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Multi-Objective Optimization of Dead-Reckoning
Error Thresholds for Virtual Environments

Jeremy R. Millar, Douglas D. Hodson, Gary B. Lamont, Gilbert L. Peterson
Department of Electrical and Computer Engineering
Graduate School of Engineering and Management

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

Abstract—Design trade-offs between state consistency and
system response time are commonplace in virtual environments.
Systems typically rely on predictive consistency algorithms such
as dead-reckoning to control consistency and response time.
Dead-reckoning error threshold selection determines the con-
sistency/response time trade-off. We extend this trade-off space
to explicitly account for the concept of system fairness. We
derive a multi-objective optimization problem and apply multi-
objective evolutionary algorithms to solve for Pareto optimal
error thresholds.

Keywords—Virtual simulation environments, dead reckoning,
multi-objective optimization

I. INTRODUCTION

In order to maintain the illusion of a shared environment
users must view the same information at the same time [1]–
[4]. However, waiting for all nodes to acknowledge receipt of
a state update has a negative effect on system responsiveness,
thus breaking the sense of immersion and reducing the quality
of user experience. Indeed, research has shown that network
latencies of 60 ms induce enough response lag to detract from
the play experience in some networked games, while latencies
above 100 ms result in game abandonment [5], [6]. Similarly,
high levels of state inconsistency result in user dissatisfaction
due to nonsensical results, e.g., dead men shooting [7].

Consistency can be made arbitrarily good at the expense
of system responsiveness by executing the system in lockstep
across all participating nodes. Responsiveness, on the other
hand, is limited by system architecture and network topology
[8]. While perfectly responsive systems could in principle
achieve perfect consistency, physical constraints such as the
speed of light ensure even the most responsive virtual en-
vironments will exhibit some inconsistency [9]. Moreover,
as responsiveness improves, the scalability of the system
is limited as the system infrastructure becomes overloaded
with state updates. A primary goal of virtual environment
systems design is to maximize system responsiveness while
simultaneously maximizing consistency.

An additional design objective, particularly for network
games and interactive simulations, is the notion of system
fairness. Fairness measures the disparity between nodes with
respect to consistency and responsiveness [6]. The more sim-
ilar the nodes are with respect to these measures, the more
fair the virtual environment. Fair environments ensure that

all participants experience similar levels of consistency and
response and that no user gains an advantage due to system
architecture.

Many virtual environments use predictive consistency mech-
anisms to improve response time to an input while still
achieving acceptable consistency. Dead-reckoning [3], [4],
[10] is widely used due to its simplicity and performance.
Dead reckoning allows for some amount of inconsistency at
remote nodes to ensure local response times remain within
acceptable perceptual thresholds. This is achieved by allowing
remote nodes to predict the state of the local node between
state updates. The key parameter controlling response time
and consistency is the state update frequency, which is itself
determined by an error threshold. This threshold is the system
designer’s primary means of tuning consistency, responsive-
ness, and fairness.

In this paper, we characterize the choice of error threshold as
a multi-objective optimization problem. Our approach differs
from other work in this area by explicitly including fairness as
an objective. We solve the resulting tri-objective problem (i.e.,
consistency, responsiveness, and fairness) using evolutionary
algorithms and a simulation of the virtual environment. This
approach allows us to choose dead-reckoning error thresholds
that are Pareto optimal for a given system architecture. Finally,
we use a simulation to explore the consistency, responsiveness,
and fairness trade-offs for a simple virtual environment.

The remainder of this paper is structured as follows: Sec-
tions II and III briefly discuss the concepts of dead reckon-
ing and fairness, respectively. Section IV presents a multi-
objective model of the error threshold problem. Section V
outlines a system architecture for solving the multi-objective
error threshold problem. Section VI describes experiments un-
dertaken to validate the architecture and compare performance
of various optimization algorithms. Section VII analyzes the
results of those experiments. Section VIII outlines related work
and Section IX concludes.

II. DEAD RECKONING

A virtual environment is a distributed software system
supporting multiple users interacting in real-time that provides
shared senses of space, presence, and time [2]. The IEEE pub-
lished Standard 1278, Distributed Interactive Simulation (DIS)
[10], to provide a common protocol and messaging standard
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Figure 1. A virtual environment consisting of three nodes and three entities.
Each node maintains an authoritative high fidelity model for its local entity
and low fidelity models for all entities in the system.

for communicating between nodes in a virtual environment.
While there are other standards available (e.g., HLA [11] or
TENA [12]), DIS provides a de facto standard for defense
oriented virtual environments (i.e., networked simulators) and
its consistency maintenance mechanisms are widely used in
networked games [4]. Consequently, we restrict our attention
to dead-reckoning algorithms as defined by the DIS standard.

The DIS standard defines a predictive consistency mainte-
nance protocol called dead-reckoning. Under dead-reckoning,
each node maintains a set of low-fidelity models for each
remote entity in the system in addition to the high-fidelity
models for its hosted entities. Figure 1 depicts a virtual
environment consisting of three nodes and three entities. Each
node provides an authoritative, high-fidelity model for one
entity. Additionally, each node maintains a low-fidelity model
of all other entities in the system. Crucially, each node also
maintains a low-fidelity model of its own local entity.

The low-fidelity models allow a node to update entity
positions between state updates using dead-reckoning algo-
rithms. Low-fidelity models typically operate using simplified
dynamics such as first order kinematics. Note that all nodes
execute the same dead-reckoning model. State updates are sent
by a node whenever the divergence (i.e., difference) between
the position of the high-fidelity and low-fidelity models of
its hosted entities exceeds a pre-determined threshold. This
threshold is the key parameter controlling the dead-reckoning
algorithm.

Choosing an appropriate error threshold is a system de-
pendent design decision. Generally speaking, lower thresh-
olds yield better consistency. However, improved consistency
comes at the cost of increased network traffic. Depending
on network characteristics such as available bandwidth, it
is possible to overwhelm the network and increase system
response time (that is, the time it takes for all nodes to see an
update). Additionally, as network load increases, consistency
can actually decrease as well [13].
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Figure 2. Fairness plots for two three node virtual environments. Each
+ symbol represents a node’s location in two-dimensional fairness space.
The nodes in system A are tightly clustered with similar consistency and
responsiveness values. Therefore, system A is fair. Conversely, system B is
unfair since the nodes are widely dispersed in fairness space.

III. FAIRNESS

Consistency and response time are local properties, that is,
they are measured pair-wise. Thus the consistency measured
between nodes 1 and 2 with respect to entity A in Figure 1
might well be different than that measured between nodes 2
and 3. Global properties are also of interest, particularly the
notion of fairness [6], [14]. A system is fair if no user has an
advantage over others due to consistency or response time.

Fairness is measured by projecting each node participating
in a virtual environment into a two-dimensional fairness space
with consistency as one dimension and system response time
as the other. A cluster cohesion measure such as within-class
scatter is computed for all nodes. Low scatter indicates that
the nodes are tightly clustered in fairness space. Thus, each
node has similar consistency levels and response times and no
participant experiences a significant advantage or handicap. On
the other hand, a high scatter value indicates that nodes have
dissimilar consistency values and response times. This affords
some participants advantages in terms of state consistency or
response while handicapping others.

Figure 2 illustrates these ideas for two three-node virtual
environments labeled system A and system B. Note that the
horizontal axis measures inconsistency so that consistency
degrades as one moves away from the origin. The vertical
axis measures system response time, i.e., the time required
for a state update from one node to reach all other nodes.
For both dimensions lower values (closer to the origin) are
more desirable. Each ’+’ symbol indicates an individual node’s
position in fairness space based on average consistency level
and response time.

For system A, the nodes are clustered fairly tightly, indi-
cating a fair system. Each participating node has a similar
consistency level and response time. Thus no participant has a
distinct advantage in terms of better information about the en-
vironment or more rapid environmental response. Conversely,
the nodes in system B are widely dispersed in fairness space.
This indicates an unfair system. One node has a distinct
advantage in terms of data consistency, one has an advantage
in response time, and one is severely handicapped in both
dimensions.



A system can be fair while exhibiting poor performance
with respect to data consistency or response time. Similarly,
a system with generally good performance can be unfair so
long as at least one node has sufficiently different performance
characteristics. Consequently, it is incumbent upon system de-
signers to consider fairness in addition to the more traditional
trade-offs between consistency and responsiveness.

IV. MULTI-OBJECTIVE MODEL

In order to optimize the dead-reckoning error threshold, we
need to define and compute the following quantities:

1) average inconsistency,
2) average response time,
3) and fairness.

A. Computing Inconsistency

The virtual environment community has settled on two
major inconsistency measures:

1) spatial inconsistency (variously termed spatial error, ex-
port error, etc),

2) and time-space inconsistency [15],
Spatial inconsistency is simply the difference between the

local, dead-reckoning estimate of an entity’s position and its
true, high-fidelity position. Time-space inconsistency is the
spatial inconsistency integrated over a time period to account
for the fact that even small errors can be meaningful if they
last long enough. Of the two, spatial inconsistency is the more
common, largely because it is simple to compute. Additionally,
choosing thresholds for time-space inconsistency can be non-
intuitive since the value no longer corresponds to a simple
error. For these reasons, we consider spatial inconsistency as
our measure of interest for this research. However, the opti-
mization techniques employed here are applicable regardless
of the specific inconsistency measure. Indeed, they may well
make time-space inconsistency more attractive by eliminating
manual input of the threshold value.

We compute the average spatial inconsistency as follows:
let Pi(t) be the true position of entity i at time t. Let P j

i (t)
be the position of entity i as represented by node j at time
t according to its dead-reckoning model. Then the average
(pairwise) inconsistency with respect to entity i at node j is
given by

1

T

T∑
t=1

|Pi(t)− P j
i (t)| (1)

Note that this assumes a one-to-one mapping between
enitities and hosts; i.e., node i hosts the high-fidelity model for
entity i (and no others). Averaging Equation 1 over all entities
for a particular node j gives the average spatial inconsistency
experienced by node j, i.e.,

1

N

N∑
i=1,i6=j

1

T

T∑
t=1

|Pi(t)− P j
i (t)| (2)

Computing Equation 2 for all nodes and averaging provides
the average global system inconsistency associated with re-
mote entity positions, i.e.,

1

N2T

N∑
i=1

N∑
i=1,i6=j

T∑
t=1

|Pi(t)− P j
i (t)| (3)

We desire to minimize this inconsistency measure.

B. Computing Response Time

Local response time is associated with the time it takes to
process user inputs. We consider the response time associated
with propagating state updates from a given node to all other
nodes in the system. In order to account for queuing effects in
the implemented software system itself, as well as all network-
induced latencies, this value should be measured in an end-
to-end fashion. That is, the clock begins when the sending
application executes the send operation and not when the
operating system and network hardware actually place the bits
on the wire. Similarly, it ends when the receiving application
(not host or operating system) has received the data.

Response time can be calculated as follows: let tij be the
amount of time required to send an update from node i to
node j. The the response time is given by

max
j
tij , j = 1 . . . N, j 6= i (4)

where N is the total number of nodes in the system. Note
that this value may vary with time since it depends on
environmental factors such as network load. For simplicity,
we assume this value is constant.

Averaging Equation 4 over all nodes provides a measure of
system response time, i.e.,

1

N

N∑
i=1

max
j
tij , j = 1 . . . N, i 6= j (5)

We seek to minimize this response time.

C. Computing Fairness

Equations 2 and 4 provide a means of locating each node in
a two-dimensional fairness space. System fairness is computed
as the cohesion of the resulting data cluster. Let the vector fi
be the location in fairness space of node i. Then the system
fairness is given by

N∑
i=1

(fi − c)2 (6)

where c is the centroid of the N fairness locations fi.
Minimizing this value corresponds to a tighter grouping in
fairness space.
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Figure 3. Pareto front, dominated solutions, and non-dominated solutions
for a bi-objective minimization problem.

D. Multi-Objective Error Threshold Problem

We are now in a position to define selection of the dead-
reckoning error threshold as a multi-objective optimization
problem. Let x be the spatial error threshold. Let ~f =
(f1f2f3), where f1 is given by Equation 3, f2 is given by
Equation 5, and f3 is given by Equation 6. Then we wish to
find

min
x

~f(x) s.t. BW −BWmax ≤ 0 (7)

where BW is the system bandwidth requirement based on
the number of state update messages sent and BWmax is the
system’s maximum available bandwidth.

V. SYSTEM ARCHITECTURE

In general, there is not a single solution to the multi-
objective optimization problem defined by Equation 7. Instead,
a set of solutions characterizing the trade-offs between individ-
ual objectives is obtained. This notion is formalized through
the concepts of Pareto dominance and Pareto optimality.

Definition 1 (Pareto Dominance): Without loss of general-
ity, assume a multi-objective minimization problem. A solution
x dominates solution y if fi(x) ≤ fi(y) ∀i and ∃j such that
fj(x) < fj(y). Pareto dominance is denoted x � y.

Definition 2 (Pareto Optimality): A solution x is Pareto
optimal if ¬∃ x′ � x; that is, if no other solution dominates
x.

A set of Pareto optimal solutions is called a Pareto optimal
set and its image in objective space is called the Pareto front.
In solving multi-objective optimization problems, we seek to
find or approximate the Pareto optimal set and its associated
trade-offs represented by the Pareto front.

Figure 3 presents these concepts graphically for a bi-
objective minimization problem. Square dots represent non-
dominated solutions on the Pareto front. Round dots represent
dominated solutions. The dotted lines represent dominance

areas – a solution denoted by a square dot dominates any
solution above and to its right. Although not drawn, this
relationship holds for solutions not on the Pareto front as well.

Solutions to multi-objective optimization problems should
lie on or as close as possible to the Pareto Front. Additionally,
solutions should cover a broad section of the Pareto front.
Multi-objective evolutionary algorithms are a preferred means
of solving multi-objective optimization problems because they
can find multiple Pareto optimal solutions in a single run.
Additionally, multi-objective evolutionary algorithms are able
to handle concavity and discontinuity on the Pareto front [16]
making them ideal for exploring the trade-off space.

Implementation of a solver for the error threshold prob-
lem requires two fundamental subsystems: a multi-objective
optimization routine, and a simulation of the virtual envi-
ronment. We built optimization portion of our solver on the
JMetal [17] multi-objective optimization framework. JMetal is
a Java-based framework providing abstractions for problems,
algorithms, and experiments. It includes a large number of
MOEAs as well as standard benchmark problems. Addi-
tionally, JMetal provides an experimental framework capable
of multiple independent runs and basic statistics gathering.
We have extended JMetal with an implementation of the
error threshold problem. This extension evaluates candidate
solutions by invoking a virtual environment simulator, reading
its output, and computing values for each objective function.

A simulation of the distributed virtual environment was
developed using the OMNet++ [18] discrete event simulation
framework. OMNet++ is a discrete event simulation frame-
work for building C++-based network simulation. Simulations
are defined in terms of interacting modules that communicate
via timed messages defining the events in the system. Runtime
libraries are provided to manage the simulation infrastructure
(e.g., the future events list, event scheduling, etc). Extensions
provide a variety of network nodes and protocols to assist
developers.

For each evaluation, our solver generates a network de-
scription file describing the node types, network topology,
and parameters to simulate. With the exception of the dead-
reckoning error threshold to evaluate, the contents of this file
are fixed. The simulator is invoked with the error threshold
under consideration and run for a configurable number of time
steps. It outputs trajectory and message log files for each entity
in the virtual environment.

The trajectory log file for each entity includes its actual
position at each time step. It also includes, for each time step,
the perceived location of all other entities in the system. Taken
as a whole, these data allow us to reconstruct the actual and
perceived locations for all pairs of entities at all times.

The message log file for each entity records the start time
for each message sent as well as the time each incoming
message was received. Taking these data as a whole allows
us to compute maximum response times for each state update.



TABLE I
ALGORITHM PARAMETERS.

Parameter NSGA-II SPEA2 MCTS
Population size 100 100 100

Archive size 100 100 100
Max evaluations 500 500 500

Crossover probability 0.9 0.9 -
Crossover distribution index 20.0 20.0 -

Mutation probability 1.0 1.0 -
Mutation distribution index 20.0 20.0 -

Exploration coefficient - - 1√
2

VI. EXPERIMENTS

Validation of the multi-objective approach to setting error
thresholds requires a particular virtual environment for inves-
tigation. This environment should be deterministic with well
understood decision models and dynamics for each entity.
Additionally, all entities should be synthetic to allow for
statistically significant numbers of trials and long simulations.
Finally, the dynamics of each entity should depend on one or
more other entities and should be complex enough to provide
interesting data.

We leverage Reynolds’ boids model of flocking behavior
[19] to provide a simple system with complex enough dynam-
ics to generate an interesting Pareto front. The model defines
flocking behavior as an emergent system property based on
individual behaviors. Entities called boids move through a
virtual space in three dimensions. The behavior of each boid
is highly coupled to all other boids as each seeks to align
its motion with its neighbors, steer towards the center of its
neighbors, and avoid collisions. These simple behaviors allow
complex flocking to emerge without explicitly designing it into
the system.

Boids are attractive as a system model for a number of
reasons. Firstly, individual boid behaviors are easy to reason
about even though the aggregate flock behavior can be com-
plex. Secondly, boids represent a worst-case scenario in that
each entity’s behavior depends on all other entities at every
time step. Real systems with less coupling should outperform
the boids model. Finally, we can define flock cohesion, or the
average distance between a boid’s flight path and the flock’s
mean flight path, as a simple measure of system performance.

To investigate the shape of the error threshold Pareto front
for the boids, a series of single factor experiments were under-
taken. The goals of these experiments are to: 1) demonstrate
the validity of the multi-objective optimization approach to
determining dead-reckoning error thresholds, 2) ascertain the
shape and location of the Pareto front for a representative
virtual environment, and 3) compare the performance of the
NSGA-II [20], SPEA2 [21], and MCTS [22] multi-objective
optimization algorithms on the error threshold problem.

Two experiments were run using slightly different config-
urations. In the first, a 3 node fully-connected boids network
was established. 30 runs were made for each of the NSGA-II,
SPEA2, and MCTS algorithms. The simulation ran for 60,000
steps for each candidate solution. All network parameters (e.g.,

TABLE II
WILCOXON RANK-SUM TEST RESULTS FOR EXPERIMENT 1.

SPEA 2 MCTS
NSGAII N N
SPEA2 N

propagation delay, jitter, etc) were fixed and homogeneous.
This leads to a constant response time based solely on the
network’s propagation delay. Therefore, a simple count of
messages sent was substituted for Equation 5 with a goal of
minimizing total traffic. This is a reasonable thing to do since
it models aggregate traffic levels and is associated with system
scalability.

The second experiment used a 5 node fully-connected boids
network with time-varying network characteristics. Each link
was given a constant propagation delay of 500 ms and a
fixed bandwidth of 1.5 Mbps. For each transmission, jitter
was sampled from a truncated normal distribution with mean
of 100 ms and variance of 60 ms. Link saturation was modeled
with a simple queuing mechanism – messages are held until
the link becomes available. Retransmits and dropped packets
were not modeled. Response time was measured as the second
objective. 10 runs were made for each algorithm with 60,000
steps per simulation invocation.

Table I lists the parameters used for each algorithm. Note
that crossover, mutation, and selection operators refer to built-
in operators provided by JMetal. The exploration coefficient
for MCTS sets a trade-off between exploration of new tree
branches and exploitation of known good branches. For multi-
objective problems, there should be a coefficient for each
objective. Since little was known a priori about the structure
of the search space, all objectives use the same coefficient
value.

VII. RESULTS AND ANALYSIS

Figure 4 plots the approximate Pareto fronts returned by
NSGA-II, SPEA2, and MCTS in objective space for Exper-
iment 1. All three algorithms achieve good convergence and
diversity and show a distinct Pareto front. As expected, the best
values cluster near the origin. There are well-defined trade-offs
between inconsistency and message traffic and inconsistency
and fairness. Low volumes of messaging result in high incon-
sistency and poor fairness.

Algorithm performance was compared using the hyper-
volume quality indicator [16]. The hypervolume indicator
measures how much of the objective space is dominated
by the solutions in a given set. Consequently, it provides a
good indicator of both convergence to the Pareto front and
diversity. The hypervolume was calculated for each algorithm
run (N = 30). Algorithms were compared using the Wilcoxon
rank-sum test against the null hypotheses that the median
samples were drawn from the same distribution. The Wilcoxon
results indicate NSGA-II outperforms both SPEA2 and MCTS.
Additionally, one-way ANOVA indicates statistically signifi-
cant differences in the sample medians (p = 0.0, α = 0.05).
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(a) Approximate Pareto fronts achieved by NSGA-II,
SPEA2, and MCTS for Experiment 2.
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Figure 5. Approximate Pareto fronts achieved by NSGA-II, SPEA2, and MCTS for Experiment 2.

Figure 5a plots the approximate Pareto fronts returned by
NSGA-II, SPEA2, and MCTS in objective space for Experi-
ment 2. Figures 5b to 5d plot the planar projections of the data
in Figure 5a. All three algorithms achieve good convergence
and diversity and show a distinct Pareto front.

Algorithm performance was again compared with respect

to the hypervolume indicator. Due to the small sample size
(N = 10), the Mann-Whitney rank-sum test was used instead
of the Wilcoxon rank-sum test. Results are tabulated in Table
III. No statistical difference was found between NSGA-II and
SPEA2 or between SPEA2 and MCTS. However, NSGA-II
was found to outperform MCTS (p = 0.0493, α = 0.05).



Approximate Pareto Fronts, 3 Boids

NSGA-II
SPEA2
MCTS

0
0.5

1
1.5

2
2.5

3
3.5

4

Inconsistency

0

1000

2000

3000

4000

5000

Messages Sent

0

0.5

1

1.5

2

F
a
i
r
n
e
s
s

Figure 4. Scatter plot showing the approximate Pareto fronts returned by
NSGA-II, SPEA2, and MCTS for Experiment 1.

TABLE III
MANN-WHITNEY RANK-SUM TEST RESULTS FOR EXPERIMENT 2.

SPEA2 MCTS
NSGA-II - N
SPEA2 -

Both experiments show well-defined Pareto fronts indicating
trade-offs between inconsistency, response time, and fairness.
Additionally, there are definite lower limits to performance in
any of these dimensions.

For example, Experiment 2 clearly shows that there is a
minimum achievable inconsistency and that as inconsistency
approaches this value, the response time increases dramati-
cally. This drives an attendant degradation in fairness. This
result is important since it implies that there are diminishing
returns as one approaches the theoretical minimum for incon-
sistency (see Figures 5b and 5c).

Fortunately, there is a wide area of acceptable performance
with low inconsistency, low response time, and reasonable
fairness. However, there is wide variability in fairness in this
region driven primarily by changing message latency due to
jitter and congestion. It should be noted; however, that while
response times remain low in this region, the amount of state
updates sent becomes rather large as borne out by Experiment
1. The systems under test in this work are small; real-world
systems include many more entities and nodes. Thus, while
response time may not become a design constraint, overall
message volume may well limit scalability. Additionally, while
not modeled here, one should also expect response time to

increase as message volume increases due to network routing.
A second observation is that the achieved spatial inconsis-

tencies are quite small. The lower bound is approximately 0.25
spatial units. The boids simulation under study uses a virtual
world 20 units wide in each dimension, giving an achievable
spatial error of about 1%. Whether this is an acceptable level of
error depends on the purpose of the simulation. For the boids,
velocities are small and 1% error is quite good as the boids
maintained their flocking behavior. However, for an aircraft
simulation with large velocities (e.g., supersonic), 1% error can
translate to a large distance. This too is a valuable result for
virtual environment designers – the best achievable objective
values may well be too large for the intended application.

Additionally, use of a non-optimal threshold has distinct
negative effects on system performance, i.e., flock cohesion.
A three boid system with no network delay and perfect
information (each entity has the exact position of all others at
all times and dead reckoning is not necessary) achieves a flock
cohesion measure of 7.667. Adding a modest network delay
of 100 ms and an optimal dead reckoning threshold achieves
a cohesion measure of 8.573. However, even a slightly non-
optimal threshold of 2% spatial error results in increased
inconsistency and a flock cohesion measure of 17.45.

Furthermore, conducting a study such as this during the
system design phase can bring some insight into fitness of pur-
pose. For instance, in the military domain one might wish to
perform an operational test of some weapons system capability
using existing simulation resources. If those resources are
unable to achieve requisite consistency or response times based
on an analysis such as this, the use of simulators should be
abandoned. Similar results hold for other domains. In general,
this approach can provide the designer some assurance that
meeting performance requirements for consistency, response
time, and fairness are achievable goals.

Finally, NSGA-II outperformed both SPEA2 and MCTS on
the error threshold problem. This was unexpected since SPEA2
and most modern methods tend to outperform NSGA-II by a
wide margin on standard test suites. However, the result is not
unwelcome since NSGA-II executes faster than both SPEA2
and MCTS.

Some caution in applying these results is in order. It should
be noted that the simulation used was a relatively low fidelity
network simulation. Bit and packet errors were not modeled.
Neither were routing effects, retransmits, or dropped packets.

VIII. RELATED WORK

A common objective in virtual environment research and
design is the maintenance of adequate consistency levels in
the face of limited system resources such as throughput or
network latency [23]. Several authors ( [2]–[4], [23], [24])
have highlighted the trade-off between system consistency and
system responsiveness as a defining characteristic of virtual
environments.

Several papers have been published optimizing various as-
pects of consistency management and state update scheduling



in particular [25]–[29]. Li and Cai [30] formulate the prob-
lem of minimizing inconsistency subject to network capacity
constraints as a convex optimization problem. Tang and Zhou
[31] derive optimal update schedules based on minimizing
time-space inconsistency [15]. However, these analyses do not
account for fairness as an explicit objective.

Chen and Zarki [14] define a relationship between system
consistency, network delay, and quality of experience, includ-
ing fairness, but do not provide methods for finding the optimal
trade-off point.

IX. CONCLUSION

Choosing dead-reckoning error thresholds for distributed
virtual environments is a non-trivial undertaking. The thresh-
old choice impacts system performance in a number of di-
mensions including consistency, response time, and fairness.
We have presented a multi-objective optimization model that
accounts for the relationships between these three quantities.
Additionally, we have built an architecture for the associated
optimization problem based on multi-objective evolutionary
algorithms and simulation of a simple virtual environment.

Experiments with simple virtual environment models indi-
cate use of multi-objective optimization techniques is a viable
means of choosing dead-reckoning thresholds. Analysis of
the resulting Pareto fronts show diminishing returns as one
approaches the theoretical minimum for state inconsistency.
Additionally, our results highlight the trade-offs between con-
sistency, response time, and fairness. Application of our model
and solver with appropriate entity dynamics can assist virtual
environment designers in tuning their applications for best
possible performance.
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