS is

τij ← (1− ρ) · τij + σ ·∆τ+ij + ∆τ rij . (17)

E. Max-Min Ant System

Of all the legacy ACO algorithms, Max-Min Ant System
(MMAS) [16] differs the most from AS and does so in five
ways. Each of the five differences can be parameterized and
activated as desired.

1) Elitist Update Strategy: An elitist strategy with e = 1 is
used (see III-B). As an added twist, the edges updated by the
elitist ant can be either those of the global best solution or the
best solution from the current timestep, t. For larger TSPs, the
creators of MMAS found it best to alternate between timestep-
best and global-best updates according to a schedule that
increases the frequency of global-best updates. Specifically, we
employ the same update schedule used in [16] for symmetric
TSPs as shown in Table I.

2) Bounded Pheromone Trail Intensity: Pheromone trail
intensities are bounded by [τmin, τmax] (hence the name Max-
Min Ant System). τmax is updated each time a new global-best
solution is found in such a way that τmax is an estimate of the
highest possible pheromone level on an edge given the cost

TABLE I
UPDATE SCHEDULE FOR GLOBAL-BEST SOLUTIONS IN MMAS.

Timestep Global-best to Timestep-best ratio
1 to 25 0:1 (timestep-best only)

26 to 75 1:4
76 to 125 1:2

126 to 250 1:1
> 250 1:0 (global-best only)

of the global-best solution (see [16] for details). τmin is set
according to the following equation

τmin =
τmax · (1− n

√
pbest)

(n2 − 1) · n
√
pbest

, (18)

where pbest is a constant reflecting the probability that an
ant constructs the best tour possible and n is the number of
cities in the TSP. The choice of pbest influences the amount
of exploration done by MMAS; the smaller pbest is, the closer
τmin is to τmax [16].

3) Pheromone Initialization: Instead of intializing edges to
some arbitrarily low value for τ0 (initial pheromone level of
an edge), MMAS initializes all edges to some arbitrarily high
value. After the first timestep, a global-best solution will have
been found and trails will be bounded by computed values of
τmin and τmax.

4) Pheromone Re-initialization: MMAS reinitializes
pheromone trails when solution values stall (solution not
improved in 250 timesteps) or when the λ-branching factor
falls below a set threshold. After reinitializing, the update
schedule for global-best solutions (Table I) is reset.

5) Local optimization: Like ACS, a 3-opt local search algo-
rithm improves each ant’s tour. The recommended execution
of MMAS includes all of these enhancements and the use of
the 3-opt local search algorithm [16].

IV. ANALYSIS

For comparison testing, the code used for the results in [2]
(available for download at [17]) is modified with the PDWoLF
changes discussed in Section III. The settings and initialization
parameters for AS, EAS, RAS, ACS, and MMAS shown in
Table II are those found to give the best overall performance in
[2]. For all algorithms, initial pheromone τ0, was based on the
tour lenght produced by a nearest neighbor heuristic: Cnn. The
ACS and MMAS algorithms make use of a 3-opt local search.
Also, MMAS performs a pheromone reinitialization if the λ-
branching factor ≤ 2.0 and there has been no improvement
in the last 250 iterations. Additionally, the MMAS algorithm
alternates between updating the timestep-best and global-best
tours according to the schedule in Table I. The PDWoLF
specific parameters are the policy weight (φ = 1.0), the
winning size (δw = 0.05), and the losing step size (δl = 0.15),
and remain consistent in all tests. The values of δl and δw are
set based on the values identified in [20]. The policy values
are initialized to 1/n.

The experiment consists of 30 trials of each algorithm for
ten symmetric TSP problems. The TSP instances tested include
eil51, kroA100, d198, lin318, pcb442, att532, rat783, pcb1173,

6

TABLE II
ALGORITHM-SPECIFIC PARAMETERS

AS EAS RAS ACS MMAS
α 1 1 1 – 1
β 2 2 2 2 2
ρ 0.5 0.5 0.1 0.1 0.2
m n n n 10 25
τ 1/(ρCnn) 1/(ρCnn) 1/(ρCnn) 1/(nCnn) 1/(ρCnn)
e – n – – –
σ – – 6 – –
ε – – – 0.1 –
q0 – – – 0.98 –

local search – – – 3-opt 3-opt

d1291, and pr2392. The best solution per trial is the shortest
tour found over 1,000 timesteps.

Tables III, IV, and V list the best and average tour lengths
along with standard deviations resulting from 30 trials for each
algorithm. Results were compared for statistical difference
using a paired two-tailed t-test with α = 0.05. Comparing
each algorithm with and without PDWoLF, the statistically
better results are in bold. If the results are not bold, then they
were not statistically different.

As can be seen in Table III, the addition of PDWoLF to Ant
System (AS) results in a significant reduction in tour length
for all problems. For Elitist Ant System (EAS), PDWoLF
improves the solutions as the problem size increases.

However, for Rank-based Ant System (RAS) (Table IV),
the addition of PDWoLF results in significantly worse per-
formance on all but the largest problem. The distinguishing
element between RAS and AS and EAS is that in RAS only the
top σ best ants lay pheromone, while in AS and EAS, every ant
does. This exploitative nature may explain why the PDWoLF
version of RAS performs poorly. This situation exists for
ACS and MMAS as well, but the inclusion of the 3-opt local
search overrides this as we discuss in the next paragraph. We
conducted several tests to try to identify why this occurs. As
best we could determine, the rank update (updating the σ
best ants) and the PDWoLF policy update (timestep-best-ant)
provide competing information. As the rank size increases,
RAS begins to perform more like EAS and PDWoLF shows
an improvement. Similarly, as the policy weighting is reduced,
the algorithm performs more like RAS.

For the MMAS and ACS algorithms that use the 3-opt
local search, no significant benefit of adding PDWoLF appears
(Table V). ACS and ACS with PDWoLF have no significant
differences in solution quality, and for MMAS and MMAS
with PDWoLF, the few statistically significant differences do
not indicate a consistent trend. PDWoLF cannot help because
the tour improvements provided by 3-opt overwhelms it. In
fact, without 3-opt, the tour lengths of MMAS and ACS are
dramatically worse than the local search augmented results.
For example, without 3-opt had a solution average with a
standard deviation of 10267.4 ± 56.7 and ACS came in at
13268.1 ± 113.5. Both results are significantly worse than
all but the AS and EAS results. Consequently, any benefit
provided by PDWoLF to these algorithms is swamped by local
search.

The addition of PDWoLF to ant based algorithms can result

in a significant improvement in results as shown with the AS
and EAS results. However, PDWoLF does not make sense for
all of the ant colony optimization algorithms, specifically RAS.
Specifically since PDWoLF helps direct agents to previous
good solutions (exploitative information) in a way already
similar to RAS (and MMAS and ACS, which predominantly
update the best-so-far or iteration-best tours).

V. RELATED WORK

Since its introduction, the Ant Colony Optimization heuris-
tic has been adapted to a wide range of combinatorial op-
timization problems despite the known drawbacks of a slow
convergence rate and lengthy run times, especially on large
problems. Papers on ACO fall into three broad categories:

1) adapting ACO to a new problem domain including
continuous solution spaces;

2) investigations into behavior and properties; and
3) efforts to improve the performance of ACO in terms of

convergence rate, solution quality, or both.
This paper falls into the third category. Work within this

category has primarily progressed on six fronts: local search,
trail stirring, parameter tuning, search restrictions, memory
systems, and parallelization. Since this paper presents a hy-
brid ACO algorithm, we relate work on other hybrid ACO
approaches within the performance improvement category.
Parallel ACO techniques are omitted because they primarily
focus on splitting the workload and reconciling solutions and
pheromone trails instead of hybridization. The combination of
ACO with PDWoLF is unique; no other hybrid algorithm is
so tightly integrated.

A. Local Search

Local search has been used to improve ACO performance
for some time. Indeed two of the legacy ant algorithms
examined in this paper, namely ACS [1], [12], [13] and MMAS
[16], use 3-opt to improve ant tours. More recent efforts
include using simulated annealing [23], random walks [24],
tabu searches [24], H-method [25], minimum spanning trees
[26], forward checking and back-tracking [27]. Repairing of
infeasible solutions can also be considered a form of local
search [28]. To the best of our knowledge, all ant algorithms
implementing some kind of local search are only lightly
coupled; local search is used to seed solutions for ants or to
improve or clean up ant-generated solutions and not to guide
ants as they build solutions.

7

TABLE III
MINIMUM TOUR LENGTHS (AS AND EAS)

Problem AS AS with WoLF EAS EAS with WoLF
Best Avg±Stdev Best Avg±Stdev Best Avg±Stdev Best Avg±Stdev

eil51 436 442.5±4.2 428 437.7±7.5 427 430.8±2.19 432 452.3±10.16
kroA100 22324 22619.0±133.7 21566 22132.0±349.3 21363 21905.6±262.1 22158 22900.9±435.37

d198 16860 17201.5±139.9 16212 16844.0±297.39 16025 16278.2±205.8 16242 16783.4±330.9
lin318 45858 46688.7±320.5 43861 44876.9±759.9 42680 43876.5±512.3 43527 44759.9±567.0
pcb442 59091 60015.3±450.1 53998 56450.1±111.7 57314 58524.0±492.4 54026 55361.9±698.8
att532 32049 32628.6±251.3 29617 30970.7±637.2 30568 31444.7±374.6 29343 30243.9±511.8
rat783 10563 10677.3±45.9 9647 9935.9±198.0 10171 10438.2±102.6 9499 9787.7±147.9

pcb1173 69612 70731.5±423.4 65315 66808.8±763.2 69724 70473.1±307.2 64703 66362.3±1095.1
d1291 57300 57978.9±327.9 54845 56779.4±731.8 57013 57678.0±405.5 54493 56378.5±1057.5
pr2392 477437 485131±2428.3 443522 458501.6±5671.2 481091 485345.9±1964.6 446384 458530.3±4913.1

TABLE IV
MINIMUM TOUR LENGTHS (RAS)

Problem RAS RAS with WoLF
Best Avg±Stdev Best Avg±Stdev

eil51 427 430.8±2.2 427 436.4±5.9
kroA100 21321 21550.5±165.5 21609 22152.4±394.2

d198 15962 16166.3±91.5 16289 16519.8±152.6
lin318 42753 43290.8±312.3 43674 44542.4±521.2
pcb442 51841 52380.0±411.1 52761 54040.7±645.1
att532 28588 28834.5±221.5 29146 29517.3±224.4
rat783 9031 9120.4±48.0 9354 9489.9±95.4

pcb1173 59423 61980.8±1110.2 61087 63023.9±913.7
d1291 52077 53160.7±671.6 53045 54514.9±740.72
pr2392 443131 464018.9±13862.0 426285 441632.3±9672.9

TABLE V
MINIMUM TOUR LENGTHS (MMAS AND ACS)

Problem MMAS MMAS with WoLF ACS ACS with WoLF
Best Avg±Stdev Best Avg±Stdev Best Avg±Stdev Best Avg±Stdev

eil51 426 426.0±0.0 426 426.0±0.0 426 426.0±0.0 426 426.0±0.0
kroA100 21282 21282.0±0.0 21282 21282.0±0.0 21282 21282.0±0.0 21282 21282.0±0.0

d198 15780 15780.5±0.5 15780 15780.5±0.5 15780 15780.4±0.5 15780 15780.7±0.5
lin318 42029 42031.1±11.3 42029 42080.0±57.3 42029 42097.2±59.1 42029 42133.8±67.9
pcb442 50778 50882.03±55.21 50778 50850.0±66.7 50785 50923.3±72.5 50785 50934±81.5
att532 27686 27702.6±8.67 27686 27702.2±9.11 27693 27721.2±25.4 27690 27733.7±41.6
rat783 8806 8811.9±6.2 8804 8814.7±6.7 8809 8833.3±14.78 8808 8832.3±15.2

pcb1173 56892 56968.3±60.9 56893 57001.1±101.5 56904 57151.17±131.98 56923 57172.2±132.6
d1291 50801 50828.8±26.9 50801 50868.7±82.5 50801 50893.27±112.2 50801 50898.17±80.0
pr2392 378414 379257.4±354.5 379368 380632.9±935.63 378826 380144.4±630.7 378816 380042.4±579.1

B. Trail Stirring

Improving performance via stirring of the pheromone trails
was introduced first in ACS [1], [12], [13]. In ACS it took the
form of slightly evaporating pheromone on edges traversed
by ants during solution construction. The popularity of trail
stirring remains high [29].

C. Parameter Tuning

Ant algorithm parameters such as the weighting factors α
and β, colony size m, and pheromone evaporation rate ρ have
long been the subject of study. Early on, parameters were
tuned by hand on a problem-by-problem basis. More recently
researchers have looked at formalizing the tuning process [30],
[31] and automated tuning [32]–[35].

D. Search Restrictions

Because of the large search spaces frequently encountered,
techniques to either reduce the number of decisions facing the
ants or pruning of the search space are often employed. An
early example of this include the candidate lists employed by

ACO [1], [12], [13]. Recent approaches include beam searches
[36], [37] and constraint checking [27]. Alternatively, using
hierarchies, the search space is limited and approximated [22].

E. Memory Systems

Pheromone and policies act as a memory of past good
solutions that ants refer to when constructing new solutions.
Several researchers have added additional specialized memo-
ries to ACO in order to avoid recomputing past solutions [38]
or reusing parts of past solutions [39], [40].

VI. CONCLUSION

This paper presents the tight integration of the variable
step size off-policy hill-climbing algorithm PDWoLF with
several ant colony algorithms: AS, EAS, RAS, ACS, and
MMAS. Experiments on large traveling salesman problems
(TSPs) show that incorporating the off-policy variable step
size mechanism into an ant colony optimization algorithm
can result in shorter tours than the ACO algorithms alone.
As mentioned in the results, further investigation is needed

8

to determine why adding PDWoLF to ant algorithms with
local search optimizations (ACS and MMAS) results in little
improvement, and in the case of RAS results in significantly
worse solutions. One aspect of this is the greedy nature of
these variations of ant colony optimization. A second is that
no parameter tuning was done on the algorithms that included
PDWoLF. This was done to demonstrate the generalness of the
approach, but also impacts the best performance available.

REFERENCES

[1] E. Bonabeau, M. Dorigo, and T. Théraulaz, Swarm Intelligence: From
Natural to Artificial Systems, Oxford University Press, New York, 1999.

[2] Marco Dorigo and Thomas Stützle, Ant Colony Optimization, The MIT
Press, 2004.

[3] L. M. Gambardella, E. D. Taillard, and M. Dorigo, “Ant colonies for
the qap”, Journal of the Operational Research Society, vol. 50, no. 2,
pp. 167–176, 1999.

[4] V. Maniezzo and A. Colorni, “The ant system applied to the quadratic
assignment pproblem”, IEEE Transactions on Knowledge and Data
Engineering, vol. 11, no. 5, pp. 769–778, 1998.

[5] T. Stützle and H. Hoos, “Max-min ant system and local search
for combinatorial optimization problems”, in Second International
Conference on Metaheuristics, MIC’97. 1998, Kluwer Academic.

[6] A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian, “Ant system for
job-shop scheduling”, Belgian Journal of Operations Research, Statistics
and Computer Science, vol. 34, no. 1, pp. 39–53, 1994.

[7] Christian Blum and Michael Sampels, “An ant colony optimization
algorithm for shop scheduling problems”, J. of Mathematical Modelling
and Algorithms, vol. 34, no. 3, pp. 285–308, 2004.

[8] Marco Dorigo and Thomas Stützle, Handbook of Metaheuristics,
vol. 57 of International Series in Operations Research and Management
Science, chapter The ant colony optimization metaheuristic: Algorithms,
applications, and advances, pp. 251–285, Kluwer Academic Publishers,
2002.

[9] Bikramjit Banerjee and Jing Peng, “Adaptive policy gradient in multi-
agent learning”, in 2nd International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS). 2003, pp. 686–692, ACM
Press.

[10] A. Colorni, M. Dorigo, and V. Maniezzo, “Distributed optimization
by an colonies”, in Proceedings of the First European Conference on
Artificial Life, F. Varela and P. Bourgine, Eds. 1991, pp. 134–142, MIT
Press.

[11] A. Colorni, M. Dorigo, and V. Maniezzo, “An investigation of some
properties on an ant algorithm”, in 1992 Parallel Problem Solving from
Nature Conference. 1992, pp. 509–520, Elsevier.

[12] M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative
learning approach to the travelling salesman problem”, IEEE Transac-
tions on Evolutionary Computation, vol. 1, no. 1, pp. 53–66, 1997.

[13] M. Dorigo and L. M. Gambardella, “Ant colonies for the travelling
salesman probelm”, BioSystems, vol. 43, pp. 73–81, 1997.

[14] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: Optimization
by a colony of cooperating agents”, IEEE Transactions on Systems, Man,
and Cybernetics, Part B, vol. 26, 1996.

[15] Bernd Bullnheimer, Richard F. Hartl, and Christine Strauß, “A new rank
based version of the ant system — a computational study”, Tech. Rep.,
University of Viena, Institute of Management Science, 1997.

[16] T. Stützle and H. H. Hoos, “Max-min ant system”, Future Generation
Computer Systems, vol. 16, no. 8, pp. 889–914, 2000.

[17] Thomas Stützle, “ACOTSP V1.0.1”, iridia.ulb.ac.be/∼mdorigo/ACO/
downloads/ACOTSP.V1.01.tar.gz.

[18] Richard M. Karp, In Complexity of Computer Computations, chapter
Reducibility among combinatorial problems, pp. 85–103, Plenum Press,
1972.

[19] Satinder P. Singh, Michael J. Kearns, and Yishay Mansour, “Nash
convergence of gradient dynamics in general-sum games”, in 16th
Conference on Uncertainty in Artificial Intelligence. 2000, pp. 541–548,
Morgan Kaufmann.

[20] Michael H. Bowling and Manuela M. Veloso, “Multiagent learning
using a variable learning rate”, Artificial Intelligence, vol. 136, no. 2,
pp. 215–250, 2002.

[21] Christopher J.C.H. Watkins and Peter Dayan, “Q-learning”, Machine
Learning, vol. 8, pp. 279–292, 1992.

[22] Erik J. Dries and Gilbert L. Peterson, “Scaling ant colony optimization
with hierarchical reinforcement learning partitioning”, in Proceedings of
the 10th annual conference on Genetic and evolutionary computation,
New York, NY, USA, 2008, GECCO ’08, pp. 25–32, ACM.

[23] B. Dengiz, F. Altiparmak, and O. Belgin, “A hybrid ant colony
optimization approach for the design of reliable networks”, in IEEE
Congress on Evolutionary Computation, 2007, pp. 1118–1125.

[24] M. Mouhoub and Z. Wang, “Improving the ant colony optimization
algorithm for the quadratic assignment problem”, in IEEE Congress on
Evolutionary Computation, 2008, pp. 250–257.

[25] Leonid Hulianytskyi and Sergii Sirenko, “Hybrid metaheuristic combin-
ing ant colony optimization and h-method”, in ANTS Conference. 2010,
vol. 6234 of Lecture Notes in Computer Science, pp. 568–569, Springer.

[26] M. Kheirkhahzadeh and A. A. Barforoush, “A hybrid algorithm for
the vehicle routing problem”, in IEEE Congress on Evolutionary
Computation, 2009, pp. 1791–1798.

[27] David C. Uthus, Patricia J. Riddle, and Hans W. Guesgen, “An ant
colony optimization approach to the traveling tournament problem”, in
Proceedings of the 11th Annual conference on Genetic and evolutionary
computation, New York, NY, USA, 2009, GECCO ’09, pp. 81–88, ACM.

[28] Zhigang Ren and Zuren Feng, “An ant colony optimization approach
to the multiple-choice multidimensional knapsack problem”, in Pro-
ceedings of the 12th annual conference on Genetic and evolutionary
computation, New York, NY, USA, 2010, GECCO ’10, pp. 281–288,
ACM.

[29] Xiangyin Zhang, Haibin Duan, and Jiqiang Jin, “Deaco: Hybrid ant
colony optimization with differential evolution”, in IEEE Congress on
Evolutionary Computation, 2008, pp. 921–927.

[30] Haibin Duan, Guanjun Ma, and Senqi Liu, “Experimental study of the
adjustable parameters in basic ant colony optimization algorithm”, in
IEEE Congress on Evolutionary Computation, 2007, pp. 149–156.

[31] Paola Pellegrini, Daniela Favaretto, and Elena Moretti, “On max-min ant
system’s parameters”, in ANTS Workshop. 2006, vol. 4150 of Lecture
Notes in Computer Science, pp. 203–214, Springer.

[32] M. Maur, M. López-Ibáñez, and T. Stützle, “Pre-scheduled and adaptive
parameter variation in max-min ant system”, in IEEE Congress on
Evolutionary Computation, 2010, pp. 1–8.

[33] Paola Pellegrini, Thomas Stützle, and Mauro Birattari, “Off-line vs on-
line tuning: A study on max-min ant system for the tsp”, in ANTS
Conference. 2010, vol. 6234 of Lecture Notes in Computer Science, pp.
239–250, Springer.

[34] Wei jie Yu and Jun Zhang, “Pheromone-distribution-based adaptive
ant colony system”, in Proceedings of the 12th annual conference
on Genetic and evolutionary computation, New York, NY, USA, 2010,
GECCO ’10, pp. 31–38, ACM.

[35] Adrian A. de Freitas and Christopher B. Mayer, “The effectiveness of
dynamic ant colony tuning”, in Proceedings of the 9th annual conference
on Genetic and evolutionary computation, 2007, pp. 170–170.

[36] Christian Blum, Joaquı́n Bautista, and Jordi Pereira, “Beam-aco applied
to assembly line balancing”, in ANTS Workshop. 2006, vol. 4150 of
Lecture Notes in Computer Science, pp. 96–107, Springer.

[37] Christian Blum, “Beam-aco for the longest common subsequence
problem”, in IEEE Congress on Evolutionary Computation, 2010, pp.
1–8.

[38] Shih-Pang Tseng, Chun-Wei Tsai, Ming-Chao Chiang, and Chu-Sing
Yang, “A fast ant colony optimization for traveling salesman problem”,
in IEEE Congress on Evolutionary Computation, 2010, pp. 1–6.

[39] Shigeyoshi Tsutsui, “Cunning ant system for quadratic assignment
problem with local search and parallelization”, in Second International
Conference on Pattern Recognition and Machine Intelligence (PReMI).
2007, vol. 4815 of Lecture Notes in Computer Science, pp. 269–278,
Springer.

[40] A. A. Acan and A. Unveren, “A shared-memory aco+ga hybrid
for combinatorial optimization”, in IEEE Congress on Evolutionary
Computation, 2007, pp. 2078–2085.

	WoLF Ant
	Recommended Citation

	WoLF Ant

