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Clustering-Based Real-Time Player Modeling

Jason M. Bindewald, Gilbert L. Peterson, Michael E. Miller

Abstract—Being able to imitate individual players in a game
can benefit game development by providing a means to create
a variety of autonomous agents and in understanding how
players play a game. This paper presents a clustering and locally
weighted regression method for modeling and imitating individ-
ual players. A generic player cluster model is first generated that
is then updated in real-time to capture an individual’s game-
play tendencies. The model can then be used to play the game
as a specific individual or for analysis to identify how different
players react to separate aspects of game states. The method is
demonstrated on a tablet-based trajectory generation game called
Space Navigator.

Index Terms—Player modeling, human-like behavior, human-
computer interaction, clustering.

I. INTRODUCTION

Automating game-play in a human-like manner is the goal
of a large area of intelligent gaming research, with applications
from trying to succeed in a gaming version of the “Turing
Test” [1] to creating human-like game avatars [2]. When we
move from playing a game like a generic human to performing
like a specific human, the dynamics of the problem change [3].
Generalized datasets can no longer be lumped into large
groups of past game-play. In complex dynamic environments
it can be difficult to differentiate individual players, because
the insights exploited in imitating “human-like” game-play
can become less useful in imitating the idiosyncrasies that
differentiate specific individuals’ game-play.

There are several benefits of individual player imitation.
Individual player imitation provides insights into modeling
more believable opponents [2]. Better understanding what sets
individual players apart from others, allows a game designer
to build more robust game personalization [4]. Learning the
aspects of a game state that set individual players apart, allows
for better understanding of how to adjust games according to
skill level [5].

This paper contributes a real-time individual player mod-
eling system that enables an automated agent to perform
response actions in a game that are similar to those that an
individual player would have performed in similar situations.
This work improves upon past player modeling efforts, such
as [6], emphasizing three things. First, the player modeling
system automatically updates in real-time rather than requiring
off-line computation to adjust to changing game-play over
time. Secondly, the system takes advantage of insights gleaned
from past game-play clustering to gain a statistically sig-
nificant differentiation between players in a relatively short
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amount of game-play (five, five-minute games). Additionally,
the clustering-based player modeling method allows the prac-
titioner to glean insights into what differentiates the game-play
of individual players.

This paper proceeds as follows. Section II reviews related
work in the fields of player modeling and learning from
past game-play. Section III presents a generic player model
methodology and then uses the generic player model as a
base for implementing a real-time individual player modeling
system. This model is then demonstrated using the Space Navi-
gator trajectory generation game as a test-bed. Section V gives
experimental results showing the individual player modeling
system’s improvements over the generic modeling method.
Section VI summarizes the findings presented and proposes
potential future work.

II. RELATED WORK

Player modeling research informs the methodology to create
trajectories similar to those of an individual player. Meth-
ods involving learning from past experiences provide insight
into how to generate new trajectories from past game-play
instances. This section describes some over-arching areas of
past work that influence the current research.

A. Player modeling

Three taxonomies for player modeling exist, each providing
a different way of organizing the field. Each model is presented
and explained. Interspersed with the model descriptions are
examples of how the model would classify different player
modeling research efforts.

1) Yannakakis Model: In the Yannakakis player model
taxonomy [7], four input types are used to build player models
of two types which provide four types of outputs. Inputs to
a player model fall into four categories: game-play, objective,
game context, and player profile. Game-play data (often called
behavioral data) captures actions that a player takes in the
given game environment. Objective data includes a player’s
measurable physiological responses to the game environment.
Game context data denotes a representation of the real-time
state of the game. A player profile is a static representation of
the player outside of the context of the game (e.g. personality
type). These four inputs are used in some combination to
create a player model.

The resulting player model is either a model-based (top
down) or model-free (bottom-up) player model. In a model-
based player model the model is built on some form of a
theoretical framework where player groupings are pre-defined
according to some set of features. Examples of model-based
player models include supervised neural networks [8], trait
theory to pre-determine player types [9], strategy groupings



based on game design features [10], and association rule
mining to find player experience/activity relationships [11].
In model-free player models the goal is to find player types
that naturally arise from the collected data. Clustering is a
common method to find player types, some examples of which
include hierarchical clustering [12], k-means [13], [14], neural
networks [8], and self-organizing maps [12].

When utilized, player models produce an output when a
given state or response is presented to it depending on its
intended purpose. The outputs from player models can encom-
pass scalar values, class membership, ordinal data (rankings),
or no output (such as when learning a player model for
clustering purposes).

2) Smith Model: The Smith player model taxonomy [15]
classifies player models across four independent facets: do-
main, purpose, scope, and source. The domain of a player
model is either game actions (similar to Yannakakis’s game-
play data input type) or human reactions (similar to the objec-
tive and player profile input types). The second facet, purpose,
describes the end for which the player model is implemented:
generative player models aim to generate actual data in the
environment in place of a human or computer player, while
descriptive player models aim to convey information about a
player to a human. The scope of the player model describes the
scope of players the model represents: individual (one), class
(a group of more than one), universal (all), and hypothetical
(some theoretical player or set of players that doesn’t fit in the
other categories). The source of a player model can be one of
four categories: induced - objective measures of actions in a
game; interpreted - subjective mappings of actions to a pre-
defined category; analytic - theoretical mappings based on the
game’s design; and synthetic - based on some non-measurable
influence outside of the game context (e.g. hunches).

For descriptive purposes, each player model is given a type
for each of the four facets. For example, the player model
created in [16] for race track generation models individual
player tendencies and preferences (Individual), objectively
measures actions in the game (Induced), creates tracks in the
actual environment (Generative), and arises from game-play
data (Game Action).

3) Bakkes Model: Bakkes et al [17] create a player behavior
model that classifies player models that involve game-play data
inputs in the Yannakakis model or fall in the game action
domain in the Smith model into four categories:

o Player behavior models based on player actions map
states encountered in the game to player actions. A good
example of this type of model is the player models
associated with research on poker player modeling [18].

o Player behavior models based on player tactics take
multiple actions and/or the actions of multiple players
into account to model different players, an example being
the tactical offensive football play models created in [19].

« Player behavior models based on player strategies involve
the use of different tactics in succession, and tend to
account for “entire game” time frames. Examples of
strategy level player behavior modeling exist in real-time
strategy game research, such as systems designed to play
StarCraft [20], [21].

e Player profiling involves the use of player behavior in
games to establish psychological or sociological player
profiles. Research efforts measuring entertainment in
games [22], [23] tend to allow for this type of behavior
modeling.

B. Learning from Previous Game-Play

Two areas of research that rely on past experience to inform
future automated game-play include: Case-Based Reasoning
(CBR) and Learning from Demonstration (LfD). Both CBR
and LfD train an automated system to generate responses
based on observations within an environment. In CBR, a “case-
base” maintains a set of observed environment states and
their associated responses (cases) [24]. When a new state is
received by the CBR a previous case is retrieved, adapted to
the current state, and a new response is fashioned. The new
state and its associated response is then either added to the
case-base or thrown away according to observed feedback.
In LfD, a teacher demonstrates a skill that it would like the
the automated system to learn [25]. The learner attempts to
derive a policy based on the demonstration, and then attempts
to execute the derived policy. The policy is then evaluated and
updated with feedback in the environment.

The nearest neighbor principle maintains that instances of a
problem that are a shorter distance apart more closely resemble
each other than do instances that are a further distance
apart [26]. This concept is applied in many locally weighted
learning algorithms that learn how to perform regression or
classification tasks by comparing an incoming instance to that
of its nearest neighbors [27]. The nearest neighbor principle is
used to find relevant past experiences in LfD tasks such as a
robot intercepting a ball [28], CBR tasks such as a RoboCup
soccer-playing agent [29], or tasks integrating both LfD and
CBR such as in real time strategy games [30]. When searching
through large databases of past experiences approximate near-
est neighbors searches, such as Fast Library for Approximate
Nearest Neighbors (FLANN [31]), have proven useful in
approximating nearest neighbor searches while maintaining
lower order computation times in large search spaces.

III. METHODOLOGY

The real-time player modeling paradigm we present here
improves on previous work in three ways. As the name
suggests, the player model updates in real-time to adapt
to changing player habits. Additionally, the paradigm pulls
insight by clustering past game-play, differentiating between
players quickly. Then, the resulting player models allow
the practitioner to investigate specific individual game-play
tendencies further. Figure 1 illustrates our real-time player
modeling paradigm. This real-time player modeler creates
responses to provided game states that are similar to those
that an individual player would have given in response to
similar states. This section explains the three main tasks of
the real-time player modeler: creating a generic player model,
generating similar response trajectories, real-time updating of
the player model with individual player game-play.
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Fig. 1. A real-time updating individual player modeling paradigm.

A. Create Generic Player Model

This section outlines the generic player model creation
process, shown in shaded area 1 of Figure 1. Clustering
the past game-play instances according both by state and by
response reveals general player tendencies. With information
gained from clustering, pruning outlier instances creates a
universally representative example game-play dataset. This
dataset then forms the groundwork for a generic player model
that maps state clusters to response clusters.

1) State and response clustering: Similar to the method
used in [6], Ward agglomerative clustering [32] provides a
baseline for player modeling. Clustering reduces the state-
response pairs into a set of representative clusters, reducing the
potential representation size of a player model. This method
was proven effective for clustering in a trajectory creation
game environment in [6], [33]. Agglomerative clustering starts
with a set of game-play instances that contain a state and
its associated response and assigns each instance to a state
cluster and a response cluster. The number of clusters will
depend on the environment and size of the underlying dataset.
The mapping from a state cluster to a response cluster for
state-response instance demonstrates a proclivity for a player
to react with a given maneuver in a specific type of game
situation. By determining the frequency of state cluster to
response cluster mappings, common situational responses and
outlier actions emerge.

2) Cluster outlier pruning: The frequency of state cluster
to response cluster mappings reveal common and outlier
situational responses, providing the basis for two types of
pruning that generalize the generic player profile by remov-
ing infrequent interactions. First, instance frequency within
clusters helps in pruning outliers from the set of all game
instances. If a given state has only been seen in one instance
by one player, that state is unlikely to provide much benefit
in predicting future responses. Similarly, a response given by
only one player in one instance is unlikely to be replicated in
future player responses.

Clusters with outlier responses are removed first by re-
moving all instances assigned to the least populated response
clusters. The cutoff threshold for determining which instances
to remove could be either a minimum response cluster size
or just a percentage of response clusters to remove. For
example, due to the distribution of cluster sizes in the Space
Navigator database we removed instances falling in the bottom

25% of all response clusters according to cluster size. Setting
cutoff thresholds relies on knowledge of the environment and
underlying dataset distribution.

Next, outlier state clusters are removed in two ways. First,
instances that fall in the bottom 25% of all state clusters
according to cluster size are removed, removing all clusters
that are rare in general. However, removing states not seen by
many different players is also important. In addition to removal
based on sheer cluster size, pruning also removes instances
falling into a state cluster encountered by a minimal subset
of players. This removes a subset of clusters not removed
previously: state clusters with many instances reached by an
extremely small subset of players. It is important to note that
although the generic player model will be built on the pruned
game-play database, the original state and response clusters are
used. In this way, individual player modeling can still capture
outlier states or responses individual players encounter that
most players do not encounter.

3) Player model creation algorithm: Whereas [6] used
an offline game-play database creation method, the current
research uses a faster online system to model players. Algo-
rithm 1 generates a generic player model that determines the
likelihood each state cluster is to map to each response cluster.

Algorithm 1 Generic player model creation algorithm.
1: inputs:
2: x = the number of state clusters
3: y = the number of response clusters
4 M = {<51,R1>,<S1,R2>,"',<Sw,Ry>}, all state-
response cluster mappings

5: C=0;, > o X y zero matrix

6: P=0,, > z X y zero matrix

7: for i =1 — z do

8: for j=1—ydo

9: ci,; = the number of instances assigned to cluster
mapping (S5;, R;)

10: end for

11: end for

12: for:=1— z do
13: for j =1—ydo

Y
14: Pj=cij/ > cik
k=1
15: end for
16: end for

17: return P

The generic player model creation algorithm takes in the
number of state and response clusters (z and y respectively),
and the set of all state-response cluster mappings (M). Line 5
creates a matrix of counters (C) to help determine how many
instances belong to each cluster in M. Line 5 creates an empty
player model (P) that will hold likelihoods for each state-
response cluster mapping in M. Both C and P are initialized
to the x X y zero matrix. The loops beginning in Lines 7 and 8
process each of the state-response cluster mappings. For each
cluster mapping, the number of instances provided by players
that belong to cluster pairing (S;, R;) is recorded.



The loop beginning in Line 12 creates the player model
P from the counter matrix C. The model contains a matrix
of likelihoods that a given instance provided by a generic
player chosen at random from the game-play database will
belong to the indicated state and response cluster mappings.
The likelihoods are determined by normalizing across the rows
of C. For each state cluster, the count for each response
cluster is divided by the total number of instances assigned
to the state cluster. The matrix of likelihoods is returned
as the generic player model P. This generic player model
forms the baseline for individual player model creation. To
model individual player gameplay habits, the individual player
modeling techniques in the next section update the generic
player model through observed game-play data.

B. Update individual player Model

For real-time individual player modeling, this research up-
dates the generic player model created in Algorithm 1 as
an individual plays the game. Over time, the updates shape
a player model that represents an individual player’s game-
play tendencies, as illustrated in shaded area 2 of Figure 1.
The individual player update process involves an algorithm to
learn a player model with individual player tendencies over
time. In order to train an individual player model quickly, the
information gained from each state-response instance leads to
an update of the state-response cluster scores.

1) individual player model real-time update algorithm:
Algorithm 2 demonstrates the real-time updates that take
place to learn an individual player’s tendencies. The algorithm
begins with the generic player model P. Once a player submits
a response in the game environment, the current game state
and the response are submitted. The algorithm finds the closest
state (S¢iose) and response (R.jose) clusters to the state and
response passed in by the player. The player model is updated
at the intersection of Sgpse and Rejpse DY Ociose- Then the
player model is normalized across all the R values for S¢jpse
so that the values sum to 1.

Algorithm 2 Individual player model real-time update algo-
rithm.
1: inputs:
2: P = an = x y generic player model created by Algorithm 1
3: (8in, Tin) = a player-provided state-response pair
4 M = {<51,R1>,<51,R2>,"',<517Ry>}, all state-
response cluster mappings

5: S.0se = the closest state cluster to state s;,

6: Oclose = G+ (0cp+Ocmv +0pma), Sciose’s update increment
weight

7: Rejose = the closest response cluster to response 7,

8: P (Sclosea Rclose) =P (Sclosea Rclose) + 6close

9: for P (Scipse, 1) where i = 1 — y do

10: P (Sclose» 1) =P (Sclosev Z) / (1 + 5close)

11: end for

2) Update increment weighting: The player model update
algorithm is useful in modeling player behavior, but there are

certain states from which more can be gleaned than others.
Weighting the increment values for a given state-trajectory
pair can be useful in quickly learning idiosyncrasies that set
a player apart from the generic player. Specifically, knowing
which state clusters contain the most information for future
player modeling is useful. Traits gleaned from the clustered
data provide ways to help determine which state clusters
should create larger learning increments, and which states
provide minimal information to extend beyond the generic
player game-play model. Three binary traits contribute to the
update increment, §, in Line 6 of Algorithm 2. The three traits
calculated to help weight § include cluster population, cluster
mapping variance, and previous modeling utility.

Cluster Population: When attempting to learn game-play
habits quickly, knowing the expected responses of player to
common game states is important. Weighting J according to
the size of a state cluster in comparison to that of the other
state clusters across the entire game-play dataset emphasizes
increased learning from common states for an individual player
model. States that fall into larger clusters can provide better
information for quickly learning how to differentiate individual
player game-play habits. To calculate the cluster population
trait, all state cluster sizes are calculated and a population
threshold is selected. Any state cluster with a population above
the population threshold is given a cluster population trait
weight of §,, = 1 and all other state clusters receive a weight
of 6., = 0.

Cluster Mapping Variance: When mapping state clusters
to response clusters, some state clusters will consistently map
to a specific response cluster across all players. Other state
clusters will consistently map to several response clusters
across all players. Very little about a player’s game-play
tendencies is learned from these two types of state clusters.
However, state clusters that map to relatively few clusters
per player (intra-player cluster variance), while still varying
largely across all players (inter-player cluster variance) can
help quickly differentiate players. The state cluster mapping
variance ratio is the total number of response clusters to which
a state cluster maps across all players divided by the number of
response clusters to which the average player maps, essentially
the ratio of inter-player cluster variance to the intra-player
cluster variance. The cluster mapping variance trait weight,
demus 18 set according to a cluster variance ratio threshold.
All state clusters with a variance ratio above the threshold
receive a weight of d.,,, = 1 and all others receive a weight
of §emo =0

Previous Modeling Utility: The last trait involves running
Algorithm 2 on the existing game-play data. Running the
individual player update model on previous game-play data
provides insights into how the model works in the actual
game environment. This trait requires the use of a system that
automatically generates responses to presented states using a
player model is already established.

First, Algorithm 2 runs with § = 1 for all state clusters,
training the player model on some subset of a player’s game-
play data (training set). Then it iterates through the remaining
game-play instances (test set) and generate a response to each
presented state, using both the individual player model and the



generic player model. This repeats for each individual player
in the game-play dataset. For each test set state, we then
determine which response was most similar to the player’s
actual response. Each time the individual player model is
closer than the generic player model to the actual player
response, tally a ‘win’ for the given state cluster and a ‘loss’
otherwise. The ratio of wins to losses for each state cluster
makes up the previous modeling utility trait. The previous
modeling utility trait weight, 0pmq, is set according to a
previous modeling utility threshold. All state clusters with a
previous modeling utility above the threshold receive a weight
of dpmqe = 1 and all others receive a weight of dpmq = 0.

Calculating 6: When Algorithm 2 runs, § is set to the sum
of all trait weights for the given state cluster multiplied by
some value ¢ which is an experimental update increment set
by the player. Line 6 shows how § is calculated as a sum of
the previously discussed trait weights.

IV. CASE STUDY: Space Navigator

This section demonstrates the player modeling paradigm,
focusing specifically on the response generation section of
the player modeling paradigm (unshaded area 3 of Figure 1),
with a specific application in generating trajectory responses
in Space Navigator. First, the application environment is
introduced along with the outline of an initial data capture
experiment within it. Then, solutions are presented to three
challenges specific to the game environment: developing a
state representation, comparing disparate trajectories, and find-
ing a trajectory distance measure that is meaningful to humans.
These solutions are then used to develop a trajectory response
generation algorithm that utilizes a player model to generate
trajectories similar to those that would have been provided by
an individual player in the same situation.

A. Application Environment

This research uses a trajectory-based tablet game, Space
Navigator [6], [34]. In designing the test-bed, the end product
needs to allow for games that could begin with complete
manual control, allowing for the capture of human game-play,
and then support an automated system that controls a portion
of the overall human task within the game environment. It also
must be easily understood to facilitate data gathering from as
wide a range of players and skill levels as possible.

1) Space Navigator: Space Navigator is a tablet computer-
based trajectory generation game similar to games such as
Flight Control [35], Harbor Master [36], and Contrails [33].
Figure 2 shows a screen capture from the game and identifies
several key objects within the game. Spaceships appear at
set intervals from the screen edges. The player directs each
spaceship to its destination planet (designated by similar color)
by drawing a line on the game screen using his or her finger.
The spaceship then follows the entire drawn trajectory.

Points accumulate when a ship encounters its destination
planet or one of a number of small bonuses that randomly
appear throughout the play area. Points decrement when
spaceships collide, and each spaceship involved in the collision
is lost. Points are also lost when a spaceship traverses one

of several “no-fly zones” (NFZs) that move throughout the
play area at a set time interval. For every second a spaceship
traverses a NFZ, the player loses points. The game ends after
five minutes.

Fig. 2. Screen capture from a game of Space Navigator, pointing out
spaceships, planets, trajectories, bonuses and no-fly zones.

Space Navigator contains only one player action (draw-
ing trajectories), while containing enough dynamism that an
automation can not generate a “best” input. This is assured
through the moving NFZs, random location of appearing
spaceships, and random appearances of bonuses. The single
player input allows focus on the trajectories drawn as the only
possible response to a given state.

2) Initial Data Capture Experiment: An initial experiment
captured a corpus of game-play data for further comparison
and benchmarking of human Space Navigator game-play.
Player data collection used a set of Samsung ATIV Smart
PC tablet computers running the Windows 8 operating system.
Data was collected from 32 participants playing 16 five-minute
instances of Space Navigator. The instances represented four
difficulty combinations, with two specific settings changing:
(1) the number of NFZs and (2) the rate at which new ships
appear.

The environment captures data associated with the game
state whenever the player draws a trajectory. The data includes:
time stamp, current score, ship spawn rate, NFZ move rate,
bonus spawn interval, bonus info (number of bonuses, loca-
tion, and lifespan of each), NFZ info (number of NFZs, loca-
tion, and lifespan of each), other ship info (number of other
ships, ship ID number, location, orientation, trajectory points,
and lifespan of each), destination planet location, selected
ship info (current ship’s location, ship ID number, orientation,
lifespan, and time to draw the trajectory), and selected ship’s
trajectory points. The final collected dataset consists of 63,030
instances, with each player’s dataset including an average of
1,950 state-trajectory instances.

B. State Representation

Space Navigator states are dynamic both in number and
location of objects. Bonuses and spaceships appear and dis-
appear throughout the game and spaceships and NFZs move
throughout the scene over time. The resulting infinite number
of configurations makes individual state identification difficult.



To shrink the large feature vectors obtained in the data capture,
the state representation contains only the elements of a state
that directly affect a player’s score (other ships, bonuses, and
NFZs) scaled to a uniform size along with a feature indicating
the relative length of the spaceship’s original distance from
its destination. Algorithm 3 describes the state-space feature
vector creation process.

Algorithm 3 State-space feature vector creation algorithm.
1: input:
2: L = the straight-line trajectory from the spaceship to its
destination planet.

initialize:

n € [0.0---1.0) = a weighting variable
s = an empty array of length 19
zoneCount = 1

AN

7: Translate all objects equally s.t. the selected spaceship is
located at the origin.

8: Rotate all objects in state-space s.t. L lies along the X-
axis.

9: Scale state-space s.t. L lies along the line segment from
(0,0) to (1,0).

10: for each object type ¥ € (OtherShip, Bonus, NFZ) do

11: for each zone z =1 — 6 do

12: zoneCount = zoneCount + 1

13: for each object o of type ¥ in zone z do

14: d, = the shortest distance of o from L

15: w, = e~ (M) Gaussian weight function
16: s [zoneCount] = s [zoneCount] + w,

17: end for

18: end for

19: end for

20: s[19] = the non-transformed straight-line trajectory length
21: Normalize values of s between [0, 1]
22: return s

The algorithm first transforms the state-space features to a
straight-line trajectory frame in Line 2. Line 7 translates the
state space so the selected ship is at the origin. Line 8 rotates
all the objects in state-space so that the straight-line trajectory
between the ship and the destination planet is located on the X-
axis. Then, Line 9 scales the state-space such that all straight-
line trajectories are of equal length. These transformations
allow disparate trajectories to be compared in the state-space.

The loop beginning on Line 10 accounts for the different
element types and the loop beginning on Line 11 divides the
state-space into six zones as shown in Figure 3. The first
dividing line creates two zones along the straight-line trajec-
tory. The second and third dividing lines occur perpendicular
to the straight-line trajectory at the location of the spaceship
and destination planet respectively. This effectively divides the
state-space into three zones with relation to the spaceship’s
straight-line path: behind the spaceship, along the path, and
beyond the destination.

To compare disparate numbers of objects, the loop begin-

Fig. 3. The six zones surrounding the straight line trajectory in a Space
Navigator state representation and the state representation calculated with
Algorithm 3.

ning in Line 13 uses a method similar to that used in [29].
Each zone collects a weight score (s) for each object within
the zone. This weight score is calculated using a Gaussian
weighting function based on the minimum distance an object
is from the straight-line trajectory. For objects beyond the des-
tination planet or behind the spaceship, the minimum distance
will not be perpendicular to the straight-line trajectory.

Figure 3 shows the transformation of the state into a feature
vector using Algorithm 3. The state-space is transformed in
relation to the straight-line trajectory, and a value is assigned to
each “entity type + zone” pair accordingly. For example, Zone
1 has a bonus value of 0.11 and other ship and NFZ values of
0.00, since it only contains one bonus. The weighting function
is evident in the fact that closer entities (Zone 6 - NFZ) have
a higher score than entities that are farther away from the
straight-line trajectory (Zone 1 - bonus).

Lastly, the straight-line trajectory distance is captured. This
accounts for the different tactics used when ships are at differ-
ent distances from their destination. Ships that are very close to
their destination are more likely to result in responses close to
a straight-line trajectory, while those that must traverse nearly
the entire screen will see a wider variance from the straight-
line trajectory. The resulting state representation values are
normalized between zero and one.



C. Trajectory Comparison

Trajectory generation requires a method to compare dis-
parate trajectories. This is crucial to being able to determine
the similarity or dissimilarity of two response trajectories [37].
However, trajectories generated within Space Navigator can
vary in composition, containing differing numbers of points
and point locations. This section describes how the trajectory
generator permits trajectory comparison. Trajectory compari-
son requires both re-sampling and transformation. Trajectory
re-sampling, based on linear interpolation [38], ensures all
trajectories consist of the same number of points. The trajec-
tory generator can then compare trajectories using a simpler
distance measure.

Algorithm 4 performs trajectory re-sampling. The algorithm
begins by keeping the same start and end points, then iterates
through until the re-sampled trajectory is filled. The process
first finds, in Line 10, the proportional relative position (p,,) of
a point. The proportional relative position indicates where the
i-th point would have fallen in the original trajectory and may
fall somewhere between two points. Calculated in Line 16,
the proportional distance (d,,,) that p,, falls from the previous
point in the old trajectory (po) is the relative distance that the -
th re-sampled point falls from the previous point. To compare
trajectories, the target number of points is set to 50 for re-
sampling all the trajectories (i.e. nq.4). Fifty is approximately
the mean number of points found in all the trajectories during
the initial data capture.

Algorithm 4 Trajectory re-sampling algorithm.
1: inputs:
2: noyg = Number of points raw trajectory we are re-
sampling contains
3: n, = Number of points to which we are re-sampling
4: toiq = Array of (z,y) points representing the raw trajec-
tory we are re-sampling

5: initialize:
6: t, = Empty array of (z,y) points of length n, to hold
the re-sampled trajectory

7: tr[l] = told[l}
8: tr[ny] = tora[Notal
9: fori=2—n, —1do

. — [ Rold ;
10: Pm = ,,(;T 1

11: Po = I_ T)’LJ
12: b1 = |7an-|
13: if p,, = po then

> The position directly before p,,
> The position directly after p,,

14: tr [Z] = told[pm]

15 else

16: dm =Pm — Po

L (w0, y0) = toralpo]

18: (1,91) = toralpi]

19: tr[i] = (xo + dm (1 — 20) ;Yo + dm (y1 — Y0))

21: end for
22: return t,

Re-sampling the points in this manner has two advantages.
First, the re-sampling process remains the same for both
trajectories that are too long and too short. Secondly, the re-
sampling process maintains the distribution of points along the
trajectory. A long or short distance between two consecutive
points, relative to other consecutive point distances within the
trajectory, remains in the re-sampled trajectory. This ensures
that trajectories drawn quickly or slowly maintain those sam-
pling characteristics to some extent.

Once re-sampled, trajectories are translated, rotated, and
resized in relation to the straight-line trajectory. Since Space
Navigator state-space feature vector creation geometrically
transforms a state, the trajectories generated in response to
the state must be transformed in the same manner. This
transformation ensures the state-space and trajectory response
are positioned in the same state space.

D. Distance Measure

To ensure the trajectories generated in Space Navigator are
similar to those of an individual player, a distance measure
must capture the objective elements of trajectory similarity
such as comparing specific points. Additionally, an ideal
similarity measure will also be meaningful to human players,
in that the distance measure will be small when a human
would think two trajectories are similar and large when two
trajectories are dissimilar. A human-subject study confirmed
that Euclidean trajectory distance not only distinguished be-
tween trajectories computationally, but also according to hu-
man conceptions of trajectory similarity. The experiment was
conducted as follows in the Space Navigator environment.

Each of the 35 participants played two five-minute games
of Space Navigator for familiarization purposes. Then each
player completed 60 pre-scripted instances taken from pre-
viously captured games of Space Navigator. Each scenario
starts from a paused Space Navigator instance and the space-
ship upon which the player is expected to act blinks. The
player responds to the scenario by drawing a trajectory for
the blinking ship. The game is paused and the trajectory
response is recorded. The scenario is then shown to the player
again, with their trajectory replaced by three new trajectories
superimposed onto the state. The player is asked to choose the
trajectory that is “most similar” to the one they drew.

The three trajectories shown to the player include a straight
line from the spaceship to its destination planet, the trajectory
in the game-play database that is closest to the provided
trajectory according to Euclidean trajectory distance, and the
response trajectory to a random state from the same state
cluster as the current state. The trajectories are presented as A,
B, and C' in randomized order. The trajectory selected by the
player is recorded as the player’s choice as the most similar
trajectory. The final collected dataset consists of 35 players
completing 60 instances each, for a total of 2,100 instances.

Average intra-trajectory distance between all three presented
trajectories and trajectory length show Euclidean trajectory
distance’s effectiveness. If Euclidean trajectory distance prop-
erly captures human conception of trajectory similarity, small
intra-trajectory distances should mean that all three trajectories



are similarly indistinguishable to humans. Very small intra-
trajectory distances should indicate an almost random choice
of “most similar” trajectory for the player, while the smallest
Euclidean trajectory distance from the trajectory the player
drew to one of the presented trajectories should be chosen
with regularity at high average intra-trajectory distances. Ad-
ditionally, smaller straight-line trajectory lengths allow for less
distinguishability due to the constrained nature of possible
actions at shorter distances. Therefore, small trajectory lengths
should induce less certainty in the choice of “most similar”
trajectories.

Percentage of Shortest Euclidean Distance
Trajectories Chosen as "Most Similar"

0 I L I I I I L L L I I I
0 15 30 45 60 75 90 105 120 135 150 165 180

Average Intra-Trajectory Distance

Fig. 4. The percentage of times human conception of “most similar”
trajectory agreed with the trajectory deemed most similar according to
Euclidean trajectory distance as a function of the average intra-trajectory
distance.

The results in Figure 4 show that Euclidean trajectory
distance captures human conception of trajectory similarity
well. All histograms were compiled in MATLAB, the number
of bins (k) set according to Rices rule [39] (k = 2nt/3, n =
the number of observations), and the k£ bins equally sized
between the minimum and maximum trajectory lengths. As
expected, those trajectories presented with extremely small
average intra-trajectory distances are chosen at an essentially
random rate (23.8%). As the average intra-trajectory distance
grows, the shortest Euclidean trajectory distance aligns with
human conceptions of “most similar” at rates approaching
100%.

Euclidean trajectory distance also accounts for humans
being less able to distinguish between shorter trajectories.
Since players are more constrained in possible trajectory
choices at short straight-line trajectory lengths, the average
intra-trajectory distance correlates well with length as demon-
strated in Figure 5. This shows a strong positive correlation
(r =0.5635, p = 0).

Combining these insights, Figure 6 shows as trajectory
length increases, the percentage of trajectories classified
as most similar by humans more regularly matches with
Euclidean trajectory distance. Euclidean trajectory distance,
therefore, serves as an adequate measure of trajectory similar-
ity in the Space Navigator game.
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Fig. 5. Average intra-trajectory distance as a function of trajectory length.
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Fig. 6. The percentage of times human conception of “most similar”
trajectory agreed with the trajectory deemed most similar according to
Euclidean trajectory distance as a function of trajectory length.

E. Generate Response

The response generator utilizes a player model P to generate
player responses. This section describes a method to generate
new trajectory responses using the cluster weights in P that
derive from either a generic or learned player model.

Existing trajectory generation research has tended to grav-
itate toward methods creating trajectories one point at a
time. Using methods like trajectory libraries [40] or Gaussian
mixture models [41], the trajectory generator predicts only the
next point on the trajectory. Then it recursively continues the
process of creating further points until it reaches the desired
en state and returns the entire created trajectory. However,
humans tend to think in terms of “full maneuvers” when
generating trajectories, specifically for very quick trajectory
generation tasks such as trajectory creation games [33]. There-
fore, the Space Navigator trajectory response generator creates
“full maneuver” trajectories.

The trajectory response generation algorithm takes as input:



the number of trajectories to weight and combine for each
response (k), the number of state and trajectory clusters (z
and y respectively), the re-sampled trajectory size (i), a new
state (Spew), @ player model (P), the set of all state-trajectory
cluster mappings (M).

Algorithm 5 Trajectory response generation algorithm.
1: inputs:

2: k = the number of trajectories to combine

3: x = the number of state clusters

4: y = the number of trajectory clusters

5: u = the re-sampled trajectory size

6: Spew = a State we have not seen before

7: P = an z x y player model

& M = {<51,T1>,<51,T2>,~'~,<SI,Ty>}, all state-

trajectory cluster mappings

9: initialize:
10: tpew (1) < an empty trajectory of p points

11: Sgose = the closest state cluster to state $,,cq
12: Petose = max [Ps,,., (:lv:el,...)]
13: for each Pclosg,i € P.ose do

14: T; = the trajectory cluster associated with Peose
15: Sclose,i — state closest t0 Spew i (Sciose, 13)

16: Lelose,i < the response trajectory to Sciose,i

17: for v =1— p do

18: thew (V) = thew (V) + tclose,i (V) : Pclose,i

19: end for

20: end for

21: tnew = tnew/ Z Pclose,i

i=1
22: return t,,cq

Line 10 begins by creating an empty trajectory of length p
which will hold the trajectory generator’s response to Speqy-
Line 11 then finds the state cluster (S.ose) t0 Which ¢,
maps. Pjse, created in Line 12, contains a set of likelihoods.
P.;,sc holds the likelihoods of the & most likely trajectory
clusters to which state cluster S,;,sc maps.

The loop beginning in Line 13 then builds the trajectory
response to Speq- Line 15 finds the instance assigned to both
state cluster S¢,sc and trajectory cluster 7T; with the state
closest t0 S,ew. The response to this state is then weighted
according to the likelihoods in P. The loop in Line 17, then
combines the k trajectories using a weighted average for
each of the p points of the trajectory. The weighted average
trajectory points are then normalized across the k weights
used for the trajectory combination in Line 21. The trajectory
returned by Line 22 is the trajectory response generation
algorithms response to state S, according to the player
model P

V. EXPERIMENT AND RESULTS

This section describes an experiment to test the real-time
individual player modeling trajectory generator and presents
insights gained from the experiment. The results show that

the individual player modeling trajectory generator is able to
create trajectories more similar to those of a given player than
a generic player-modeling trajectory generator, with a limited
amount of training data. Additionally, the results show how
the model provides insights for a better understanding of what
separates different players’ game-play through an analysis of
the individual player models in comparison to the generic
player model.

A. Experiment Settings

The experiment compares trajectories created with the
generic player model and the individual player model, they
are further compared with a trajectory generator that always
draws a straight line between the spaceship and its destination
planet. The first five games worth of state-trajectory pairs are
set aside as a training dataset and eleven games of state-
trajectory pairs are set aside as a testing dataset, with each
game containing on average 123 state-trajectory pairs. Five
training games was chosen as a benchmark for learning an
individual player model to force the system to quickly pull
insights that would manifest in later game-play. For each of
32 players, the individual player model is trained on the five-
game training dataset using Algorithm 2 with the trait score
weights. The generic player model and straight-line methods
do not require training.

Next, each state in the given player’s testing set is presented
to all three trajectory generators. The difference between the
generated trajectory and the actual trajectory provided by the
given player is recorded. The experiment presents states in the
order recorded in the original games. The individual player
model does not train on the testing data. The experiment also
saves the individual player models for later comparison and
evaluation. Table I shows specific experimental values for the
individual player model.

TABLE I
EXPERIMENTAL VARIABLE SETTINGS FOR INDIVIDUAL PLAYER
MODELING USING ALGORITHM 2

Variable Value

Update Increment (q) 0.01
Cluster Population Threshold 240
Cluster Mapping Variance Threshold 17.0

Previous Modeling Utility Threshold 3.0

The three learning thresholds were set specifically for Space
Navigator as follows. The state cluster population threshold is
set at a value of one standard deviation over the mean cluster
size, specifically 240. Forty of 500 state clusters received a
cluster population weight of ., = 1 and 460 received a
population weight of ., = 0. The cluster variance ratio
threshold is 17, with 461 of 500 state clusters receiving
a cluster variance weight of d.,,, = 1. For the previous
modeling utility, a player model was trained for each of the
32 players with five games worth of data. Then each of the
remaining 11 games were predicted using both the trained
player model and the generic player model. For each state



across all 32 players, a Euclidean trajectory distance from the
generic and individual player models predicted trajectories was
calculated from the actual trajectory responses. The cutoff is
a learning value of 3, with 442 of 500 clusters receiving a
previous modeling utility score of 6pmq = 1.

To account for the indistinguishability of shorter trajectories
described in Section IV-D, results were removed for state-
trajectory pairs with straight-line trajectory length less than
length 10.12 meters in the Space Navigator environment (ap-
proximately 3.5 centimeters on the tablets with 29.5 centimeter
screens used for experiments). This distance was chosen as
it represents the intersection in Figure 6 at which trajectory
lengths reach an accuracy one standard deviation below the
mean of trajectory similarity classification accuracy.

B. Individual Player Modeling Results

Testing of the game-play databases shows that the trajecto-
ries generated using the individual player model significantly
improved individual player imitation results when compared
to those generated by the generic player model and the straight
line trajectory generator. Table II and Figure 7 show results
comparing trajectories generated using each database with the
actual trajectory provided by the player, showing the mean
Euclidean trajectory distance and standard error of the mean
across all 32 players and instances.

1.895

1.885-
1.88

1.875

Mean Euclidean Distance
from Actual Trajectories

1.865 -

I
Straight
Trajectory Generator Type

Similar Generic

Fig. 7. Euclidean trajectory distance between generated trajectories and
actual trajectory responses across three trajectory generation methods.

TABLE 11
MEAN AND STANDARD ERROR OF THE EUCLIDEAN TRAJECTORY
DISTANCES (IN SpaceN avigator ENVIRONMENT METERS) ACROSS ALL
STATE-TRAJECTORY PAIRS.

Database Mean Euclidean Traj Dist  Std Err
Individual Player Model 1.8640 +0.0063
Straight Line Generator 1.8781 +0.0069

Generic Player Model 1.8784 +0.0063

The individual player model generator provides an improve-
ment over the other models. The mean Euclidean trajectory

distance of 1.8640 provides a statistically significant improve-
ment over the straight line and generic player models, as
standard error across all instances from all 32 players does
not overlap with the latter two player models. The similar
player model improves the generic databases accuracy by
learning more from a selected subset of presented states to
ensure that the player model more accurately generates similar
trajectories.

C. Individual Player Model Insight Generation

The individual player models provide insight into general
and specific game-play. Comparing the player model learning
value changes with the aspects of a state representation allows
us to understand what aspects of a state influence game-play
and to what degree. How player model changes correlate with
the state representation enables game designers a better under-
standing of what distinguishes individual game-play within the
game environment. In turn, this understanding allows for game
design improvements.

Table III shows the results of a Pearson’s linear correlation
between the mean learning value change of each state cluster
across all 32 players and the state representation values of the
associated state cluster centroids. The results show that there
is a statistically significant negative correlation between the
mean learning value changes and all of the zones, but some
changes are much larger than others.

TABLE III
CORRELATION OF EACH STATE REPRESENTATION VALUE WITH THE MEAN
CHANGE IN ASSOCIATED STATE CLUSTER LEARNING VALUES IN PLAYER

MODELS
Value Pearson’s »  p-value
Zone 1 - Other Ships —0.1227 0.0060
Zone 2 - Other Ships —0.3911 0.0000
Zone 3 - Other Ships —0.1616 0.0003
Zone 4 - Other Ships —0.1465 0.0010
Zone 5 - Other Ships —0.4244 0.0000
Zone 6 - Other Ships —0.1903 0.0000
Zone 1 - Bonuses —0.1569 0.0004
Zone 2 - Bonuses —0.3552 0.0000
Zone 3 - Bonuses —0.2212 0.0000
Zone 4 - Bonuses —0.1662 0.0002
Zone 5 - Bonuses —0.3693 0.0000
Zone 6 - Bonuses —0.2056 0.0000
Zone 1 - NFZs —0.1002 0.0251
Zone 2 - NFZs —0.2749 0.0000
Zone 3 - NFZs —0.1184 0.0080
Zone 4 - NFZs —0.1159 0.0095
Zone 5 - NFZs —0.2398 0.0000
Zone 6 - NFZs —0.1040 0.0200
Ship to Planet Distance —0.6434 0.0000

The overall negative correlation arises among object/zone
pairs intuitively. High object/zone pair score imply a large or



close presence of an object of the given type, constraining the
possible trajectories available to all players. For example, a
large presence of other ships in a given zone influences all
players to avoid sending trajectories near that area. Therefore,
there is more differentiability of player actions available when
more freedom of trajectory movement is available.

With the “Ship to Planet Distance” feature, longer distances
correlate to less learning value change among player models,
with the strongest correlation of all features: r of —0.6434 and
p-value < 0.0001. There are several possible explanations for
this behavior, including: (1) players are more constrained over
long distances and therefore differentiate their actions less,
(2) as distances get longer, the variance in the way an indi-
vidual player draws trajectories in similar situations increases,
therefore allowing for no learning of individual tendencies,
(3) shorter distances better capture consistent tendencies that
a player will carry along to distinguish his game-play over
time.

Another aspect that Table III begins to show is the im-
portance of the middle zones in comparison to the “before”
and “after” zones. Figures 8, 9 and, 10 illustrate this point
graphically. The r values show that the middle two zones

Fig. 8. Graphical representation of the correlation coefficient for each Other
Ship/Zone score with the mean change in learning values in player models.

provide an larger influence on the amount of change in the
learning values. For example, in Figure 8 the r values for zones
two and five are more than double those of any other zone.
This idea is somewhat intuitive as this is the area that the ship
will traverse, providing the most likely cause for interaction
with objects of any given type.

Figures 8, 9, and 10 and Table III provide insight into the
relative value that players place on certain types of objects. For
example, determining the correlation coefficients of different
Object/Zone Pairs can show that No Fly Zones in the middle
two zones provide a significantly smaller influence on learning
value changes than other ships do in the same zones. Since
there is such a large difference, we can infer that players
reactions to other ships are more valuable in determining how
a person will play the game than No Fly Zones.

Three examples of how player modeling insights can be
used in game applications involve training, game design, and
player automation. The player models can be used to find

Fig. 9.  Graphical representation of the correlation coefficient for each
Bonus/Zone score with the mean change in learning values in player models.

Fig. 10.  Graphical representation of the correlation coefficient for each
No Fly Zone/Zone score with the mean change in learning values in player
models.

places where specific users who are doing really well are
properly valuing certain actions (e.g. avoiding other ships)
according to the incentives. Proper valuations can then be
communicated to players during training within the environ-
ment. Another example is that, we can use the player modeling
insights to design point structures to more closely align with
the way players perceive the value of different object types. In
Space Navigator, increasing the point magnitudes of No-Fly
Zones and Bonuses makes the game more difficult by equally
balancing the incentive structure, encouraging less focus on
a single objective over the others. Lastly, modeling a specific
player enables the designer to incorporate an automated player
to play like a specific expert or current user within the game.

VI. CONCLUSIONS AND FUTURE WORK

The real-time individual player modeling paradigm pre-
sented in this paper is able to generate trajectories similar
to those of a specific Space Navigator player. The system
is able to operate in real-time without needing to perform
time-consuming offline calculations to update player models.
Additionally, the gains in individual player imitation are found



in a relatively small amount of game-play (five games/25
minutes). The player models developed to imitate players also
allow for a better understanding of what traits of a given state
provide understanding of player differences which occur for
different states.

This work provides opportunities for several areas of future
work. Further studies will research the effects of using the
trajectory generator to act as an automated aid for players in-
teracting with the Space Navigator game. Additionally, further
analysis of the player modeling methods could yield further
insights into how much differentiation of individual players
can be gained over different amounts of time. Moreover,
imitating individual players could provide helpful insights
in determining how experts play Space Navigator to aid in
experiments to learn how to improve player training.
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