
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Faculty Publications

2-2005

A New Blind Method for Detecting Novel Steganography A New Blind Method for Detecting Novel Steganography

Brent T. McBride
Air Force Institute of Technology

Gilbert L. Peterson
Air Force Institute of Technology

Steven C. Gustafson
Air Force Institute of Technology

Follow this and additional works at: https://scholar.afit.edu/facpub

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
McBride, B. T., Peterson, G. L., & Gustafson, S. C. (2005). A new blind method for detecting novel
steganography. Digital Investigation, 2(1), 50–70. https://doi.org/10.1016/j.diin.2005.01.003

This Article is brought to you for free and open access by AFIT Scholar. It has been accepted for inclusion in
Faculty Publications by an authorized administrator of AFIT Scholar. For more information, please contact
AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/facpub
https://scholar.afit.edu/facpub?utm_source=scholar.afit.edu%2Ffacpub%2F1158&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Ffacpub%2F1158&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

McBride, B.T., Peterson, G.L., and Gustafson, S.C., “A New Blind Method for Detecting Novel Steganography,”
Digital Investigation, vol. 2, pp. 50-70, 2005. DOI: 10.1016/j.diin.2005.01.003.

1

A New Blind Method for Detecting Novel Steganography

Brent T. McBride BRENT.MCBRIDE@MAXWELL.AF.MIL
Department of Electrical and Computer Engineering
Air Force Institute of Technology
2950 Hobson Way
Wright-Patterson AFB, OH 45433-7765

Gilbert L. Peterson GILBERT.PETERSON@AFIT.EDU
Department of Electrical and Computer Engineering
Air Force Institute of Technology
2950 Hobson Way
Wright-Patterson AFB, OH 45433-7765

Steven C. Gustafson STEVEN.GUSTAFSON@AFIT.EDU
Department of Electrical and Computer Engineering
Air Force Institute of Technology
2950 Hobson Way
Wright-Patterson AFB, OH 45433-7765

Keywords: Steganography, steganalysis, blind classification, jpeg.

Abstract
Steganography is the art of hiding a message in plain sight. Modern steganographic tools that
conceal data in innocuous-looking digital image files are widely available. The use of such tools
by terrorists, hostile states, criminal organizations, etc., to camouflage the planning and
coordination of their illicit activities poses a serious challenge. Most steganography detection tools
rely on signatures that describe particular steganography programs. Signature-based classifiers
offer strong detection capabilities against known threats, but they suffer from an inability to detect
previously-unseen forms of steganography. Novel steganography detection requires an anomaly-
based classifier.
 This paper describes and demonstrates a blind classification algorithm that uses hyper-
dimensional geometric methods to model steganography-free jpeg images. The geometric model,
comprising one or more convex polytopes, hyper-spheres, or hyper-ellipsoids in the attribute
space, provides superior anomaly detection compared to previous research. Experimental results
show that the classifier detects, on average, 85.4% of Jsteg steganography images with a mean
embedding rate of 0.14 bits per pixel, compared to previous research that achieved a mean
detection rate of just 65%. Further, the classification algorithm creates models for as many training
classes of data as are available, resulting in a hybrid anomaly/signature or signature-only based
classifier, which increases Jsteg detection accuracy to 95%.

1 Introduction
 The word steganography comes from the Greek words steganos and graphia, which

together mean “hidden writing” [1]. Steganography is the art of hiding a message in plain sight.
In the digital realm, it involves embedding a secret message file into an inconspicuous cover file,
such as a jpeg image. The digital steganography process has three basic components: 1) The data
to be hidden, 2) the cover file, in which the secret data is to be embedded, and 3) the resulting
stego file.

MCBRIDE, PETERSON AND GUSTAFSON

 2

 Digital images make popular cover files because they are ubiquitous and potentially contain
large areas of space in which to hide data. Steganography programs, many of which are freely
available on the Internet, are appealing to those who wish to conceal their communications. When
terrorists, criminals, and other hostile entities use steganography to conceal the planning and
coordination of their illicit activities, it becomes more difficult to detect and counter them.
Further, steganography can be used to defeat traditional safeguards designed to restrict the
distribution of sensitive information.
 Those who hide communications through steganography are opposed by those who wish
discover such communications. The field devoted to defeating steganography is known as
steganalysis. The first goal of steganalysis is detecting the presence of steganography so that the
secret message may be extracted from the cover file, spoofed, and/or corrupted. Currently, the
most widely-available steganalysis tools are signature-based. These tools, trained to effectively
recognize the footprints of known steganography programs, suffer from a general inability to
detect previously-unseen steganographic techniques. This limitation is of concern because the
number of steganography tools grows as data-embedding techniques evolve to foil current
detection schemes. Further, organizations with sufficient resources (including hostile nation-
states, terrorist organizations, and criminal entities) may create and use homegrown
steganography tools. Thus, it is not possible to collect examples of all steganography tools that
currently exist or that will ever exist from which to create an all-encompassing signature-based
detector.
 To overcome this drawback, an alternative approach to steganalysis attempts to detect
steganography by creating a blind model of clean (steganography-free) files such that a stego-file
will not match the clean file model and be declared anomalous. An anomaly detector recognizes
deviations from normalcy and can thus detect novel steganography that would be missed by a
signature detector.

1.1 Research Objectives and Scope
 This paper focuses on the creation of a blind classification method that uses hyper-
dimensional geometric constructs, such as polytopes, hyper-spheres, and hyper-ellipsoids, to
create a class model of a clean image without referencing other classes (i.e., various kinds of
stego images). The principles of this hyper-geometric classifier may be expanded to produce a
hybrid signature/anomaly or signature-only based classifier by creating class models for existing
steganography programs. This research focuses on popular steganographic embedding in
jpeg images. However, the principles of the hyper-geometric classification paradigm are
applicable to other cover file types by modifying the file attributes employed.
 Much image steganalysis research focuses on discovering new image features to better
discriminate between clean and stego images. This paper leverages a sampling of this existing
research and focuses instead on developing a new classification paradigm to operate on known
image features. As newer and better features are discovered, they may also be incorporated into
the classification framework.
2 Background
 The success of information hiding depends on a number of factors, including the
characteristics of the cover file and the embedding technique. Figure 1 shows an example of a
simple text message hidden inside a grayscale image. To the naked eye, the stego image appears
indistinguishable from the original cover image. There are several methods whereby data may be
covertly embedded into a cover image, and LSB and DCT encoding are two of the most
prevalent.

A NEW BLIND METHOD FOR DETECTING NOVEL STEGANOGRAPHY

 3

+

=

Cover Image Secret
Data Stego Image

Figure 1. Example of Image Steganography

2.1 Least Significant Bit (LSB) Encoding
 Pixel LSB encoding is one of the simplest embedding techniques used for digital image
steganography [2]. A digital image is represented by a two dimensional array of pixels. Each
pixel maps to a single grayscale, or several color, values. Pixel LSB encoding changes only the
very last, or least significant, bit of the pixel value(s), in the hope that the resulting change to the
cover image is imperceptible. Consider the following trivial example: Suppose we have a 2x2
pixel image, where each of the four pixels has one of 256 possible grayscale values (8 bits per
pixel); this is our cover image. We can encode up to one bit per pixel. Suppose we wish to hide
the bit stream 0110. Moving from left to right and top to bottom, we replace the least significant
bit of each pixel with a bit from the secret bit stream, as shown in Figure 2. It is possible to
increase cover image storage capacity by also embedding data into more significant pixel bits, but
doing so is not wise. As shown in Figure 3, the impact on the cover image increases drastically
with the significance of the flipped bits.

Figure 2. LSB Encoding Example

Encoding data into pixel LSBs is appropriate for uncompressed or losslessly compressed

images. Lossy-compressing such a stego image may corrupt the embedded data by changing the
pixel values. Most images posted on web pages or otherwise sent electronically over the Internet
are lossy-compressed to conserve bandwidth and speed transmission times. Therefore, the
transmission of an uncompressed image stands out and undermines the inconspicuousness that
steganography requires. A file format that blends in with background traffic makes a more
suitable medium for steganographic communication.

Stego Image

11010000

01100111 11010001

10110100

0110

11010000

01100111 11010000

10110101

Secret Data Cover Image

“The
check
is in
the
mail.”

MCBRIDE, PETERSON AND GUSTAFSON

 4

a) Original image. 0 bits per pixel

(bpp) flipped
b) 1 bpp flipped c) 2 bpp flipped

d) 3 bpp flipped e) 4 bpp flipped f) 5 bpp flipped

g) 6 bpp flipped h) 7 bpp flipped i) 8 bpp flipped

Figure 3. Pixel LSB Flipping Impact

 The jpeg image format, defined by and named after the Joint Photographic Experts
Group, is currently the most prevalent image storage format [3]. Lossy-compressed jpegs achieve
good compression ratios while minimizing image quality degradation, making them the most
popular choice for electronic image transmission. The ubiquitousness of lossy-compressed jpegs
on the Internet makes them ideal cover images for the steganographic transmission of secret data.
However, their lossy-compression precludes embedding data into pixel LSBs. A different
encoding paradigm is employed to embed data into such images.

2.2 Discrete Cosine Transform (DCT) Encoding
 Lossy jpeg compression exploits the fact that the human eye is less sensitive to higher
frequency information (such as edges and noise) in an image than to lower frequencies. The jpeg
encoding process [4] is illustrated in Figure 4. First, the raw image is broken into blocks, usually
sized to 8-by-8 pixels. 64 DCT coefficients are computed for each block, converting the block
from the spatial domain to the frequency domain. The higher frequency DCT coefficients are then
rounded off according to the values of the quantization matrix, which determines the tradeoff

A NEW BLIND METHOD FOR DETECTING NOVEL STEGANOGRAPHY

 5

balance between image quality and compression ratio. The matrix of quantized DCT coefficients
is then encoded into a binary stream with lossless Huffman compression. An image is extracted
from a jpeg file by reversing this process.

Figure 4. Jpeg Compression Process

 Image information is discarded only with the rounding of DCT coefficients by the
Quantization Matrix. Data embedded before this rounding (such as in pixel LSBs) may be
destroyed. However, the subsequent steps in the encoding process are lossless and are therefore
suitable for data hiding.

2.3 Steganography Programs
 There are a number of freely-available steganography tools that embed data into lossy jpegs
by modifying the rounded DCT coefficients. Depending on how it is done, DCT encoding can
introduce statistical irregularities that can be used to detect its presence. As with pixel LSB
encoding, minimizing the proportional changes made to the cover image DCT coefficients
increases the difficulty of detecting DCT steganography. This research uses the four
steganography tools summarized in Table 1. All four tools embed data into the rounded DCT
coefficients of the jpeg file format, although each does so in a slightly different manner.

Table 1. Steganography Tools.
Program Version Author Year

Jsteg 4 Derek Upham 1997
Outguess 0.2 Niels Provos 2001
JPHide 0.51 Allan Latham 1999

F5 1.2 beta Andreas Westfeld 2002

 Jsteg is the oldest of the four programs and was the first publicly available DCT-encoding
program for jpeg images [5]. Prior to this time “It was believed that this type of steganography
[DCT encoding] was impossible, or at least infeasible, since the JPEG standard uses lossy
encoding to compress its data.”[6]. Jsteg embeds data by flipping the LSBs of the DCT
coefficients in one continuous block, beginning with the first coefficient. Because Jsteg does not
spread out the encoded bits among the coefficients, it is quite easy to detect the resulting
irregularities in the coefficient first-order statistics.
 Outguess [7] also flips DCT coefficient LSBs, but it spreads out these changes by selecting
coefficients with a pseudo-random number generator seeded by the user-selected password [8].
Outguess embeds data either with or without statistical correction. In statistical correction mode,
Outguess attempts to minimize the first-order statistical irregularities that result from modifying
the DCT coefficients to make detection more difficult.
 JPHide [9] modifies DCT coefficients in a pseudo-random fashion according to the ordering
of a fixed table [8]. The table lists the coefficients in descending order of probability that the
coefficient has a high value, the idea being that modifications to higher-valued coefficients are
less detectable than changes to lower values. Even when a coefficient is next in line to be

Image
(broken into

8x8 pixel
blocks)

Discrete
 Cosine

Transform
Quantization

Matrix
Binary

Encoder
.jpg
file

MCBRIDE, PETERSON AND GUSTAFSON

 6

modified, it has a certain probability of being skipped as a function of the total message size, the
number of bits already encoded, and a pseudo-random number generator. This process spreads
out the encoded bits in an unpredictable fashion that makes detection more difficult than with
Jsteg.
 The F5 program [10] was written as a challenge to the steganalysis community. While Jsteg,
Outguess, and JPHide flip LSBs of the DCT coefficients, F5 encodes data into DCT coefficients
by decrementing their absolute values. This renders F5 undetectable by statistical analysis
techniques that are effective for the LSB-flipping DCT encoders. The F5 program randomly
selects coefficients and uses matrix embedding to minimize the number of changes made to
encode a message of a particular size [11].

3 Hyper-Geometric Data Classifier
 The basic idea behind a geometric classifier involves representing training/testing instances
as points and blind class models as simple geometric structures that can be generalized to
arbitrary dimensions. The next section 1) examines previous work using a computational immune
system model for blind classification, 2) shows how it can be re-interpreted to demonstrate the
basic concepts of a geometric classifier, and 3) describes how it may be enhanced to form a more
powerful classification paradigm.

3.1 Computational Immune System Model
 Previous research created a blind steganography detection algorithm using a Computational
Immune System (CIS) [12]. A CIS is a two-class classification algorithm based on a simplified
model of the human Biologic Immune System (BIS) [13]. The main classification mechanism of
the BIS is a set of antibodies. The proper working of a BIS calls for antibodies to detect only the
presence of anomalous matter (infections, cancerous cells, etc) and trigger a defensive response.
New antibodies must therefore go through a screening process, called negative selection, in which
those that match against the body’s own biologic uniqueness are eliminated. If such self-matching
antibodies were released into circulation, they would trigger false intrusion alarms against the
body’s own tissues and cause the immune system to attack the body it is meant to defend. The
system of antibodies is thus trained to recognize two classes: self and non-self. Instances of non-
self trigger an immune response while instances of self are ignored. The anti-body creation
process is blind because it trains only on instances of class self. The CIS uses this model to create
antibodies, or classification mechanisms, that ignore clean images (steganography-free or class
self) and trigger on anything else (stego images or non-self).
 This CIS model can also be interpreted from a three-dimensional geometric standpoint. Each
image instance in the CIS is defined by three attributes (although limited testing was done using
six attributes) derived from image wavelet coefficient statistics [8]. Each instance can be
represented as a point in a three-dimensional attribute space. The CIS uses stochastic search
techniques to create “antibodies” in the form of 3D boxes enclosing portions of the attribute
space. Any antibody that matches with self (i.e., a box that encloses a clean image point) is
discarded. Antibodies that survive the negative selection process are retained and used to produce
a new generation of antibodies. This training process is repeated until the non-self attribute space
is well-enclosed by boxes. A test image is declared to be clean if its point in the attribute space is
not enclosed by any of the antibody boxes. In summary, the CIS employs simple geometric
constructs (boxes) to enclose the non-self space of a class (steganography-free images) in three
dimensions. There are a number of ways in which a more powerful, versatile geometric classifier
can be achieved.
 First, creating a class model by enclosing the self space rather than the non-self space could
result in a more compact class model, especially when the non-self space is significantly larger
that the self space (or even infinite), and facilitate construction of several co-existing class models
for a hybrid signature/anomaly based classifier rather than merely the anomaly classification of

A NEW BLIND METHOD FOR DETECTING NOVEL STEGANOGRAPHY

 7

Figure 5. Hyper-Geometric Data Classifier in 2D. (a) Attribute space of a 2D 3-class problem. (b) Single
class model: Class1’s training points enclosed by geometric structure, external Class2 and Class3 instances
jointly classified as anomalous with respect to Class1. (c) Three class models: Attribute space of each class
enclosed by a distinct geometric model for a hybrid signature/anomaly based classifier.

the CIS. Second, geometric structures more versatile than boxes can be employed to capture a
wider range of complexities in a class attribute space. Figure 5 presents a 2D example of both
concepts. Also, creating a geometric model deterministically rather than with a stochastic process,
allows for more consistent results. Third, increasing the dimensionality of the attribute space to
arbitrary dimensions allows for more powerful classification models generalizable to arbitrarily
complex attribute spaces.

3.2 Hyper-Geometric Classifier Building Blocks

The instances of the training and testing sets are mapped to d-vectors representing points in d-
space. Next a class model is created by geometrically enclosing the set of class training points. A
test point is declared to be a member of the class iff it is enclosed by the geometric class model. A
false-positive matching error occurs when a class model wrongly encloses a test instance of a
different class. A false-negative error occurs when a class model fails to enclose a test instance of
the same class. Decreasing the probability of one error type occurring generally increases the
probability of the other type. Good classifier performance depends upon finding an appropriate
balance between these two opposing error probabilities. Three different geometric enclosures
(polytopes, hyper-spheres, and hyper-ellipsoids) are examined.
 A d-polytope is a closed geometric construct bounded by the intersection of a finite set of
hyperplanes, or halfspaces, in d dimensions. It is the generalized form of a point, line, polygon,
and polyhedron in zero, one, two, and three dimensions, respectively [14], but it is also defined
for arbitrarily higher dimensions (Table 2). As the number of dimensions rises, the polytope
structure becomes increasingly complex and unintuitive.

Table 2. Dimensional Progression of Polytopes

Dimensions Polytope Name Example
0 point

1 line
2 polygon

3 polyhedron

4 polychoron N/A
d d-polytope N/A

MCBRIDE, PETERSON AND GUSTAFSON

 8

A polytope is convex if a line segment between any two points on its boundary lies either
within the polytope or on its boundary. A convex hull of a set, S, of points in d dimensions is the
smallest convex d-polytope that encloses S [15]. Each vertex of this enclosing polytope is a point
in S (Figure 6a). Additionally, a d-simplex is the simplest (i.e. has the smallest number of vertices,
edges, and facets) possible polytope that can exist in d dimensions.Each of the polytopes drawn in
the third column of Table 2 is a simplex.

(a) 2-D (b) 3-D [16]
Figure 6. Convex Hulls

The second classifier makes use of the generalized circle, or hyper-sphere. A d-sphere is a

hyper-sphere in d dimensions that is defined simply by a center point and a radius. This construct
is significantly less complex than the convex polytope, which makes it less computationally
expensive but also less flexible in the kinds of shapes that it can enclose.

The third classifier employs hyper-ellipsoids. A hyper-ellipsoid in d dimensions is
represented by three parameters which define its size (s: a scalar value), location (μ: a d-vector
specifying the center point), and shape (Σ: a d-by-d matrix). Any point, x, on the ellipsoid
boundary satisfies Equation 1:

() () sxx T =−Σ− − μμ 1 (1)

a) A set of training points for class U

b) A single concave shape provides a tight

fit around class U’s attribute space

c) A single convex shape:

Poor approximation

d) Two convex shapes:
Better approximation

e) Three convex shapes:

Best approximation
Figure 7. Concave Attribute Space Approximated By Multiple Convex Shapes

A NEW BLIND METHOD FOR DETECTING NOVEL STEGANOGRAPHY

 9

3.2.1 Concave and Disjunctive Attribute Spaces
 Each of the three shapes (convex polytope, hyper-sphere, and hyper-ellipsoid) is convex.
However, a single convex shape may not always provide the best model of a class attribute space.
For example, Figure 7 shows several types of enclosures around the two-dimensional attribute
space of class U, which has an attribute space best-fitted by a concave shape (Figure 7a-b). A
single convex shape placed around such an attribute space encloses much space that does not
pertain to the class and is therefore susceptible to declaring false-positive matches (Figure Figure
7c). However, a concave shape can be approximated with multiple convex shapes (Figure Figure
7d-e).

It is possible for a class attribute space to be disjunctive, rather than contiguous. Such an
attribute space can be approximated with multiple convex shapes created around spatially
disjunctive partitions of the training points. The next section explains one method for dividing a
set of training points into disjunctive clusters.

3.2.2 k-means Clustering Algorithm
 The k-means algorithm is used for dividing points into k disjunctive sets, or clusters. Each
cluster has a centroid, the average of all points in the cluster. The k-means algorithm assigns
points to clusters by minimizing the sum of squared within group errors, or the sum of the
distance squared between each point and the centroid of its assigned cluster. The algorithm goes
through iterations of re-assigning points to different clusters until it can no longer reduce the sum
of squared within group errors by further shuffling the points. The time complexity of the k-
means algorithm is O(knr), for k clusters, n points, and r iterations [17]. While there are different
implementations of the k-means algorithm, this research uses the SimpleKMeans program of the
WEKA java suite [18].

3.2.3 Classifier Performance
 Blind data classification is at a disadvantage compared to more traditional, non-blind methods
in that when it creates a class model it cannot compare and contrast the attribute differences with
other classes. For this reason, non-blind methods tend to offer better classification accuracy
against known classes. However, there are a number of conditions under which a blindly-created
hyper-geometric class model performs well. Specifically, the blind hyper-geometric classifier
requires the following conditions to achieve good performance:

1. Numeric Attributes. Attribute values that are or can be mapped to real numbers.
2. Discriminating Attributes: Attributes that individually and/or collectively provide a good
hyper-spatial separation between classes. For example, to distinguish between the two
classes man and woman, the attribute number-of-fingers is a poor discriminator. Number-of-
X-chromosomes, on the other hand, discriminates well. Intuitively, this requirement is also
important for non-blind classification methods.
3. Training Diversity: A training set of instances that are well-representative of the class
hyperspace (see Figure Figure 8). Achieving this level of diversity usually requires
extensive sampling of the class attribute space and a significant number of training
instances. Non-blind classifiers, on the other hand, often perform well with sparser class
samples because they can generalize differences between opposing class instances.
 If the training set does not contain enough points on or near the boundary of the class
portion of the attribute space, then the model is too small (Figure Figure 8b). If there are not
enough interior points, then the resulting model can be improperly disjunctive or even
hollow. In both cases, much of the class attribute space may not be enclosed by the resulting
class model, also known as overtraining on the data.
 The generality of such an over-trained model can be increased through a looser-fitting
geometric class model such as an oversized hyper-sphere or ellipsoid. However, applying
such a poorly fitting model is a “shot in the dark.” Since the model is blindly-created (i.e.,

MCBRIDE, PETERSON AND GUSTAFSON

 10

does not reference other classes), it is not known if the extra attribute space enclosed by the
looser model properly increases the model generality (lowering the probability of false
negative errors) or intrude into the class non-self space (increasing the probability of false
positive errors). Due to this unpredictability, increasing the generality of a blindly-created
geometric model is of dubious utility and should be considered only when diverse training
data is unavailable for an application with low tolerance for false negative errors. Thus, a
good, blindly-created hyper-geometric class model requires extensive knowledge of the
class being modeled.
4. Tight Fit: An enclosing geometric structure or structures that provide a tight fit around the
training points. Again, when the training diversity condition does not hold, a looser fitting
model may or may not yield better results. A tightly-fitting geometric enclosure models well
that portion of the attribute space that is well-represented by the training points, but is far
less likely to enclose non-self space and is therefore generally preferable to a loose-fitting
model.

a) Example 2D class attribute
space

b) Poorly-representative
training set (few points near

true class boundary)

c) Well-representative
training set

Figure 8. The Importance of a Diverse Training Set

5. Granularity: A method, such as the k-means algorithm, to divide the training data into as
many clusters as needed to properly model non-convex and disjunctive attribute spaces.
6. Noise Tolerance: A way to discard statistically extreme points from the training set. If
such noisy points are included, then the resulting model may enclose too much of the
attribute space and be prone to declaring false-positive matches. Since different data sets
have different noise levels, the filtering of extreme points is best controlled by a user-
selected tolerance parameter.

3.2.4 J Score
 As stated above, good performance requires attributes that individually and/or collectively
discriminate well between classes. Determining collective performance requires hyper-
dimensional analysis. However, individual performance can be estimated before applying the
attributes to the hyper-geometric classifier. Such estimation can be beneficial in situations that
call for attribute prioritization or reduction. Individual attribute performance when discriminating
between classes A and B is given by computing the attribute J score. The J score is an
implementation of the Fisher criterion from the Fisher Linear Discriminant [19] and is given by

22

2)(

BA

BAJ
σσ
μμ
+
−

= (2)

where Aμ and 2
Aσ are the mean and variance, respectively, of an attribute for all instances of class

A. A high J score indicates that an attribute individually discriminates well between classes A and
B. On the other hand, a low J score does not necessarily guarantee poor collective performance
when combined with other attributes.

non-self space

class self space

A NEW BLIND METHOD FOR DETECTING NOVEL STEGANOGRAPHY

 11

3.3 Classifier Full Implementation

For illustrative purposes, Figure Figure 9 displays a simple two-class problem. Each instance
is described by two attributes, which allows the topology of the attribute space to be displayed on
a two-dimensional graph. Class1 is disjunctive, as its attribute space is comprised of two well-
separated clusters, in between which lies the attribute space of Class2. These two classes are used
to illustrate the behavior of the different geometric classification paradigms explained in the
following sections. The same basic concepts apply as the complexity of a problem increases to
arbitrarily high dimensions.

50
60
70
80
90

100
110
120
130
140
150

-150 -100 -50 0 50 100 150

Class1
Class2

Figure 9. Two-Class Problem in Two Dimensions

3.3.1 Convex Polytope Model
 Once the training instances for a particular class C have been mapped to a set T of d-vectors,
the convex hull of T is computed:

ConvexHull(T) ≡ H ⊆ T

The convex hull of T is represented as the set of vertices, H, of the smallest convex d-polytope
that encloses T. This model is blindly-created because it is derived solely from instances of class
C. It knows nothing about the attribute values of other classes. A distinct test point p is declared
to be a match (member of class C) iff it is bounded by the polytope defined by H, i.e.,

ConvexHull(H ∪ {p}) ≡ D
p ∉ D ⇔ match(p, C)

If p is not bounded by the H polytope, then D represents a larger polytope of which p is a

vertex. If p is bounded by the polytope, then HD ≡ . An alternate method is to compare the
hyper-volumes of the polytopes represented by D and H. If volume(D) > volume(H), then p does
not match the model and is declared anomalous with respect to class C.

3.3.1.1 Convex Hull Tolerance Parameter β

To compensate for attribute space disjunctions and noisy training instances, a tolerance
feature controlled by a parameter 0 ≤ β ≤ 1 is added. It divides the training points into groups of
smaller convex polytopes and provides a tighter fit around the training data, as follows:

1. Select values MIN and MAX such that MIN < MAX.
2. Scale each dimension of the vertices in T between MIN and MAX so that all points in T lie

inside a d-hypercube with opposing extreme points at {MINd} and {MAXd}. The distance
squared between these two extreme points

MCBRIDE, PETERSON AND GUSTAFSON

 12

22)(}){},({ MINMAXdMAXMINdist dd −=
provides the upper bound on the distance squared between any two points in T

22)(),(:, MINMAXdqpdistTqp −≤∈∀
3. Let G be an undirected, unweighted graph with a node for each vertex in T. Create an

edge between each distinct pair of nodes, p and q, where
222)(),(MINMAXdqpdist −≤ β

4. Partition G into unconnected sets such that in each set every node is connected by at least
one edge and no edges cross between sets. Eliminate any set with fewer than d+1 non-
coplanar points (the minimum needed to create a simplex in d-space; thus statistical
outliers are discarded).

The multiple convex hulls constructed around the partitioned sets of G comprise the model of
class C. Test point p is then scaled by the same factors used on T in step 2 and is declared a match
iff it resides within any of the convex polytopes modeling class C. When β = 1, the algorithm
behaves as the unmodified version and creates a single convex polytope around all points. As β
decreases the potential number of smaller polytopes increases and their combined hyper-volume
in the attribute space decreases. The decreasing hyper-volume results in a lower probability of
false positives at the expense of a higher probability for false negatives, or a loss of generality. At
β = 0, no convex hull models are created and all test points are rejected. Figure 10 and Figure 11
show how proportional hyper-volume and number of polytopes, respectively, for Class1 of Figure
9 are affected by β.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0000 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000

β

p (point%)

s (volume%)
fitness (p-s)

Figure 10. β Estimation: β Fitness Scores for Class1

3.3.1.2 Choosing β
 The selection of an appropriate β value is critical to achieving good classification accuracy. If
instances of all possible testing classes are available when creating the class model, then the β
value which best fits the training data (i.e., provides an appropriate balance between false
positives and false negatives) can be found through experimentation. This process, however,
would not be a blindly-created model because it requires testing against opposing classes. When
such domain knowledge does not exist, then an appropriate value for β must be estimated.
 To provide guidance for the selection of β, another layer of abstraction is added to estimate a
value for β that yields the desired classification sensitivity. First, the finite number of β values
that produce unique partitionings of graph G are determined as follows:

1. Compute D, the n-by-n upper-triangular distance-squared matrix for all n instances of
training class C, such that

A NEW BLIND METHOD FOR DETECTING NOVEL STEGANOGRAPHY

 13

2),(:, jidistDDCji jiij ==∈∀
2. Let L be an ordered list containing the unique upper values (i.e., column index > row

index) of matrix D sorted in ascending order, such that

2
)1(−

≤
nnL and 1+< kk LL for 11 −≤≤ Lk .

3. Map each squared distance in L to a distinct β2 value, as follows

2
2

)(
:

MINMAXd
L

LL i
ii −
=∈∀ β .

4. Form the ordered list),,,,0(22
2

2
1 LB βββ K= .

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0.0000 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000

β

P
ol

yt
op

es

Figure 11. Number of Disjunctive Polytopes for Class1

 Note that the sorted ascending property of L also applies to B. Although there exists an
uncountably-infinite number of possible β2 values (i.e., the real numbers between 0 and 1), only
those contained in list B yield distinct graphs. That is, the graph created by any β2 value greater
than Bi but less than Bi+1 is identical to the graph created by Bi. Once all distinct β2 values are
identified, one must be selected for the β estimate by evaluating the properties of the class model
derived from each.
 Define Gi = (Vi , Ei) as the graph created when β2 = Bi, where Vi and Ei are the sets of vertices
and edges, respectively, of Gi. Note that E1 ⊆ E2 ⊆ … ⊆ E|B| and V1 ≡ V1 ≡ V2 ≡ … ≡ V|B| . These
two observations allow the set of all possible G graphs to be created incrementally by a stepwise
application of the ordered values of B. The convex hulls of the unconnected partitions of each Gi
are computed. Recall that partitions without enough non-coplanar points are discarded. Let pi
=(|C| - num_discarded) / |C|, or the percentage of points not discarded when β2 = Bi. Further, let
voli = the cumulative hyper-volume of the polytopes computed from Gi and let si = voli / vol|B|, or
the percentage of the total possible hyper-volume when β2 = Bi. Once these p and s values are
computed, list B is pruned by discarding all Bi where pi = pi+1 and si = si+1.
 Both pi and si provide important information about the generality of the class model produced
by Bi. For example, if pi = 75% then the resulting model fails to declare a match with 25% of the
training points. If the training set is a representative sample of class C, a similar percentage of
testing points from class C does not match correctly. An ideal model only discards extreme
training points (statistical outliers, noise-corrupted, etc). Depending on the training data, the
percentage of extreme points is usually small, so a good estimate for β favors higher values of pi
to maximize the probability of correct testing matches. On the other hand, a model produced

MCBRIDE, PETERSON AND GUSTAFSON

 14

using noisy extreme points has a larger value for si and a higher probability for false positive
matches. Also, dividing disjunctive data into smaller clusters reduces si. A good β estimate should
therefore maximize pi and minimize si.
 Each Bi is assigned a fitness score f(Bi) = pi – si. The highest-scoring Bi is selected and its
square root becomes the blind β estimate. For the 72 distinct β values possible for Class1, Figure
10 shows the fitness scores and Figure 11 displays the total number of convex polytopes. The
pivotal events from these two figures are summarized in Table 3.

Table 3. Pivotal Class 1 β Values

β p s Fitness
(p-s) Polytopes Comment

0 0 0 0 0
Each point is in its own group. Since all
groups are smaller than d+1=3, all are
discarded and no polytopes are created.

0.0376 0.6600 0.0254 0.6345 16 Number of polytopes peaks.

0.0547 0.9100 0.1626 0.7474 10
Global fitness score peaks. Accepting 91%
of the training points produces 16% of the
possible hyper-volume.

0.1004 1.0000 0.5134 0.4866 2

Model uses 100% of the training points,
but divides them into two polytopes.
Assuming no noise content, this model is
ideal and is achieved if the no-noise
assumption is expressed as γ=1. This
model is illustrated in Figure 12a.

0.3222 1.0000 1.0000 0 1

All points are enclosed by a single large
polytope, which nearly doubles the hyper-
volume and results in every instance of
Class2 being incorrectly declared a
member of Class1.

 An additional tolerance parameter, 0 ≤ γ ≤ 1, constrains the β estimation process by defining a
lower threshold on p for an acceptable β value. Through γ the user specifies a limit on the amount
of training data that can be discarded, which may be visualized as an imaginary vertical bar on
Figure 10 that occurs where p = γ. β values to the left of the bar are not considered. In practice, γ
is a measure of confidence in the training data. If a user believes the training data is relatively free
of noisy instances and other statistical outliers, then a higher γ value is appropriate. If the user is
unsure about data noise levels, a lower γ allows the β estimator to search a wider range and
possibly discard a larger percentage of noisy training data.
 There are many freely available programs that compute convex hulls in high dimensions [20].
The qhull program [21] is used with this convex polytope classifier because it computes hyper-
volumes and produces easily-parsed output. Qhull has a worst-case time complexity of O(n ⎣ d / 2 ⎦

) for n input points in d-space [22]. The time complexities of all other parts of creating a convex
polytope model (including β estimation) are dominated by the exponential qhull complexity.
Therefore, model creation and point testing have an overall time complexity of O(n ⎣ d / 2 ⎦).

While a convex polytope has the flexibility to create tight fits around training data, its
exponential-in-d time complexity limits its feasibility to classification problems containing a
relatively small number of attributes. Therefore, simpler geometric constructs are evaluated as
possible replacements for the convex polytope. An ideal geometric construct for a practical
hyper-geometric classifier has lower computational complexity without sacrificing too much of
the convex polytope flexibility to create tight fits.

A NEW BLIND METHOD FOR DETECTING NOVEL STEGANOGRAPHY

 15

3.3.2 Hyper-Sphere
 A hyper-sphere may also be used to enclose the set, T, of class C training points. A single
hyper-sphere is too simple to create a good fit around diverse attribute space topologies. To
compensate for this lack of flexibility, multiple hyper-spheres are created. First, the k-means
clustering algorithm partitions T into k different clusters (k acts as a classification tolerance
parameter by controlling the partitioning of T.) Each cluster centroid produced by the k-means
algorithm forms the center point, c, of a hyper-sphere. The radius, r, of each hyper-sphere is
given by the distance between the centroid and the most distant cluster point. Test point p is
declared a member of class C iff dist(p,c) ≤ r for any of the k hyper-spheres.

Testing a point for inclusion in the k hyper-spheres of S takes O(kd) time. The obvious
advantage the hyper-sphere model has over a convex polytope is that its time complexity is linear,
not exponential, in d. Thus, a hyper-sphere may create a model with much higher dimensionality
than is feasible with a convex polytope. The next hyper-geometric shape attempts to strike a
balance between these two paradigms and leverage their relative strengths (i.e., the tighter fit of a
convex polytope and the computational feasibility of a hyper-sphere).

3.3.3 Hyper-Ellipsoid
 A hyper-ellipsoid, as observed by [23], can be used to approximate a convex polytope.
Hyper-ellipsoids have been used to classify high-dimensional data in previous work. Specifically,
[24] makes use of a special kind of ellipsoid, the Minimum Volume Ellipsoid (MVE), in which
the size of the ellipsoid, s, is equal to the dimensionality of the space and the shape of the
ellipsoid, Σ-1, is a scatter matrix of points. This research differs from the MVE ellipsoid definition
in that Σ-1 is instead an inverse covariance matrix of points and s is defined by the location
properties of the points in the training set, as explained below.

Like the hyper-sphere model, the hyper-ellipsoid model divides the training set T into k
clusters using the k-means algorithm. Since an ellipsoid is meant to approximate a convex
polytope, all clusters containing fewer than (d + 1) points are discarded. And, ellipsoids are
formed around each cluster:

1. Let μ = the cluster centroid.
2. Define M as an n-by-d matrix where n is the number of points in the cluster, d is the

dimensionality of the attribute space, and each row of M is a training instance.
3. Subtract μ from each row of M:

jijij MQdjni μ−=≤≤≤≤ :1,1
4. Compute the d-by-d covariance matrix of M:

n
QQT

=Σ

5. Compute Σ-1
6. Select a value for s, as follows:

Recall that a hyper-ellipsoid is given by Equation 1. At this stage, Σ-1 and μ are computed but

s is still an unknown quantity. The size of each cluster ellipsoid must be chosen carefully, as it
affects the fit and generality of the resulting class model.

Define L as the sorted-ascending list of s values that results from computing Equation 1 with
each cluster point as x, where L|L| defines the smallest ellipsoid size that encloses all cluster
points. If the cluster contains extreme points (statistical outliers), then setting s equal to L|L|
creates an ellipsoid that encloses too much of the attribute space and that has a high probability of
declaring false-positive matches.

MCBRIDE, PETERSON AND GUSTAFSON

 16

Therefore, a tolerance parameter, 0 ≤ δ ≤ 1, is applied to tweak the size of the hyper-ellipsoid.
A preliminary cluster ellipsoid size is

⎡ ⎤ .LLs δ=

Thus, if δ = 0.9 then the upper-tenth percentile of cluster points (the 10% that create the
largest s values) are not enclosed by the hyper-ellipsoid, which prevents the most extreme points
from affecting the size of the hyper-ellipsoid model. To purge their influence from the ellipsoid
shape and location parameters as well, Σ-1 and μ must be recomputed for a new M containing only
the bottom δ-percentile of cluster points, then L is recomputed for the new hyper-ellipsoid
parameters and the remaining cluster points. Now that the effects of the discarded points are
completely purged, the final cluster s value is set to L|L|.

Once s values are selected for each cluster, test point p is declared to be a member of class C
iff (p – u)T Σ-1 (p – u) ≤ s for any of the k ellipsoids of C. The time complexity of multiplying
together two matrices of sizes (a x b)(b x c) is O(abc) and produces a matrix of size (a x c). The
ellipsoid equation multiplies three matrices of sizes (1 x d)(d x d)(d x 1). Thus, testing a point for
inclusion in the k clusters of C takes O(k[d2 + d]) ≈ O(kd2) time, while creating the k ellipsoid
models has a time complexity of O(kn2d2).

a) Convex Polytope
Class1: β=0.1 or γ=1.0
Class2: β=1.0 or γ=1.0

b) Hyper-Sphere
Class1: k=2
Class2: k=1

c) Hyper-Ellipsoid
Class1: k=2, δ=1.0
Class2: k=1, δ=1.0

Figure 12. Three Geometric Enclosures Applied to Figure Figure 9

A NEW BLIND METHOD FOR DETECTING NOVEL STEGANOGRAPHY

 17

Table 4. Geometric Model Comparison

Shape Tight Fit Complexity
in d Model Creation Point Test

Convex
Polytope Yes Exponential ⎣ ⎦)(2/dnΟ ⎣ ⎦)(2/dnΟ

Hyper-Sphere No Linear)(knrΟ)(kdΟ
Hyper-

Ellipsoid Moderate Polynomial)(22dknΟ)(2kdΟ

3.3.4 Model Comparison
 Figure 12 illustrates how the two classes of Figure 9 are enclosed by a) convex polytope, b)
hyper-sphere, and c) hyper-ellipsoid models. The qualities of the different shapes are summarized
in Table 4.

3.3.5 Hybrid Anomaly/Signature Classifier
 If instances from multiple classes are available for training, then hyper-geometric models, or
signatures, may be created for each class. A test instance is compared against each of the models
and classified as an anomaly if no matches are found. This classifying algorithm thus becomes a
hybrid signature/anomaly detector. Classification accuracy and specificity increase with the level
of training data available. When the classifier contains signatures for more than one class, model
overlapping is possible, as seen in Figure 12b. This overlapping is likely when poorly
discriminating attributes are used or when a model has too much generality. Multiple matches
may be resolved using a tie-breaking protocol.

The distance between the test point and a matching model center or nearest boundary is
measured. The test point is then declared a match with whichever model best encloses the point.
The complex structure of a convex hyper-polytope makes measuring the distance from the nearest
boundary difficult. Instead, tie-breaking distance is computed from the mean of the polytopes
vertices. For a hyper-sphere the distance between test point p and the boundary of the hyper-
sphere is used (dist(p, μ) – r). For a hyper-ellipsoid, a measure of the distance between p and the
boundary of the hyper-ellipsoid can be derived by computing the size of an ellipsoid with p as a
boundary point and then subtracting the true ellipsoid size, as follows:

spp T −−Σ− −)]()[(1 μμ
A purely signature-based classifier is created by also applying tie-breaking to test points that

are not enclosed by any class models. The flexibility of this classification paradigm allows for
uses in many possible domains. The next section describes the testing regimen used to evaluate
the hyper-geometric classifier.

4 Testing Methodology
 In a previous publication [25], the hyper-geometric classifier was tested against several
standardized databases to validate the general classification concept and evaluate its strengths and
weaknesses. The next phase of testing uses data collected from previous work on blind
steganalysis.
 The CIS classifier uses wavelet coefficient statistics derived from a database of 1,100 images
converted to grayscale. The CIS operates on the first three of 36 coefficients extracted from each
image. In addition to clean images, the database includes statistics for stego images created by
Jsteg with the grayscale switch on, Jsteg color images converted to grayscale in Matlab, Outguess
without statistical correction, and Outguess with statistical correction. For each of these four
steganography methods, images are created using 100%, 50%, 25%, and 12.5% of the cover
image’s embedding capacity. Thus, the database contains 17 different classes (1 clean + 16 stego)

MCBRIDE, PETERSON AND GUSTAFSON

 18

with 1,100 instances for each as summarized in Table 5. Each instance of the 16 stego classes
represents a cover image from the clean class with steganography applied. When the i-th instance
of the clean class is selected for training, the i-th instance from each of the 16 steg classes is
precluded from inclusion in the testing set.

Table 5. CIS Steganography Database Classes

Class Name Steg Tool Statistical
Correction

Embedding
Capacity

Used

Instances
Per Class

CleanImage - - 0%

1100

JstegGraySwitch100 Jsteg -

100% JstegGrayMatlab100 Jsteg -
OutGuessGrayNoStat100 Outguess No

OutGuessGrayStat100 Outguess Yes
JstegGraySwitch50 Jsteg -

50% JstegGrayMatlab50 Jsteg -
OutGuessGrayNoStat50 Outguess No

OutGuessGrayStat50 Outguess Yes
JstegGraySwitch25 Jsteg -

25% JstegGrayMatlab25 Jsteg -
OutGuessGrayNoStat25 Outguess No

OutGuessGrayStat25 Outguess Yes
JstegGraySwitch12 Jsteg -

12.5% JstegGrayMatlab12 Jsteg -
OutGuessGrayNoStat12 Outguess No

OutGuessGrayStat12 Outguess Yes

4.1 Phase I- CIS Comparison
 The first testing phase duplicates the CIS testing parameters. Only the first three image
features are used. Ten iterations of training and testing are performed. For each iteration, 18% of
the clean image class is randomly selected for training and a random 9% of each class is used for
testing.

4.2 Phase II- CIS Comparison
 Next, the hyper-geometric classifier is released from the CIS testing limitations to 1) train
on a full 90% of the clean image instances (testing on 10% of each class) 2) use as many
attributes as desired, and selecting those attributes with the highest J scores when using fewer
than the full 36 attributes.

4.3 Phase III- Expanded Tests
 For the next set of tests, a new database of stego images is created from 1,000 of the CIS
clean images. Each is a 512-by-512 pixel, 24-bit color jpeg image. Some are taken outdoors with
bright lighting while others are taken indoors with lower lighting. Some are sharp and in focus
while other are fuzzy. Some contain many different colors while others are taken through night
vision goggles and contain varying shades of green. The diversity of the image database should
facilitate the blind creation of a clean image hyper-geometric model. However, this diversity also
increases the likelihood of noisy image attributes.
 Five different steganography embedding methods, Jsteg, Outguess (with and without
statistical correction), JPHide, and F5 are used to embed data into the cover images. As with the
CIS, for each steganography method and cover image, four stego images are created using 100%,
50%, 25%, and 12.5% of the maximum embedding capacity. Each embedded payload is

A NEW BLIND METHOD FOR DETECTING NOVEL STEGANOGRAPHY

 19

generated from a random stream of bytes to prevent tainting of classification performance being
any underlying structure in the embedded messages. Features are extracted from all images to
form a database of 21 classes.
 The hyper-geometric classifier can incorporate attributes derived from a variety of different
sources. Wavelet coefficient statistics are computed for all three color planes of each jpeg image,
in the hopes that color-domain analysis will provide better detection accuracy than grayscale.
Several wavelet tools are examined.
 First, image features are extracted using an implementation of the Daubechies79 wavelet
filter [26]. Next, features are derived using a tool written by [27]. It extracts wavelet coefficients
with a user-defined wavelet filter from the Matlab wavelet toolbox and then derives error metrics
from a linear predictor of coefficient magnitudes [28]. With this tool, four scales of wavelet
coefficients are computed using the following Matlab wavelet toolbox filters: Biorthogonal 2.2
and 4.4 (equivalent to Daubechies79), Coiflets 1, 3, and 5, Daubechies 1, 10, and 45, Reverse
Biorthogonal 4.4, and Discrete Meyer.
 Once all image features are extracted, they are subjected to one-dimensional J-Score analysis
to estimate discrimination effectiveness. The best scoring attributes are used by the hyper-
geometric classifier. For each classifier testing iteration, 90% of the clean images are used to
create the class model. The corresponding instances of the steg classes are precluded from the
testing set. The remaining 10% from each class is used for testing. Ten iterations of random
selection, training, and testing are performed.
 The first set of tests creates a single blind clean image model for anomaly-based classification
with convex polytopes, hyper-spheres, and hyper-ellipsoids. The best-performing model is
retained for use in the second set of tests, in which a model for a single steg class is added to test
hybrid anomaly/signature and signature-only based classification.

5 Test results
 To evaluate the overall performance of each geometric model compared to the CIS, a scoring
mechanism is used that places equal weight on both false positive and false negative errors, which
requires averaging the mean test instance accuracy scores of the 16 stego classes. The steg
average is then averaged with the clean image mean accuracy to produce the overall score.

5.1 Phase I Results- CIS Comparison
 The scores of the best performing models for all geometric shapes are listed in Table 6,
alongside approximate mean scores of the CIS. The convex polytope and hyper-ellipsoid models
both achieve slightly better scores than the CIS, even when limited to the same testing
constraints.
 Some steganalysis applications may require a lower false positive rate than offered by the
best-scoring hyper-ellipsoid model of Table 6. Therefore, Table 7 displays the highest scoring
models constrained to have a false positive rate similar to that of the CIS. All models are similar
in performance by this measure, with the convex polytope performing best and the hyper-sphere
worst. These results show that the hyper-geometric classifier performs similarly to, and slightly
better than, the CIS classifier when limited to the same testing constraints.

MCBRIDE, PETERSON AND GUSTAFSON

 20

Table 6. CIS versus HGC: Best Mean Detection Rates

Class CIS

Convex
Polytope

Hyper-
Sphere

Hyper-
Ellipsoid

γ = 0.95 k = 40 k = 1
δ = 0.85

CleanImage 92.7% 83.0% 87.5% 71.6%
JstegGraySwitch100 65.0% 86.6% 69.8% 94.7%
JstegGrayMatlab100 65.0% 85.4% 70.7% 93.4%

OutGuessGrayNoStat100 42.0% 64.3% 47.6% 80.3%
OutGuessGrayStat100 24.0% 39.8% 29.1% 63.1%

JstegGraySwitch50 35.0% 60.0% 43.5% 76.3%
JstegGrayMatlab50 35.0% 57.7% 42.5% 77.0%

OutGuessGrayNoStat50 22.0% 37.5% 30.2% 60.5%
OutGuessGrayStat50 18.0% 26.4% 18.7% 47.8%
JstegGraySwitch25 25.0% 19.7% 14.7% 37.5%
JstegGrayMatlab25 25.0% 35.3% 23.8% 54.7%

OutGuessGrayNoStat25 15.0% 27.3% 21.7% 44.4%
OutGuessGrayStat25 13.0% 19.3% 14.4% 37.8%
JstegGraySwitch12 12.0% 18.3% 14.0% 36.4%
JstegGrayMatlab12 12.0% 18.4% 17.2% 41.8%

OutGuessGrayNoStat12 11.0% 19.3% 15.2% 36.9%
OutGuessGrayStat12 9.0% 16.7% 13.5% 35.4%
OVERALL SCORE 59.72% 61.24% 58.96% 64.49%

Table 7. CIS versus HGC: Best Constrained Mean Detection Rates

Class CIS

Convex
Polytope

Hyper-
Sphere

Hyper-
Ellipsoid

γ = 1 k = 20 k = 10
δ = 1

CleanImage 92.7% 94.1% 93.4% 91.4%
JstegGraySwitch100 65.0% 69.3% 48.1% 70.9%
JstegGrayMatlab100 65.0% 68.1% 52.5% 68.2%

OutGuessGrayNoStat100 42.0% 44.8% 30.9% 46.6%
OutGuessGrayStat100 24.0% 26.5% 15.4% 25.4%

JstegGraySwitch50 35.0% 38.8% 26.9% 42.4%
JstegGrayMatlab50 35.0% 40.5% 25.8% 38.5%

OutGuessGrayNoStat50 22.0% 24.6% 16.9% 24.6%
OutGuessGrayStat50 18.0% 16.8% 12.5% 15.8%
JstegGraySwitch25 25.0% 11.3% 7.9% 9.5%
JstegGrayMatlab25 25.0% 19.0% 14.9% 21.6%

OutGuessGrayNoStat25 15.0% 14.5% 11.3% 12.8%
OutGuessGrayStat25 13.0% 11.2% 7.3% 10.8%
JstegGraySwitch12 12.0% 9.1% 7.4% 8.8%
JstegGrayMatlab12 12.0% 11.9% 9.0% 13.8%

OutGuessGrayNoStat12 11.0% 8.7% 9.4% 10.8%
OutGuessGrayStat12 9.0% 9.4% 8.6% 8.7%
OVERALL SCORE 59.72% 60.33% 56.22% 59.11

A NEW BLIND METHOD FOR DETECTING NOVEL STEGANOGRAPHY

 21

5.2 Phase II Results- Expanded CIS Comparison
 The J scores are computed for all 36 image attributes and each steg tool at 100% embedding.
For example, Figure 13 shows the J scores for Jsteg. Each attribute’s average among all steg tools
is computed. The hyper-geometric classifier operates on the attributes in descending J score
order. Only the first four attributes, 14, 1, 3 and 2, appear to be significantly disturbed by the
application of steganography. The remaining attributes with their low J scores do not individually
discriminate well between clean and stego images. However, multi-dimensional analysis in the
hyper-geometric classifier is required to assess their collective discriminatory abilities.

Figure 13. J Scores for Jsteg (gray switch)

48%
50%
52%
54%
56%
58%
60%
62%

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Dimensions

Av
er

ag
e

Ac
cu

ra
cy

Figure 14. CIS Database- Accuracy versus Dimensionality

 The hyper-ellipsoid model is tested with increasing dimensionality, as illustrated in Figure
14. After about six attributes, the added dimensions actually diminishes overall accuracy. Thus
the inclusion of poorly-discriminating attributes (as determined by J score analysis) has a
negative, rather than merely ambivalent, effect on performance. The two best-performing
expanded models are summarized in Table 8. The first model more closely matches the false
positive rate of the CIS. The second model produces the global best score.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Attributes

J

MCBRIDE, PETERSON AND GUSTAFSON

 22

Table 8. CIS versus expanded HGC: Best Mean Detection Rates

Class CIS

Hyper-Ellipsoid
k = 1
δ = 0.95
dim = 6

k=1
δ = 0.90
dim = 5

Clean 92.7% 90.6% 78.0%
JstegGraySwitch100 65.0% 83.4% 92.4%
JstegGrayMatlab100 65.0% 80.8% 92.6%

OutGuessGrayNoStat100 42.0% 55.5% 76.4%
OutGuessGrayStat100 24.0% 28.1% 48.3%

JstegGraySwitch50 35.0% 51.9% 73.5%
JstegGrayMatlab50 35.0% 48.1% 70.2%

OutGuessGrayNoStat50 22.0% 28.2% 51.5%
OutGuessGrayStat50 18.0% 13.9% 35.5%
JstegGraySwitch25 25.0% 14.4% 24.9%
JstegGrayMatlab25 25.0% 22.3% 42.7%

OutGuessGrayNoStat25 15.0% 16.8% 38.4%
OutGuessGrayStat25 13.0% 14.3% 26.4%
JstegGraySwitch12 12.0% 10.3% 26.7%
JstegGrayMatlab12 12.0% 16.5% 30.5%

OutGuessGrayNoStat12 11.0% 12.8% 29.3%
OutGuessGrayStat12 9.0% 10.5% 25.2%
OVERALL SCORE 59.72% 61.2% 63.5%

 With an increase of only 2.1% in the false positive rate, the expanded ellipsoid model
increases mean detection rates for 100% embedded Jsteg, OutGuess (no stat), and OutGuess (stat)
by 17.1%(average), 13.5%, and 4.1%, respectively. These tests show that the hyper-dimensional
geometric classifier outperforms the CIS when operating on the same data set. The next set of
tests further examine and apply a wider range of image attributes.

5.3 Phase III Results- New Steganography Database
 The highest J scores for each steg tool (at 100% embedding) and each wavelet filter are
summarized in Table 9. No one filter stood out as clearly superior to the others. All wavelet
statistics achieve very low J scores for stego images created by the F5 and JPHide programs,
which indicates that the wavelet statistics used do not individually discriminate well between
clean images and these two types of stego images. The overall ineffectiveness of the wavelet-
derived features is confirmed if the multi-dimensional analysis of the hyper-geometric classifier
shows that the attributes also do not discriminate well collectively.
 The Daubechies79-produced attributes are selected for inclusion in the Hyper-Geometric
Classifier. Figure 15 shows Daubechies79 J scores applied to Jsteg-embedded images. It shows J-
scores significantly higher than those achieved by grayscale analysis. The attributes are used in
descending J score order.
 The best classification scores for each geometric shape are summarized in Table 10. The
hyper-sphere models consistently encloses too much of the attribute space while the convex
polytope overtrains on the data. As with the CIS database, hyper-ellipsoid detection is only aided
to a point by increasing the number of dimensions. The best-scoring model occurrs at ten
dimensions, as shown in Figure 16. These ten attributes are used for the hyper-sphere and hyper-
ellipsoid models, whereas the convex polytope model uses six dimensions.

A NEW BLIND METHOD FOR DETECTING NOVEL STEGANOGRAPHY

 23

Table 9. Highest J scores For Each Wavelet Filter

Wavelet
Filter

Steganography Tools

F5 JPHide Jsteg OutGuess
(No Stat)

OutGuess
(Stat)

daub79 0.012 0.063 2.81 1.31 0.468
bior2.2 0.012 0.074 2.79 1.27 0.471
bior4.4 0.012 0.069 2.75 1.26 0.470
coif1 0.012 0.076 2.81 1.27 0.471
coif3 0.012 0.071 2.85 1.30 0.472
coif5 0.011 0.074 2.89 1.33 0.471
db1 0.013 0.087 0.88 0.78 0.470

db10 0.012 0.100 2.88 1.28 0.470
db45 0.008 0.124 0.88 0.79 0.465
Dmey 0.011 0.074 2.76 1.26 0.471
rbio4.4 0.012 0.076 2.72 1.25 0.467

0

0.5

1

1.5

2

2.5

3

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

10
3

10
6

Attribute

J

Figure 15. J Scores for Jsteg (Daubechies79 filter, color)

51%
52%
53%
54%
55%
56%
57%

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Dimensions

Av
er

ag
e

Ac
cu

ra
cy

Figure 16. Effect of Dimensionality on Accuracy (Ellipsoid model)

MCBRIDE, PETERSON AND GUSTAFSON

 24

Table 10. Best Mean Detection Rates

Class

Convex
Polytope

Hyper-
Sphere

Hyper-
Ellipsoid

β = 0.5 k = 200 k = 1
δ = 0.95

CleanImage 47.0% 86.0% 92.9%
F5_100 55.7% 8.8% 5.1%

JPHide100 61.9% 11.5% 23.7%
Jsteg100 91.1% 71.1% 85.4%

OutGuessNoStat100 72.0% 40.2% 50.3%
OutGuessStat100 59.8% 20.9% 24.6%

F5_50 52.8% 9.2% 5.3%
JPHide50 54.8% 8.8% 9.6%
Jsteg50 68.1% 40.9% 51.7%

OutGuessNoStat50 59.2% 24.1% 24.4%
OutGuessStat50 56.4% 12.4% 13.6%

F5_25 54.8% 8.0% 4.0%
JPHide25 54.1% 8.3% 7.8%
Jsteg25 61.8% 20.2% 21.7%

OutGuessNoStat25 55.9% 14.6% 12.4%
OutGuessStat25 51.8% 11.6% 10.4%

F5_12 53.6% 8.0% 3.8%
JPHide12 51.1% 6.2% 8.5%
Jsteg12 55.8% 13.8% 11.9%

OutGuessNoStat12 52.3% 7.9% 10.8%
OutGuessStat12 57.9% 8.3% 7.8%

OVERALL SCORE 53.0% 51.9% 56.3%

 Compared to the CIS, the Hyper-Geometric classifier has a slightly better false positive rate
while achieving significantly better Jsteg and OutGuess detection. As expected, classification
accuracy degrades as the embedded percentage shrinks. The Hyper-Sphere and Hyper Ellispods
classifiers fail to detect F5 steganography even at maximum embedding rates. From the J score
analysis, it is apparent that the attributes do not discriminate well individually between clean and
F5 stego images. Testing makes clear that they also do not discriminate well collectively.
Detection accuracy would certainly improve with the inclusion of image attributes that are
disturbed by F5 [11], which illustrates a significant concern: Any classifier, blind or otherwise, is
no better than the attributes on which it trains and tests. Novel steganography that does not
perturb these attributes is not detected by an anomaly-based classifier.
 The detection rate for JPHide is better. In fact, detection accuracy for 100% embedding is
better than the extremely poor J scores predict, which indicates that the attributes discriminate
between clean and JPHide images collectively better than they do individually. Even so, at 50%
embedding the lower JPHide detection scores fall to just above the false positive rate. As with F5,
detection accuracy may be improved by applying better attributes. Wavelet statistics, while useful
for detecting certain types of steganography, are clearly no silver bullet. Better classification can
be achieved by incorporating a wider range of image features.
 Using the best-performing ellipsoid model, the next set of tests measures anomaly/signature
and signature only classification. The results are summarized in Table 11. A single model of
Jsteg100, being the most easily detectable steganography class, is created along with the clean
image class. The wavelet attributes do not discriminate well enough between the various classes
for steganography program-specific classification. Therefore, the Jsteg model represents a general

A NEW BLIND METHOD FOR DETECTING NOVEL STEGANOGRAPHY

 25

class of images containing DCT steganography. Creating a steg class model significantly
improves detection rates for Jsteg and both forms of OutGuess, especially at the higher
embedding rates.

Table 11. Mean Detection After Adding Jsteg Model (Ellipsoid)

Class Anomaly Hybrid
Anomaly/Signature

Signature
Only

CleanImage 92.9% 89.1% 92.5%
F5_100 5.1% 5.0% 4.9%

JPHide100 23.7% 23.6% 12.1%
Jsteg100 85.4% 94.2% 95.0%

OutGuessNoStat100 50.3% 73.7% 72.2%
OutGuessStat100 24.6% 34.9% 35.2%

F5_50 5.3% 7.3% 5.1%
JPHide50 9.6% 12.1% 8.2%
Jsteg50 51.7% 71.1% 71.0%

OutGuessNoStat50 24.4% 39.6% 35.4%
OutGuessStat50 13.6% 21.6% 16.9%

F5_25 4.0% 7.7% 4.7%
JPHide25 7.8% 10.1% 7.2%
Jsteg25 21.7% 35.2% 32.2%

OutGuessNoStat25 12.4% 18.6% 15.8%
OutGuessStat25 10.4% 14.1% 11.0%

F5_12 3.8% 7.4% 3.7%
JPHide12 8.5% 13.2% 7.0%
Jsteg12 11.9% 17.8% 17.0%

OutGuessNoStat12 10.8% 13.5% 10.9%
OutGuessStat12 7.8% 10.9% 8.8%

OVERALL SCORE 56.3% 57.8% 58.1%

6 Conclusion
 This paper presents a blind hyper-dimensional geometric classification paradigm and applies
it to detecting steganographic images. A class model is created without reference to opposing
classes using one or more convex shapes, including convex polytopes, hyper-spheres, and hyper-
ellipsoids. Creating a single class model yields an anomaly-based classifier. If more than one
class is modeled, then a hybrid anomaly/signature or signature-only based classifier may be
created.
 The signature-only version (no anomaly detection) detects, on average, 95% of Jsteg images
(at 100% embedding) with a false positive rate of 7.5%. Even the anomaly-only version detects
85.4% with 7.1% false positives. In comparison, previous work on blind steganography detection
using a Computational Immune System only detects 65% with a false positive rate of 7.3%.

Acknowledgments
The work on this paper was supported by the Digital Data Embedding Technologies group of the
Air Force Research Laboratory, Information Directorate. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
notation there on. The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies, either expressed or implied, of
Air Force Research Laboratory, or the U.S. Government.

MCBRIDE, PETERSON AND GUSTAFSON

 26

References
[1] Cummings, Roger. “Nothing New. An Introduction to the History of Cryptography” Storage

Networking Industry Association, 2002.
http://www.snia.org/apps/group_public/download.php/1627/History_of_Cryptography_Intro
duction.pdf

[2] Katzenbeisser, Stefan and Fabien A. P. Petitcolas, editors. “Information Hiding Techniques

for Steganography and Digital Watermarking”, Boston: Artech House, 2000.

[3] Fridrich, Jessica, Miroslav Goljan, and Dorin Hogea. “New methodology for breaking

steganographic techniques for JPEGs”, Proc. EI SPIE, Santa Clara, CA, pp. 143-155, Jan
2003.

[4] “Jpeg Tutorial” Society for Imaging Science and Technology, Springfield, VA.

http://www.imaging.org/resources/jpegtutorial/index.cfm. Accessed on 15 Jan 2004.

[5] Provos, Neils and Peter Honeyman. “Hide and Seek: An Introduction to Steganography”,

IEEE Security & Privacy Magazine, May/June 2003.
htttp://niels.xtdnet.nl/papers/practical.pdf

[6] Upham, Derek Jsteg. Version 4, IBM. 92k. Computer software. 1997.

[7] Provos, Neils. Outguess. Version 0.2, Linux. 215k Computer software. 2001.

[8] Provos, Neils and Peter Honeyman. “Detecting Steganographic Content on the Internet”,

CITI Technical Report 01-11, 2001.

[9] Latham, Allan. JPHide. Version 0.51, IBM, 158k. Computer software. 1999.

[10] Westfeld, Andreas. F5. Version 1.2 beta, Java, 48k, Computer software, 2001.

[11] Fridrich, Jessica, Miroslav Goljan, and Dorin Hogea. “Steganalysis of JPEG Images:

Breaking the F5 Algorithm”, 5th Information Hiding Workshop, Noordwijkerhout, The
Netherlands, October 2002.

[12] Jackson, Jacob T. “Targeting Covert Messages: A Unique Approach For Detecting Novel

Steganography”, MS Thesis, Air Force Institute of Technology, Wright Patterson Air Force
Base, Ohio, 2003.

[14] Coxeter, H.S.M. Regular Polytopes, 3rd ed. New York: Dover, 1973.

[13] Somayaji, Anil, Steven Hofmeyr, and Stephanie Forrest, “Principles of a Computer Immune

System,” New Security Paradigms Workshop, pp.75-82, Langdale, UK, 23-26 Sept. 1997.

[15] O'Rourke, J. Computational Geometry in C, 2nd ed. Cambridge, England: Cambridge

University Press, 1998.

[16] Lambert, Tim. “Convex Hull Algorithms applet”, UNSW School of Computer Science and

Engineering, 1998. http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html

A NEW BLIND METHOD FOR DETECTING NOVEL STEGANOGRAPHY

 27

[17] Wong C., C. Chen, and S. Yeh. “K-Means-Based Fuzzy Classifier Design”, The Ninth IEEE
International Conference on Fuzzy Systems, vol. 1, pp. 48-52, 2000.

[18] Witten, I.H. and E. Frank. WEKA, version 3.2.3, Java Programs for Machine Learning

University of Waikato, Hamilton, New Zealand, 2002. www.cs.waikato.ac.nz

[19] Brown, Michael. “Fisher’s Linear Discriminant”, web document, 1999.

http://www.cse.ucsc.edu/research/compbio/genex/genexTR2html/node12.html. Accessed 24
Jan 2004.

[20] Avis, D., D. Bremner, and R. Seidel. “How Good are Convex Hull Algorithms?”, ACM

Symposium on Computational Geometry, 20-28, 1997.

[21] Barber, C.B and H.T. Huhdanpaa. Qhull, Version 2002.1. 283k, Computer Software, 2002.

http://www.thesa.com/software/qhull/

[22] Barber, C.B., D.P. Dobkin, and H.T. Huhdanpaa. “The Quickhull Algorithm For Convex

Hulls”, ACM Trans. on Mathematical Software, 22, 469-483, 1997.

[23] Nguyen, Hoa, Melnik, Ofer, and Nissim, Kobbi. “Explaining High-Dimensional Data”,

unpublished undergraduate presentation. http://dimax.rutgers.edu/~hnguyen/GOAL.ppt.
Accessed 10 Jan 2004.

[24] Melnik, O. “Decision Region Connectivity Analysis: A method for analyzing high-

dimensional classifiers”, Machine Learning, 48:(1/2/3), 2002.

[25] McBride, B. and Peterson G., “Blind Data Classification using Hyper-Dimensional Convex

Polytopes”, In Proceedings of the 17th International FLAIRS Conference, 2004.

[26] Claypoole, Roger. Lift_daub79.m. Computer Software (Matlab function), Rice University,

29 Sep 1999.

[27] Dostal, Jonathan. “jonpred.m”. Computer Software (Matlab function), Air Force Institute of

Technology, 2003.

[28] Faird, Hany and Siwei Lyu. “Higher-order Wavelet Statistics and their Application to Digital

Forensics”, IEEE Workshop on Statistical Analysis in Computer Vision, Madison,
Wisconsin, June 2003.

	A New Blind Method for Detecting Novel Steganography
	Recommended Citation

	A New Blind Method for Detecting Novel Steganography

