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Large-scale cooperative task distribution on
peer-to-peer networks

Daniel R. Karrelsa,∗, Gilbert L. Petersonb,∗∗ and Barry E. Mullinsb
a Air Force Research Laboratory, Directed Energy Directorate, 3550 Aberdeen Ave SE, Kirtland AFB, NM, USA
b Department of Electrical and Computer Engineering, Air Force Institute of Technology, 2950 Hobson Way,
Wright-Patterson AFB, Ohio, USA

Abstract. Large-scale systems are part of a growing trend in distributed computing, and coordinating control of them is an
increasing challenge. This paper presents a cooperative agent system that scales to one million or more nodes in which agents
form coalitions to complete global task objectives. This approach uses the large-scale Command and Control (C2) capabilities
of the Resource Clustered Chord (RC-Chord) Hierarchical Peer-to-Peer (HP2P) design. Tasks are submitted that requireaccess
to processing, data, or hardware resources, and a distributed agent search is performed to recruit agents to satisfy thedistributed
task. This approach differs from others by incorporating design elements to accommodate large-scale systems into the resource
location algorithm. Peersim simulations demonstrate thatthe distributed coalition formation algorithm is as effective as an
omnipotent central algorithm in a one million agent system.

Keywords: Distributed Multi-Agent System, Hierarchical Peer to Peer, Large-Scale, Command and Control

1. Introduction

Deployed Peer-to-Peer (P2P) systems are now com-
monly eclipsing one million simultaneous nodes [23].
Significant research efforts continue to optimize sys-
tem redundancy and speed of querying the data at these
scales [5]. As enterprises collect more and more data,
the use of datamining to identify trends becomes more
attractive [35]. Because the P2P agents store the data,
they can be leveraged to also distribute the datamin-
ing computation. However, at one million agents, such
a large-scale system requires a new method of orga-
nizing the agents and algorithms into task agent coali-
tions. Both resources (computation and data present at
the agent) must be included in the tasking process. For
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of the AFOSR and AFRL. The views expressed in this article are
those of the author and do not reflect the official policy or position
of the United States Air Force, Department of Defense, or theU.S.
Government.

** Corresponding author. E-mail: gilbert.peterson@afit.edu.

scalability, the agents operating under these conditions
must be flexible, cooperative and multi-taskable.

This paper addresses the problem of cooperative
task Command and Control (C2) of a large-scale Dis-
tributed Multi-Agent System (DMAS). The system is
composed of cooperative multi-taskable agents. Coop-
erative agents seek to maximize global utility, rather
than personal gains (i.e., not self-interested or greedy).
This requirement provides honesty, and enforces the
property that any bids or statements of available re-
sources by an agent toward a coalition proposal in-
clude all available resources the agent provides. This
makes the process scalable, as the models governing
negotiations do not include competitive bartering and
bidding for tasks.

The primary contribution of this paper is the Dis-
tributed Likelihood of Execution (DLoE) algorithm.
The DLOE algorithm uses a coalition formation task
scheduling model to maximize the work throughput
in the system. The DLoE algorithm assigns tasks to
agents based on the task’s expected Likelihood of Exe-
cution (LoE) at the particular agents. The LoE is com-
puted from an agent’s scheduling data, and represents
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potential resource contentions. The scheduling data
uses a small amount of overhead at each agent, and is
updated periodically to create a general view of agent
scheduling data for subgraphs of the Hierarchical Peer-
to-Peer (HP2P) topology.

The HP2P overlay leveraged in this paper is the Re-
source Clustered Chord (RC-Chord) HP2P resource
management overlay [17]. RC-Chord provides a robust
network organization framework with two hierarchies
for organizing and locating agents by both address and
available resources. The RC-Chord overlay is extended
to maintain the scheduling data for the clusters used by
the DLoE algorithm. Because the DLoE algorithm is
built on RC-Chord, it inherits the redundancy and the
robustness to peer churn of the RC-Chord overlay.

Simulations exercise the DLoE coalition formation
algorithm on systems of one million agents. Results
are compared against an omnipotent fully centralized
optimal algorithm and a greedy algorithm [2]. The
greedy algorithm performs worst, forming task coali-
tions that execute tasks up to 25% slower than the other
algorithms. The DLoE algorithm consistently outper-
forms the greedy algorithm, and yields overall perfor-
mance to within one standard deviation of the central-
ized optimal algorithm’s results. The results of DLoE
testing are encouraging, and lay a framework for future
use in large-scale DMAS application suites.

The following section discusses the coalition forma-
tion problem definition of Abdallah and Lessher [1].
Section 3 presents related work on coalition forma-
tion, multi-robot task allocation, and resource coordi-
nation peer-to peer networks. The DLoE algorithm is
presented in Section 4, leading into experimental setup
in Section 5, results in Section 6, and conclusions and
recommendations in Section 7.

2. Coalition Formation

Coalition formation focuses on the construction of
teams of agents to execute tasks, with the goal of em-
ploying the capabilities and assets of under-utilized
agents to achieve larger and more sophisticated tasks.
A task is defined as a function, with a desired end state,
that requires one or more agents and resources to com-
plete.

Forming optimal coalitions requires input from each
agent in the system, and is anNP-complete prob-
lem [32]. As defined by Abdallah and Lesser [1], con-
sider the set of tasksT = 〈T1, T2, ..., Tq〉. Each task
Ti is defined asTi = 〈ui, rri1, ..., rrim〉, whereui is

the utility gained for accomplishing taskTi andrrik
is the amount of resourcek required by taskTi. The
set of agents isI = {I1, I2, ..., In}, where each agent
Ii = 〈cri1, cri2, ..., crim〉, andcrik is the amount of
resourcek possessed by agenti.

The coalition formation problem is defined as the
allocation of the subset of tasksS ⊆ T to agents that
maximizes the global utility,U ,

U =
∑

i|Ti∈S

ui. (1)

Task allocation algorithms build a set of coalitions
C = {C1, ..., C|S|}, whereCi ∈ I is the coalition as-
signed to taskTi, such that each task coalition provides
enough resources of each type to satisfy that task’s re-
quirements.

∀Ti ∈ S, ∀k :
∑

Ij∈Ci

crj,k ≥ rri,k. (2)

A constraint on the problem is that each agent is ca-
pable of only executing a single task:

∀i 6= j : Ci

⋂
Cj = ∅. (3)

This form of the coalition formation problem as-
sumes single-task agents [11], “all or none" resource
allocation, and exponential time coalition formation
due to task group enumeration [27]. These properties
are modified to provide the ability to scale the tasking
of a cooperative coalition on an HP2P network.

3. Related Work

This section summarizes existing approaches to
solving the coalition formation problem. It begins with
traditional solutions and moves into related forms. To-
ward the solution developed here, this section also in-
troduces P2P overlays and the RC-Chord HP2P struc-
tured overlay.

3.1. Coalition Formation

Shehory and Kraus [30] describe two methods
for coalition formation using reward incentives. In a
negotiation-based formation, all single agent coalitions
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begin by interacting with other agents to determine if
forming a joint coalition can yield a higher payout than
remaining alone. In the case that the two agents both
determine their profit can be increased by forming a
coalition with each other, they negotiate a sharing of
the additional payout yielded by forming the coalition.
The agents negotiate a fair split of the profits based on
greedy [9] or other semantics, and the payout may be
different for the two agents. In the negotiation algo-
rithm, this process occurs between all pairs of agents,
and each agent attempts to form a coalition with its
most profitable partner.

The second algorithm builds upon the Shapley for-
mula [37]. This is a centralized algorithm in which a
single agent collects information about the resources
and other relevant information from all other agents
in the system. The agent then calculates the Shapley
value, which involves finding the payout values of all
2n pairs of agents. These payouts are organized into
a prioritized data structure, and all agents are then in-
formed of the new coalition schedules. This central-
ized algorithm requiresO(n) communications (it con-
tacts each agent twice) andO(2n) computations.

The Contract Net Protocol (CNP) [33] is a con-
tract system to allocate tasks, or portions of tasks, to
one or more agents. Given a system of agents, any
agent with a surplus of work to perform may start an
inverted blind auction (contract proposal) for which
other agents with a surplus of resources can bid. The
bidder with the most attractive offer (lowest payout)
is awarded the contract. Agents form networks of auc-
tions, and may join and part them at will. This con-
cept can be applied in a HP2P structure, where agents
are naturally organized into clusters. This method is
extended to build upon more modern communications
facilities, such as ordered delivery of TCP and higher
assumed bandwidth, easing constraints in the original
protocol [29]. The CNP is useful in both heteroge-
neous and homogeneous systems in which agents do
not have full information about other agents. Rather,
the agents submit themselves as candidates for pro-
cessing a certain task, based on availability and capa-
bilities, without revealing their full state information.

The coalition formation problem can also be con-
sidered a variant of the task allocation problem. The
Multi-Robot Task Allocation (MRTA) problem [10]
is givenm robots, each capable of executing one or
more tasks, andn weighted tasks, each requiring one
or more robots, the goal is to assign robots to tasks
to maximize the overall expected performance, taking
into account the priorities of the tasks and the effi-

ciency ratings of the robots [3]. The MRTA problem is
NP-hard [9,11].

This research effort examines instantiations of the
multi-robot multi-task environment, in which agents
are capable of performing tasks requiring either one or
more agents, and with each agent capable of perform-
ing one or more simultaneous tasks. Tasks will be in-
troduced at runtime (online assignment), and the form
and goals of those tasks are not known ahead of time.
Application of this paradigm to multi-agent systems is
not yet fully understood, and applying it to large-scale
multi-agent systems remains an open problem.

These concepts are leveraged and extended in the
design of the DLoE algorithm. This algorithm uses the
properties of an HP2P overlay, combined with sim-
plifying assumptions and a heuristic to support coali-
tion formation algorithms in a large-scale system. The
DLoE algorithm is covered in more detail in Sec-
tion 4.2.

3.2. Large Scale P2P Overlays

A communications overlay is the set of protocols
and algorithms necessary to build and maintain a
topology of nodes in such a way as to guarantee a
set of performance parameters. In the context of P2P
technologies, overlay structures describe the forma-
tion of nodes into a system of peers capable of iden-
tifying and locating remote nodes without foreknowl-
edge of their exact location or being certain if the re-
quested targets exist. Such a consideration is neces-
sary in many environments where the scale of those
systems is large enough to prevent global knowledge.
First generation systems solved this problem by query
broadcast [8,6], but this solution fails to scale. Newer
systems have developed more advanced techniques for
locating remote nodes, and the utility of such systems
has brought about the emergence of mainstream P2P
applications [28,21,34,4,14,13,15].

ML-Chord [22] applies these technologies to create
a system organized by available resources. ML-Chord
is a two-layer HP2P overlay network, where the top (or
bridge) layer joins super peers from each of the clus-
ters at the second layer. These Category Layer clusters
each represent a single resource, and agents join one
or more clusters based on their available resource(s).
Chord is used as the base agent location protocol, and
is suitably modified to accommodate search by re-
source category. Two notable disadvantages of ML-
Chord are its fixed size (two layers), and limited scala-
bility for large-scale systems. RC-Chord extends ML-
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Chord to address these limitations, and is the frame-
work for the DLoE coalition formation algorithm.

3.3. RC-Chord

RC-Chord [17] is an HP2P overlay network based
on the Chord protocol [34]. It incorporates the ability
to scale to many levels, with each level composed of
one or more clusters. Each cluster is a stand-alone in-
stance of Chord, and connects to a cluster in the next
higher level of the hierarchy through a set of super
peers. A cluster may have zero or more sub-clusters at-
tached to it, forming a tree from a single super cluster
root.

RC-Chord associates each agent with one or more
resources, and each cluster, with the exception of the
super cluster, represents a single resource. Agents con-
nected to a particular cluster all have that cluster’s re-
source in common, and agents join a cluster for each
resource they possess. The super cluster includes mul-
tiple agents from each resource sub-graph to form the
root of each resource hierarchy. RC-Chord supports
searching for agents by global identifier or resource.
The hierarchy grows and shrinks dynamically to ac-
commodate network churn and abundant resources. An
abundant resource is a resource that many or all agents
in a system may possess, such as processor time.

Each cluster consists of a set of super peers, in ad-
dition to the larger percentage of normal peers. Clus-
ter super peers are responsible for message routing and
maintaining a shared database of resource availability
for their leaf node agents. All requests and obligations
of resources are processed by cluster super peers. Re-
source requests implicitly carry an intent to obligate,
thus avoiding the need for multi-stage transactions. In-
stead, each request is examined by a super peer to en-
sure available resources, and an obligation request is
sent to leaf peers for a quantity of the resource. Leaf
peers respond with either accept or deny, and the re-
source is considered obligated. Once the super peer
has collected the necessary quantity of the resource,
the shared database is updated, and replies are sent to
those parties involved. In the case of the requestor, the
details of the request are returned (which agents, and
how much of each resource at those agents), and the
leaf peers receive a session identifier (including obli-
gation duration, requestor, etc.). This is a simplifica-
tion of the process, as error checking and contention
issues are omitted for brevity.

Given the RC-Chord system parameters, each agent
knows roughly how many clusters exist in the levels

below it. In addition, super peers receive periodic up-
dates about the average quantities for all agents con-
taining specific resources. This value is used to calcu-
late the average LoE for the new task for the local clus-
ter and those clusters in lower levels.

Figure 1 shows an example RC-Chord instance with
seven clusters. Three resources are present, with all
three represented in the super cluster. When a re-
source’s agent population high-threshold is exceeded
at the super cluster, a new cluster for that resource is
created at the second level. Once a cluster at the second
level is filled, agents joining the system with that re-
source are attached to a new cluster at the next level of
the hierarchy. Figure 1 shows a single level-two cluster
for each of the system’s three resources. Agents pos-
sessing resource three have continued to join the sys-
tem, and new clusters for that resource were created
at level three. This process repeats, with sub-graphs of
each resource growing outward from the super cluster
to accommodate new agents joining the system.

Fig. 1. An example RC-Chord instance with three levels. The super
cluster exists as the sole level-one cluster. Its agents serve as super
peers for level-two clusters, with a single level-two cluster for each
resource. Each resource subgraph may extend downward into addi-
tional levels as necessary, with a branching factor proportional to the
ratio of peers to super peers and the size of each cluster.

4. Methodology

This section introduces extensions to the coalition
formation problem to form the cooperative coalition
formation problem. The additions redefine agents to be
multi-taskable, allow agents to share full or partial re-
sources between tasks, and allow tasks to split alloca-
tions of a resource between multiple agents.
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The DLoE algorithm, which is used here to solve
the cooperative coalition formation problem in a large-
scale DMAS, is also presented. The algorithm is built
upon the RC-Chord structured HP2P overlay and bor-
rows concepts from contract protocols. A key distinc-
tion between existing contract protocols and the DLoE
algorithm is that the DLoE algorithm does not use ne-
gotiations. Instead, the algorithm uses knowledge of
agent workloads and assigns tasks to agents to maxi-
mize work throughput and minimize task duration.

4.1. Peer-to-Peer Task Model

The P2P task model is designed to accommodate the
diversity of the tasks expected to be executed within
a large-scale multi-agent system. The modifications to
Abdallah and Lesser’s model are the redefinition of
utility as work, the introduction of task priority, and ad-
dition of task synchrony to model practical distributed
algorithms. These changes reflect the scale of the new
environment in which they operate, wherein global
knowledge and synchronization are likely no longer
achievable [18,39].

Without the possibility of global synchronization
and due to the growth rate of the classical coali-
tion formation problem, this task model introduces
the idea of work to motivate the decision processes
of agents. Rather than spending long periods of time
and bandwidth during the coalition formation negoti-
ation process, agents instead focus on forming coali-
tions quickly and leveraging the scale of the system
to achieve maximum useful work throughput. To this
end, the idea of utility is replaced by a more tangible
unit called work. Each task,Ti, specifies an amount of
work,wi, that must be performed to complete the task.

Tasks are defined asTi = 〈wi, pi, si, rri1, ..., rrim〉,
wherewi is the number of units of work necessary to
complete taskTi, pi is the task priority, andsi is the
task synchrony.

Each agent is capable of executing one unit of
work per time unit. Since agents are multi-taskable,
they may be members of multiple coalitions and must
choose which task to execute at each time step. The
task priority, pi, provides a mechanism for runtime
tuning, as well as scheduling fidelity. Task priorities
for this model fit within a range of [1,10], with 10 be-
ing the highest priority. At each time step, agents with
multiple tasks use the priority and a decision process
(Section 4.1.1) to choose which task to execute. Max-
imum work throughput is achieved when each agent
has a task to execute at each step, and establishing a

local scheduling policy based on task priority ensures
that higher priority tasks are completed first.

Not all tasks are completely parallel [20], and may
require periodic barrier synchronization points. These
barrier synchronization points halt processing on all
agents that have reached the barrier until all other
agents arrive. This generalized mechanic is used to
represent scenarios in which substantial variation ex-
ists between the processing capabilities of individual
heterogeneous agents, resource contention arises, or
to accommodate tasks that require frequent updates or
synchronization between execution threads.

Each task is assigned a task synchrony value,si, that
specifies the number of steps each agent can perform
before reaching a barrier. Upon reaching a task syn-
chronization barrier, an agent halts processing on that
task until all other agents assigned to the task reach
that barrier. During that time, the agent at the barrier
removes the task from its ready queue, and instead
executes work for other task coalitions of which it is
a member. Once the synchronization barrier has been
met by all other agents, the task becomes ready to ex-
ecute by all agents in the task coalition.

To accommodate the allocation of an agent’s re-
sources to multiple coalitions, Abdallah and Lesser’s
model is extended to includecrijk as the portion of
agentj’s supply of resourcek that is allocated to coali-
tion i, which is not to exceed the agent’s total supply
of resourcek, defined by|crjk| (Equation 4). This al-
lows each agent the flexibility to participate in multi-
ple coalitions simultaneously. It also removes the “all
or none" property, thus increasing the satisfiability of
agent coalition formation by allowing partial amounts
of resources, and participation in multiple coalitions.

∀Ij ∈ I, ∀k :
∑

Ti∈S

crijk ≤ |crjk|. (4)

To maximize performance, each agent can con-
tribute only one resource (or partial resource) to a task.
This constraint prohibits the same agent from joining
a task more than once. It eliminates the possibility of
contention in task scheduling and ensures minimum
time between barriers.

The cooperative coalition formation problem is de-
fined as the allocation of the subset of tasksS ⊆ T to
agents that maximizes:

W (t) =
∑

i∈Ii

wi(t). (5)
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Note that the global work throughput,W , is not re-
solved with the formation of task coalitions. Rather,W
is time-dependent, and increases with the number of
agents that are able to execute a unit of work per time.
Coalition formation algorithms must therefore focus
on the allocation of tasks to agents such that the num-
ber of agents per task is globally balanced.

4.1.1. Scheduling
Each agent is capable of receiving and processing

multiple tasks, and may only execute a single unit
of work per unit time. Agents choose which task to
execute from those tasks they possess using a prior-
ity based scheduling algorithm. Scheduling follows a
sampling process in which each task is weighted based
on its priority. Under this roulette wheel sampling,
higher priority tasks have a higher likelihood of be-
ing selected to receive processor time. This scheduling
algorithm ensures fairness and progress, while decon-
flicting between two optimization parameters: number
of tasks on the agent and task priorities.

4.2. Distributed LoE

The main contribution of this paper is the DLoE
algorithm. The DLoE algorithm attempts to achieve
maximum work throughput by forming coalitions for
tasks. Since the algorithm is distributed and designed
to operate in large-scale systems, it does not use global
knowledge.

Contrary to most coalition formation algorithms, the
agents in the DLoE have no decision authority about
which task coalitions they join. Rather, the distributed
algorithm decides the task allocation strategy that best
benefits the system work throughput. The DLoE algo-
rithm borrows from the military command paradigm:
centralized authority, decentralized execution. The ex-
ecution of the algorithm itself is distributed, however
the authority it carries is centralized in the sense that
agents are less autonomous than other approaches.
The objective of this paradigm is to minimize negotia-
tions resulting in coalition formation, thus reducing the
overhead of the algorithm, and yielding higher system
work throughput.

The DLoE algorithm builds on the RC-Chord HP2P
structure. At the super peer level, in addition to track-
ing resource amounts, the super peers track the total
priority points (TPP) of the nodes in its cluster and the
average TPP for connected clusters. The total priority
points are the sum of the priority values of all of the
tasks at an agent.

Tasks are introduced to the system at any agent.
When a task enters the system, the task is sent to a clus-
ter super peer. If the super peer needs resources that are
not available in its clusters or clusters beneath it, it for-
wards the task to the super cluster. A super cluster su-
per peer then locates agents that can satisfy the task’s
requirements. The super cluster can be reached by any
agent in the system in O(logm(N)) steps, wherem is
the Chord address width per cluster. The DLoE algo-
rithm recursively searches down the most likely sub-
graphs to locate agents capable of satisfying resource
requirements for the new task.

Algorithm 1 shows the execution of the DLoE
search algorithm to locate the best agent to the system
to which to assign a new task. The distributed recur-
sive algorithm executes on a super peer in a cluster. It
begins by initializing the TPP to be the average TPP
of all agents in the cluster, and examines the base con-
dition to check if the current cluster contains the best
agent for the new task. The DLoE coalition formation
algorithm attempts to maximize the likelihood that the
new task receives processor time on each agent. The
algorithm assigns points to each task,Ti, resident on a
target agent,Ij , based on the priorities of those tasks:

priority_points =
∑

Ti∈Ij

priority(Ti) (6)

The value of each agent’spriority_points is com-
pared, and the agent with the lowest value is assigned
the new task. This ensures minimum competition for
processing time for the new task on the target agent,
thus maximizing its likelihood to execute, and reduc-
ing the task’s total execution duration.

The algorithm executes on a super peer, and there-
fore the agent has access to the aggregate TPP in-
formation for all agents in its cluster. The algorithm
examines the LoE for the task against all agents in
the current cluster. This value is computed at a super
peer without further inter-agent communications, and
is compared to the LoE for the sum of all sub-clusters
from the current cluster. A lower LoE value is more
desirable, as lower values indicate less competition in
the task scheduling algorithm. Upon finding the clus-
ter with the lowest LoE, the algorithm sends the task
to a super peer in the cluster. The algorithm then re-
cursively descends the hierarchy until it encounters a
leaf cluster, or it finds the agent in the cluster with the
lowest LoE.
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Algorithm 1 chooseNodeRecursive(cluster, ri)

clusterTPP = cluster.localTPP/cluster.numNodes
subNodes = cluster.subNodes(ri)
subTPP = MAX_INT
si subNumNodes > 0.0 entonces
subTPP = cluster.subTPP (ri)

fin si
si clusterTPP ≤ subTPP entonces
bestAgent = chooseAgentLocal(cluster, ri)

fin si
cluster[]subClusters = getSubClusters()
subBestTPPSoFar = max(int)
clustersubBestSoFar = nil
para i = 0 : subClusters.length hacer
subT est = subClusters[i]
subTPP = subT est.totalTPP (ri)
subNodes = subT est.nodes(ri)
subLoE = subTPP/subNodes
si subLoE < subBestTPPSoFar entonces
subBestTPPSoFar = subLoE
subBestSoFar = subT est

fin si
fin para
devolver chooseNodeRecursive(subBestSoFar, ri)

Implicit in the decision making of the DLoE algo-
rithm is that all holders of a resource are considered
equal in quality, although perhaps not quantity. Like-
wise, agents contribute equal work units to each task
they host. Since resources can be shared between tasks
and agents execute only a single task per time step, an
agent’s resources are multiplexed to its task coalitions
in the same way that execution time is shared between
tasks. These assumptions establish a balance among
agents, and reduce the search space of the DLoE algo-
rithm.

Each node in the system periodically passes its re-
source amounts and TPP to one of its cluster’s super
peers. This information is aggregated and the TPP is
tracked according to resource amount. For example, in
a system that permits resource amounts [0,1000], the
resource interval is splitn times. For each of thesen
equally divided resource intervals, the count of TPP for
the cluster is tracked. Along with the number of nodes
in the cluster, again divided by resource interval, this
vector of TPP per resource interval is all that is passed
upward between clusters. This information continues
an upward ascent through the levels of the HP2P net-
work until it reaches the super cluster. The DLoE al-
gorithm uses this information to build an approximate

picture of the TPP for each sub-graph. When searching
for agents to satisfy resource requirements for coali-
tion formation, the DLoE heuristic chooses the route
that minimizes the expected scheduling contention by
examining the aggregate TPP at each cluster. Finding
the node with minimum TPP will yield the highest
likelihood of execution for the new task and minimize
its expected task duration.

The data collection and dissemination accounts for a
small amount of overhead. Given 10 resource intervals
on a 64-bit architecture and two data structures (TPP
and resource availability), the information passed from
a cluster to its next higher level cluster consumes ap-
proximately 160 bytes. A system of one million agents,
with 1000 agents per cluster, will have roughly 1000
clusters. This entire periodic maintenance process con-
sumes approximately 160KB per update period for a
large-scale system. Cluster super peers store the TPP
data for members of their cluster, updating as new in-
formation becomes available. This results in a maxi-
mum ofnum_intervals ∗ 2m entries stored per super
peer, or 82KB of memory on a 64-bit machine with 10
resource intervals and a maximum of 1024 agents per
cluster.

5. Experimental Setup

To demonstrate the effectiveness of the DLoE al-
gorithm for large-scale DMAS coalition formation, an
RC-Chord implementation is created to operate within
the Peersim [16] P2P simulator. The coalition for-
mation algorithms in the simulations are built upon
the RC-Chord overlay, and experiments evaluate sys-
tems of one million simulated nodes. The RC-Chord
HP2P structure consists of up to 4096 nodes per clus-
ter (m = 12) and one super peer for each 512 peers to
handle network churn, both tunable parameters. These
numbers were chosen based on experimental results
to minimize mean hop length between nodes, and by
choosing a maximum cluster size that maintains a bal-
ance between internal maintenance overhead and the
overall number of clusters in the system[17].

Experiments last 15,000 time units each, which is a
suitable length of time for data trends to become sta-
ble. At each time step, tasks are allocated according
to the desired load for the simulation. Tasks complete
when their required number of work units have been
executed by its coalition’s agents. Each experiment is
run 30 times to provide a means for statistical compar-
ison.
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During execution of the experiments, the system un-
dergoes a churn rate proportional to the size of the
system. At each time step, approximately 1% of the
agents in the system, chosen randomly, are removed
from the system, and the same number of agents is
reintroduced into the system at randomly chosen loca-
tions. This churn helps to ensure that the underlying
network management protocols are functioning prop-
erly, to include super peer nomination and promotion.
Any coalitions that are damaged as a result of los-
ing a member agent undergo a repair mechanism, and
one or more new agents are chosen to replace the lost
agent(s)[17].

These experiments compare three coalition forma-
tion algorithms:

– CRP: An agent is chosen at random. If that agent
meets the task’s resource requirements, then it is
added to the task coalition [2].

– CLoE: Tasks are allocated to agents to maximize
the probability of the task receiving processor
time slots. This centralized algorithm uses global
knowledge.

– DLoE: Similar to the CLoE algorithm, except that
global knowledge is removed and the algorithm is
distributed.

The CRP [2] and CLoE algorithms serve as baseline
algorithms. The CRP is a centralized algorithm with
full knowledge[19,31,36,38,40]. The CRP algorithm
randomly chooses agents to include in a task coalition.
However, this process can fail as the targeted agent
may not have the proper resource type, or may have
an insufficient quantity of the resource. As such, the
CRP algorithm consumes additional bandwidth and is
the only algorithm that can miss.

The CLoE optimizes a task’s LoE with global
knowledge. The CLoE algorithm is an adaptation of
the CNP [25], modified to operate in an environment
where agents are required to volunteer. The advantage
of global knowledge for CLoE is that no ratio aver-
aging is used in the decision process. Instead, the al-
gorithm identifies the agent in the system with lowest
TPP by examining every agent in the system at each
coalition formation point. With this global knowledge,
the CLoE algorithm serves as an optimal baseline.
Because the CLoE operates in simulation, the global
knowledge is available. However, in a real world sys-
tem the message passing to the central server would
cause a denial of service. Although the CLoE algo-
rithm provides accurate results using its global cen-
tralized search, the key contribution of the DLoE al-

gorithm is that its performance is close to that of the
CLoE algorithm, but uses a tractable algorithm that
can be achieved for large scale distribute multi-agent
systems.

5.1. Factors

Table 1 describes the factors in these simulations.
The objective of testing under these conditions is to
exercise the critical parts of the coalition formation al-
gorithms, and examine the resulting effectiveness met-
rics.

Table 1

Simulation Factors

Variable Range

Algorithm CRP, CLoE, DLoE

Task Synchrony (si) -1, 1, 2, 3, 4, 5, 10, 15 (steps)

Load 500, 1000, 1500 (tasks per step)

DLoE Update Interval 0, 5, 10, 25, 50 (steps)

Tasks are allocated uniformly across each simula-
tion time line, with task priorities following the proba-
bilities shown in the bi-modal distribution of Figure 2.
The dominant distribution has a mean of3.5 (σ = 1.4)
and represents the creation of tasks during normal op-
erations. The target application domain for this re-
search is that of network operations, to include net-
work defense. As a result the task priority distribu-
tion also includes a second mode of higher priority,
and lower frequency, which represents unpredictable
and emergent tasks, such as handling a network attack.
This second Gaussian distribution has mean8.0 (σ =
1.5) and represents real world situations that induce a
sudden burst of task creations. Tasks assigned into this
category are centered around priority eight, and repre-
sent a small percentage of all tasks.

The primary loading factor is the number of tasks
created per time step (Tasks Per Step (tps)). The in-
coming task work load, or work generated, is measured
in units of work per unit time, with each task requiring
between 750 and 1000 units of total work to complete.
Given the optimal work throughput of the system at
one million units of work per unit time, the values of
500tps, 1000tps, and 1500tps represent under-loaded,
critically-loaded, and over-loaded systems. The objec-
tive of these values is to measure the effectiveness of
each algorithm in these scenarios.

The DLoE level heuristic algorithm has one ad-
ditional critical process variable: the update interval.
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Fig. 2. Simulation task priority distribution. This is a bi-modal mix-
ture model of two Gaussian distributions, one for standard operating
missions, and a second for low probability, high priority missions.

The update interval is the duration, in simulation time
steps, between updates of DLoE shared resource data
(Section 4.2). Unless otherwise noted, the level heuris-
tic update interval is kept at five, and is determined ex-
perimentally to minimize network maintenance band-
width usage, and still provide super peers with accu-
rate approximations of cluster TPP’s[17].

5.2. Control Factors

Each agent is assigned one of five resources, with
a quantity between 400 and 1000 units. The range of
resource quantity was chosen experimentally to ensure
that each agent could reasonably be part of multiple
task coalitions. This introduces sufficient diversity in
the system to validate the model by forcing decision
making in coalition formation algorithms, generating
multiple resource sub-graphs in the topology construc-
tion phase, and exercising task generation by varying
the number of required resources required per task.

All experiments simulate a system of one million
nodes. Each Chord cluster is given 12 bits of address
space, allowing for 4096 agents per cluster, with a
minimum of 244 clusters for a system of one million
agents.

5.3. Response Variables

The objective of these experiments is to evaluate the
effectiveness of the DLoE heuristic algorithm against
the baseline uniform (CRP) and optimal (CLoE) al-
gorithms. Primary measures of this effectiveness are
the agent solicitation miss rate, the sustained workload
performance of the system, and the global balanced
utilization of resources.

6. Results and Analysis

This analysis evaluates the effectiveness of the
DLoE algorithm by comparing its results to the CRP
and CLoE algorithms. The CRP algorithm serves as a
baseline, and the CLoE algorithm forms a work opti-
mal algorithm.

Table 2 shows the work throughput of the three al-
gorithms on the critically-loaded scenario across the
different task synchrony levels. The results are orga-
nized by algorithm type and task synchrony. Task syn-
chrony is the number of time steps between each syn-
chronization barrier, with a larger value indicating that
the task reaches a barrier less often. The CLoE algo-
rithm serves as the theoretical best performance for the
LoE approach, and DLoE tracks those results compet-
itively for each experiment. The CRP algorithm suf-
fers from using a random decision maker algorithm to
choose agents to join tasks, and even though it gen-
erates a more uniform distribution of tasks to agents,
it neglects the priorities of each task. This results in
agents maintaining a uniform number of tasks, how-
ever there is more contention in executing tasks on
those agents, and the overall work throughput suffers.

Figure 3 shows the work throughput of the three al-
gorithms on the over-loaded scenario with task syn-
chrony disabled. Both the CLoE and DLoE algorithms
approach the practical maximum of one million units
of work executed per unit time, which matches the best
scenario work creation rate. The CRP algorithm is un-
able to reach this milestone. This is one of the bene-
fits of both the CLoE and DLoE algorithms: they try to
allocate tasks to agents that most minimally meet task
resource requirements. Without any heuristic, the CRP
algorithm simply accepts the first agent that can satisfy
a task’s requirements, regardless of the excess resource
amounts possessed by the agent.

Figure 4 shows the number of tasks allocated per
agent for the three algorithms in a critically-loaded
system with synchrony disabled. Agents in the systems
with the CLoE and DLoE algorithms have a lower
number of tasks per agent as a result of the higher
overall work throughput. Since tasks complete more
quickly, the agents are able to satisfy the incoming
workload more easily, and thus have fewer tasks. The
CRP algorithm has a lower work execution rate, and
therefore maintains more tasks per agent. This con-
tinues until a saturation point is reached wherein the
randomness of the CRP coalition formation algorithm
eventually provides enough tasks to agents with lower
amounts of resources to meet the incoming workload.
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Table 2

Impact of Task Synchrony on Work Throughput. Shown are work
throughput mean (standard deviation) for critically-loaded (1000
tps) systems of varying task synchrony. Task synchrony is the num-
ber of steps between each barrier synchronization point, with higher
values meaning the barrier is met less often.

Synchrony Level DLoE CLoE CRP

None 876779.98 (2473.38) 877000.25 (463.76) 856961.36 (5824.41)

1 867308.54 (4246.03) 877024.73 (471.87) 631134.59 (2414.76)

5 866507.99 (3521.34) 876975.48 (458.81) 631461.40 (3475.70)

10 870917.79 (2724.06) 877013.30 (457.48) 636517.08 (4115.23)

25 872776.62 (1687.70) 877019.55 (446.20) 649992.75 (3316.01)

50 873027.80 (3166.34) 876959.47 (449.23) 678106.20 (5013.18)
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Fig. 3. Comparison of the three algorithms in an over-loadedsys-
tem (1500tps) with synchrony disabled. The work throughputof the
CLoE and DLoE is comparable, whereas the CRP algorithm per-
forms noticeably worse (ANOVA p=0).

Table 3 shows the impact of the update interval on
the mean TPP per RC-Chord level. The results show
a strong dependence on the update interval, revealing
the impact of rapid task creation and TPP caching in
large-scale coalition formation. For systems with one
million agents, over 977,000 reside in level three. For
the critically-loaded DLoE systems shown in Table 3,
level one shows the highest mean variance against the
baseline level three due to its small size. Reducing the
frequency of DLoE updates reduces the accuracy of
TPP balancing because the coalition formation algo-
rithm is forced to use TPP data that has become unrep-
resentative of the system’s current state. Tuning the up-
date frequency significantly improves the coalition for-
mation algorithm accuracy at the expense of increased
bandwidth consumption.

Under significant loading, the task duration for the
DLoE and CLoE algorithms resembles Figure 5 for all
levels of task synchrony. The data show high priority
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Fig. 4. Comparison of the three algorithms in a critically-loaded sys-
tem (1000tps) with synchrony disabled. The number of tasks per
agent for the CRP algorithm eventually stabilizes at a significantly
higher value than the CLoE or DLoE algorithms.

tasks complete with shorter mean duration than lower
priority tasks. The excessive loading in these experi-
ments creates a higher number of tasks per agent, and
therefore the task scheduler relies primarily on priority
to choose which task to execute at each time step.

For under-loaded systems, task durations remain rel-
atively uniform across all task priorities. This occurs
because agents in those systems are able to meet the in-
coming workload, and so the scheduler is rarely forced
to choose which task to execute based solely on prior-
ity.

A notable exception to this trend is the CRP algo-
rithm, which poorly places its tasks in all cases, lead-
ing to a high standard deviation for the number of
tasks per agent. This trend is shown in Figure 6. Un-
der the CRP algorithm, many agents are overloaded,
while others have zero load. This leads to bottlenecks
at those higher loaded agents, creating a net reduc-
tion in the work executed per unit time, and forcing
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Table 3

Mean TPP per agent at each level measured against the DLoE update interval.

Update Interval (time steps)

RC-Chord Level Number 0 1 5 10 25 50

Level 1 5.15 5.28 10.22 15.59 54.87 218.79

Level 2 4.46 4.61 7.65 10.71 25.13 48.03

Level 3 4.22 4.38 6.12 7.74 15.92 28.76
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Fig. 5. Task duration versus priority for critically-loaded (1000tps)
and over-loaded systems (1500tps). The trends are identical for both
the CLoE and DLoE coalition formation algorithms. The duration
of tasks reduces with increased priority when the task scheduler is
forced to decide based on priority.
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Fig. 6. Task duration versus priority for a critically-loaded system
(1500tps) using the CRP coalition formation algorithm. Thepoor
assignment of agents to task coalitions yields bottlenecksin systems
with task synchrony, causing delays in processing and eliminating
the effectiveness of the task scheduling algorithm.

critically-loaded systems to become unable to meet the
incoming task workload.

Figure 7 shows the statistical comparison of the
work throughput versus task synchrony for critically-

loaded experiments where synchrony is disabled, and
Figure 8 shows the same scenario with task synchrony
enabled. The difference in performance for both cases
between the CRP algorithm and the other two is sub-
stantially different, as the CRP performs far worse than
the other two algorithms. Both the CLoE and DLoE al-
gorithms have similar median work throughput (within
one standard deviation of one another), but the CLoE
algorithm yields lower standard deviation with fewer
outliers due to higher coalition formation quality as a
result of global knowledge.

845000

850000

855000

860000

865000

870000

875000

880000

885000

DLOE CLOE CRP

W
o

rk
 E

x
e

c
u

te
d

Fig. 7. Boxplot for work throughput versus task synchrony incriti-
cally-loaded experiments where synchrony is disabled. Themedian
performance range between the DLoE and CLoE algorithms is simi-
lar, however the standard deviation and number of outliers for DLoE
is greater than that of the CLoE algorithm. The CRP algorithmyields
lower performance than both other algorithms.

The result of these experiments demonstrates that
task synchrony plays an important part in the overall
performance of coalitions generated using these differ-
ent algorithms. The CRP algorithm, in particular, suf-
fers from poor performance as a result of its coalition
formation process. In addition, the CRP algorithm suf-
fers from the highest miss rate of the algorithms con-
sidered, reaching over 80% in some experiments.

The CLoE demonstrates the best overall sustained
task execution rate, as well as the lowest standard de-



D. Karrels et al. / Large-scale cooperative task distribution on peer-to-peer networks 11

650000

700000

750000

800000

850000

DLOE CLOE CRP

W
o

rk
 E

x
e

c
u

te
d

Fig. 8. Boxplot for work throughput versus task synchrony incrit-
ically-loaded experiments where synchrony is enabled. TheCLoE
and DLoE algorithms perform far better than the CRP algorithm due
to coalition formation heuristics.

viation. The DLoE algorithm is statistically similar in
mean work throughput, with slightly higher variance.
The DLoE algorithm successfully tackles the chal-
lenge of task synchrony, and allow the task scheduler
to make good decisions that reduce the durations of
tasks with higher priorities during high workloads.

7. Conclusion

As highly networked entities seek to leverage the
power and scale of P2P systems and their data, the dif-
ficulty of efficiently sharing the capabilities and assets
of the attached systems becomes critically important.
This paper presents the Distributed Likelihood of Exe-
cution algorithm, which uses the cooperative coalition
formation problem as a framework for tasking agents.
The DLoE algorithm relies upon the facilities of the
RC-Chord structured overlay, specifically the ability to
allocate agents into clusters organized by resource or
capability. The DLoE algorithm stores task informa-
tion for agents with each cluster, and passes this infor-
mation up the network hierarchy to construct a general
view of the task loading on each sub-graph. The DLoE
algorithm uses this information to decide how far, and
in which direction, to descend in search of agents to
satisfy task allocation requests. Simulation results in-
dicate that our distributed algorithm performs nearly as
well as an omnipotent centralized optimal algorithm,
and significantly better than the baseline algorithm.

Potential improvements of the DLoE algorithm in-
clude building a new strategy for allocating the number
and spacing of the resource intervals for the DLoE al-

gorithm. These intervals are currently static, and only
configurable before runtime. This can be improved by
incorporating a distributed learning algorithm to tune
the number and range of the DLoE tracking intervals
at runtime. In addition, work contributed by different
agents should ideally contribute to different pools of
work within the task. At present, units of work are con-
sidered equal, and although this satisfies the target de-
ployment, this may not be the case in all applications.
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