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Abstract

Organizations increasingly rely on the confidentiality, integrity and availabil-
ity of their information and communications technologies to conduct effective
business operations while maintaining their competitive edge. Exploitation
of these networks via the introduction of undetected malware ultimately de-
grades their competitive edge, while taking advantage of limited network vis-
ibility and the high cost of analyzing massive numbers of programs. This ar-
ticle introduces the novel Malware Target Recognition (MaTR) system which
combines the decision tree machine learning algorithm with static heuristic
features for malware detection. By focusing on contextually important static
heuristic features, this research demonstrates superior detection results. Ex-
perimental results on large sample datasets demonstrate near ideal malware
detection performance (99.9+% accuracy) with low false positive (8.73e-4)
and false negative rates (8.03e-4) at the same point on the performance curve.
Test results against a set of publicly unknown malware, including potential
advanced competitor tools, show MaTR’s superior detection rate (99%) ver-
sus the union of detections from three commercial antivirus products (60%).
The resulting model is a fine granularity sensor with potential to dramatically
augment cyberspace situation awareness.
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1. Introduction

Malware heuristic analysis techniques generally fall into two distinct cate-
gories: static and dynamic [1]. Static heuristics generally use non-runtime in-
dicators [1], such as structural anomalies, program disassembly and n-grams
2, 3, 4, 5, 6]. Alternatively, dynamic heuristics employ runtime indicators
[1] normally obtained in virtual environments, such as commercial sandbox
applications [7, 8, 9] or emulation capabilities of antivirus products [1, 10].

Despite the success that static heuristics enjoyed during the 1990s [1],
today’s research and commercial antivirus products heavily favor dynamic
heuristics [1, 10, 11, 12, 13, 14]. Antivirus companies use a hybrid of static
and dynamic heuristics in their commercial products [1, 10]. Most static
heuristics require a pristine disassembly, which is difficult to achieve [15].
Dynamic heuristics avoid this limitation [15], because they do not require
disassembly, but rather observe program execution in a restricted environ-
ment for a specified observation period. Observing program behavior requires
all program dependencies to be present [1], which is a stronger requirement
for dynamic heuristics than static heuristics. The program may not suc-
cessfully execute in the test environment when a required runtime library is
absent.

Dynamic heuristic methods are generally slower than static methods [10],
because they require an observation duration and emulation overhead. Their
performance makes them operationally infeasible to test tens of thousands of
unique programs on a single system in tactical situations. Dynamic heuristic
analysis is also incomplete [16], because no guarantee of observing malicious
activity within the observation period exists. Many malware samples require
a trigger condition [16] to demonstrate their malicious behavior. For exam-
ple, the Michelangelo virus [17] only executes its payload on March 6, the
anniversary of his birth.

This research extends current malware detection research in three im-
portant ways. First, Malware Target Recognition (MaTR) demonstrates
the utility of using only anomaly and structural static heuristics for robust
malware detection, in contrast to previous research using the same sources of
information [2]. Second, this work also achieves a significant performance im-
provement over other static heuristic malware detection research (2, 3, 5, 18].
For fair comparison, MaTR competes against a retest of the Kolter and Mal-
oof n-gram research [3], the best measures seen in similar work, on a larger
dataset. Finally, a validation test against a publicly unknown malware set



shows MaTR’s superior performance over an n-gram model and three com-
mercial antivirus products.

The following sections describe related research, MaTR and another static
heuristic detection methodology, and hypotheses tested. The next topics cov-
ered are the experimental comparison of MaTR with a repeated experiment
from other researchers and results illustrating MaTR’s performance advan-
tage against a suite of commercial antivirus products. Conclusions summa-
rize this work and include brief synopses of limitations, potential impact, and
future research.

2. Related Work

While malware detection is a popular research area, nearly all current
efforts focus on dynamic heuristic analysis. In static heuristic analysis, many
efforts require the successful static disassembly of programs, which is com-
monly augmented by dynamic methods. Currently, the scope of MaTR is
strictly static heuristic analysis, explicitly restricted to features readily avail-
able by cursory, non-runtime inspection of a program. This section briefly
describes related research in static heuristic analysis of malware.

2.1. Kephart, Tesauro and Arnold

IBM researchers Kephart, Tesauro and Arnold provide the seminal re-
search in n-gram analysis of malware. These n-grams are byte sequences
of length n that occur in the target, which theoretically represent program
structural components and fragments of instructions and data. They exam-
ine the use of n-grams in automatic signature extraction [19] for malware
variants as well as for generic detection [18, 20].

While searching for methods to automate signature extraction for new
variants of known malware, Kephart, et al. discover the utility of n-grams
for generic malware detection [19]. By determining the probability of find-
ing specific n-grams in malicious and non-malicious programs, the authors
fabricate a generic malware detection classifier.

Tesauro, et al. successfully use neural networks to detect boot sector
viruses [18]. They manipulate the decision threshold boundary to increase
the cost associated with false positives as they cite that a single false positive
reading likely affects thousands of systems. Despite significant computational



and space constraints as well as a small sample size for training and valida-
tion, they achieve a false positive rate of less than 1% while detecting over
80% of unknown boot sector viruses.

They train the network with trigrams (3-byte strings) that undergo a
novel feature selection process. Initially, they canvas the entire sample corpus
for trigrams and eliminate all that are common to both the malicious and
non-malicious sets. Moreover, they reduce the list of trigram features to
the set where each malicious training sample contains at least four trigrams.
This selection process leads to a three order of magnitude feature reduction.

Expanding on their previous work, Arnold and Tesauro incorporate a
voting system on multiple trained neural networks [20]. By training multiple
networks with distinct features not used in others, they effectively avoid the
major pitfall associated with heuristic scanners, high false positive rates.
Their assumption is that these disparately trained networks rarely produce
identical false positives. Szor cites that the Arnold and Tesauro network
research has such a low false positive rate that Symantec incorporated it into
its antivirus product default scanning [1].

2.2. Schultz, et al.

Schultz, et al. make key contributions by testing three different sources of
features to identify malware [2]. In their first approach, they examine infor-
mation from the portable executable (PE) header as features, such as import
libraries and the number of imported functions from those libraries, with
Cohen’s improved rule learning algorithm called RIPPER [21]. This method
requires unpacking the samples before evaluation to reveal the true imports,
but the authors do not refer to this difficult step. The second approach uses
strings found in the binaries as features, which is again problematic without
first unpacking.

The third method captures byte sequences expected to translate loosely
to a representation of instructions, data, or both. Without first unpacking
the binary, however, in the best case one would expect such byte sequences to
most likely represent general program structure, unpacker stub instructions
and offsets, unpacker data, or other global information. In the worst case,
these byte strings may represent packed information, which is essentially
indecipherable data.

The authors used both the string and byte sequence data with a naive
and multi-naive Bayes classifiers. The results of the naive Bayes classifier
with the string features is the most accurate classifier in their tests reaching
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a detection rate of 97.43% with a false positive rate of 3.80%. The authors
concede that encryption (and presumably packing) obfuscate strings present
in the executables [2], but the solution they suggest makes bold assumptions.
They indicate that an effective method of handling the packing case is to
initially assume that a sample is malicious and then if strings are found in
the program the classifier defaults back to the naive Bayes algorithm.

2.3. Kolter and Maloof

Kolter and Maloof (hereon KM) also made key contributions by exam-
ining the results of several classifiers on malware detection via a common
text classification technique, n-grams [3]. Techniques they test include naive
Bayes, support vector machines (SVM), decision trees (DT) and boosted vari-
ants of each. In their experiments, they evaluate the classifier performance by
computing the area under a receiver operating characteristic (ROC) curve.
Their boosted DT model achieved the best accuracy, a 95% confidence inter-
val area under the ROC curve (AUC) of 0.9958+0.0024. The authors describe
the difficulty of identifying why the presence of some byte strings combined
with the absence of other byte strings contributes to high performance classi-
fiers. In their study, they use 1,971 non-malicious executables from Windows
2000, XP operating systems, and SourceForge (http://sourceforge.net).
Their malware sample set comprised of 1,651 samples obtained from the VX
Heavens website (http://vx.netlux.org) and MITRE Corporation.

Expanding on their detection work, KM apply their n-gram methods to
the identification of malware payloads as well [5]. The extension of static
heuristic methods to identify malware payload functionality is significant as
nearly all research efforts to identify malware functionality employ dynamic
heuristics. The authors examine three major malware payloads: mass mail-
ers, backdoors, and viruses. To gather the requisite data, they examine
reverse engineering analysis reports to determine functionality. They man-
age to find functionality information for 525 of the 1,651 malware samples
they previously obtained from the VX Heavens website.

In their experiments, boosted J48 decision trees performs best with sta-
tistically significant differences over a few of the methods they test, achieving
the highest AUC confidence intervals for identifying backdoors and viruses
of 0.8704 £ 0.0161 and 0.9114 + 0.0166 respectively. They find SVM slightly
higher (again, no statistically significant difference) than boosted J48 in iden-
tifying mass mailers with an AUC confidence interval of 0.8986 4+ 0.0145.
While the payload identification rates are not spectacular, they demonstrate



the ability to determine malware functionality without the need for lengthy
dynamic analysis or close manual inspection—a substantial capability given
the sheer volume of unique programs in the world and the pressing need for
organizations to defend themselves. An n-gram based classifier should ex-
hibit excellent runtime performance, because each feature is simply a linear
(O(n)) search result for the appropriate byte sequence.

3. Detection Methodology

This article describes the results of a set of comparison tests using the KM
n-gram approach and MaTR. Both of these methods employ static heuris-
tic features and use ensemble decision tree machine learning algorithms for
classification decisions. These subsections present different methodologies for
determining specific features used by their respective classifiers.

3.1. KM Approach

In reconstructing the KM experiment, this research uses their described
methodology [3] to generate n-grams and employs their identified length
of n = 4 with a 1-byte sliding window. The KM methodology requires the
extractions of 4-grams from all samples with respect to true class membership
(true “clean” or “dirty” labels assigned during sample collection). They then
determine a final feature selection of 500 n-grams for training and testing
based on the highest n-gram information gains as computed by the following
formula:

IGG = > > P(vj,Ci)log%, (1)

v;€{0,1} Ce{C;}

where C; is the ith class (of the true sample labeling) and v; indicates the
presence or absence of the jth n-gram. The prior and conditional probabili-
ties are self-explanatory. They treat the presence of an indicated n-gram as
a Boolean feature to their boosted decision tree classifier.

3.2. MaTR Approach

The MaTR system uses a straightforward process for detecting malware
using only a program’s high-level structural data. While many researchers
and commercial companies use this same structural data, none rely exclu-
sively on this source of data and achieve the performance levels of MaTR.



Figure 1 shows the inputs and outputs of MaTR and illustrates its internal
process. Inputs to MaTR are executable files, such as portable executable
(PE) files common in the Microsoft Windows operating systems.

Although an open system, MaTR explicitly bounds the machine and hu-
man operator together within the overall system, a subtle yet significant
distinction from other work that simply uses a computer to generate “an-
swers”. In MaTR’s architecture, the operator becomes a critical component
receiving and providing feedback to the rest of the system and eventually
initiating a response action.

Recognizing the operator’s role allows for a more robust network defense.
The discoveries of certain malware payloads (an area of future work) require
different responses. For instance, the standard antivirus software response
to nearly any malware discovery is to clean or quarantine the malware sam-
ple. If the malware has a “password stealer” [22] capability, cleaning or
quarantining is an insufficient response action by itself, because they only
remedy further and not current malware losses. If the architecture presents
this information to the operator, the rational human response should include
cleaning or quarantining, but also mandatory password changes and an in-
vestigation into potential loss of data confidentiality. MaTR presents the
pertinent threat information to operators enabling them to initiate the most
appropriate response actions.

Limiting features to contextually significant information is a requirement
to maximize potential feedback with a human operator. One can visual-
ize this benefit when considering the comprehension difficulty for a human
faced with the resulting decision process of an n-gram solution or the lack
of decision making information provided by a commercial antivirus product
that only provides the final result. The co-alignment of the human operator
and the machine within MaTR allows for critical and constructive feedback,
which remains an area for continued work.

The “Data Pre-processing” stage allows for any steps required before
feature extraction and subsequent classifications. Data pre-processing actions
include discovery of valid executable files. Other actions include pre-filtering
known malware and known non-malware, decrypting data, and data sharing
with other sensor systems.

During “Feature Extraction”, the system parses the input file to find the
predetermined data inputs for the subsequent classifiers. Features (described
later) are restricted to the input file’s high-level structural anomalies and raw
structure information. “Feature Transformation” involves any action taken
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on features before classification, such as bounding, mapping, projecting, etc.
Examples of well known transformations include principal component anal-
ysis and factor analysis.

The “Detection Classifier Data” component represents the data for the
trained classifier. For example, decision tree classifiers must correctly initial-
ize a binary tree node structure with appropriate cut features to uniquely
identify the specific feature to test, cut values and classification decisions for
the leaf nodes of the decision tree.

The underlying decision tree classifier comprises the “Detection Classifi-
cation” component. At this point, the classifier takes the transformed fea-
tures and makes its classification decision based on its underlying algorithm.
For example, in decision trees, the decision sequence begins at the root node
and progresses down to a single leaf node where the classification decision
is determined. “Detection Post-processing” allows for post-filtering before
presenting preliminary results to the operator, triggering additional actions,
result verification with other systems, or data fusion with additional sensors.

As MaTR does not rely on computations to determine the final feature
set, it avoids the overhead of a resource-intensive feature selection step [3].
However, the KM method results in a simpler and more efficient feature
extraction step. This results in a trade-off as MaTR’s feature extraction
process remains more complex throughout its life cycle.

3.2.1. Bagged Decision Tree Classifiers

The MaTR architecture employs bagged decision trees as its classifier
based its performance on previous experiment results. The decision tree is a
machine learning classifier with a tree data structure. Classification decisions
are the result of traversing from the tree root to a leaf node. Each non-
leaf node employs a split variable and split value to determine the path of
traversal to a leaf node, where each tree makes a final class assignment. Each
leaf bases the assignment on prior probabilities from the remaining sample
subpopulation at that leaf established during training.

The MaTR implementation tested uses the MATLAB bagged decision
tree implementation TreeBagger [23]. Training decision trees involves deter-
mining the proper feature and value for each node to split the training set
into subpopulations with lower node impurity (a measure of the subpopu-
lation consisting of same class labels). For each decision split, TreeBagger
by default randomly selects \/n features of n total features as candidates
for the split variable and assesses them using one of the following impurity



functions: Gini’s diversity index, the twoing rule and the maximum deviance
reduction [23].

Bagging, or bootstrap aggregation, is an augmentation method of the
performance of a single tree by generating a tree ensemble with each tree
based on different bootstrap samplings. During training, the selection of
n samples from the training set (of size n) with replacement constitutes
a bootstrap sampling. The resulting classifier uses a majority vote of the
individual trees in the ensemble.

The MaTR model tested uses an ensemble of 25 trees with default param-
eters. By default, TreeBagger considers \/n random features for each cut
variable, allows a minimum of one observation per leaf node and employs the
Gini’s diversity index as an impurity measure [23]. Other defaults include
no pruning and using equal misclassification costs [23].

3.2.2. MaTR Features

Perhaps the greatest distinction between MaTR and other commercial
and research products is its feature set. MaTR achieves high detection per-
formance while restricting its features exclusively to high-level program struc-
tural anomalies and general structural data. Instead of following a mathe-
matical model to determine features, MaTR utilizes features commonly used
by analysts [1, 24, 25] when examining samples to determine if they are indeed
malicious. Rafiq and Mao found that malware routinely contains structural
anomalies (78%), while non-malware does not (5%) [24].

The term “high-level” structural data refers to the basic structural format
that the operating system loader uses when loading an executable program
into memory before runtime and higher level information, such as common
file attributes (e.g., name, path, file size, attributes, etc.). The sources for
the structural anomalies come from a number of publications and personal
observations of program structure. Combining expert experience with pro-
gram structural information capitalizes on analysts experience while allowing
for identification of additional anomalous feature combinations.

As analysts examine samples, their previous experiences contribute to
a prior knowledge of analysis technique effectiveness and past observations.
Significant observations useful for confirming malice are anomalies primarily
seen in malware. Routinely, analysts combine available anomaly informa-
tion with structural information to either confirm their suspicion or look for
additional anomalies. For instance, if the visible program disassembly is in-
sufficiently small to provide any significant advertised function, the analyst



may suspect that the program is packed. Many popular packers dedicate a
program section for unpacking, but the section must allow reading and exe-
cuting (as it will soon contain code), but it must also allow writing to unpack
the obfuscated code before attempting to execute it. Analysts confirm these
section permissions, or characteristics, by examining structural information
for yet another anomaly.

Currently, MaTR utilizes over 100 static heuristic features based on struc-
tural anomalies and structural information itself. Many of MaTR’s features
are integral, unlike the KM method which uses exclusively Boolean features.
MaTR does not attempt to generate an instruction disassembly due to the
difficulty of validating its correctness [15] nor does MaTR use instruction
sequence signatures as commercial antivirus programs use [10].

Structural anomalies are generally logical operations on program header
information or file areas pointed to by header information. Classes of struc-
tural anomalies include: section names [1, 24, 25], section characteristics
[1, 24, 25], entry point [1, 25], imports [2, 24, 25|, exports [25], and alignment
[1]. Structure information, included to enable classifiers to identify additional
anomalous combinations, comes directly from the PE headers, such as the
IMAGE FILE HEADER and the IMAGE_OPTIONAL _HEADER [26]. A description of
some of the more popular anomaly features follows.

Non-standard section names. Several researchers [1, 24, 25] also identify the
presence of a non-standard section name as anomalous. Microsoft [26] de-
fines several standard section names for PEs and many compilers adopt this
standard. This standardization has led to an overwhelming majority of non-
malware containing only standard section names. According to Rafiq and
Mao [24], only 3% of non-malware use unconventional section names, while
80% of malware samples use non-standard names.

Non-standard section characteristics. Many researchers [1, 24, 25] identify
non-standard section characteristics as an anomaly. If a code section has
read, execute and write characteristics instead of the normal read and ex-
ecute characteristics, it immediately raises analysts’ suspicions. Normally,
the program uses sections with these permissions to unpack obfuscated code
before attempting to execute it. This particular anomaly is common in mal-
ware, because packing is a common malware armoring technique [1].

Entry points. A program entry point that points to a section not marked as
containing code is anomalous [25]. Szor states that a program whose entry
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point does not point to the code section (.text for default compiling) is
another entry point anomaly [1]. Packers commonly adjust the entry point
to point to an additional code section to start the unpacking process.

Imports. Inclusion of information regarding import libraries and functions is
common among malware research [1, 24, 25]. Common features include the
numbers of import libraries and functions. Executables with a low number
of imported functions are suspicious [25], because programmers normally
provide program utility by importing functions, such as I/O, encryption or
complex math.

Exports. Treadwell and Zhou also identify dynamically-linked libraries that
export no functions as anomalous [25]. Since the purpose of a dynamically-
linked library is to provide functionality to other programs via exported
functions, the absence of exported functions is surely suspicious.

4. Theory

The presented background information concerning strategic employment
of malware by competitors to gain advantage clearly demonstrates motiva-
tion for such—albeit illegal—activities. If a major defense contractor builds
a weapon system with specific capabilities, an intimate knowledge of those
capabilities and engineering designs to achieve them may allow a competitor
to build a superior system. The obtained information enables the competi-
tor to use the victim company’s intellectual property as a baseline for their
system.

The first major theoretical hypothesis MaTR tests is that static analy-
sis techniques are inadequate to detect modern malware. Specifically, given
MaTR’s and the KM methodologies already described “shallow” investiga-
tion of sample executables, the following experiments must demonstrate that
classifiers built with this level of information are adequate for practical ap-
plications.

Another hypothesis MaTR addresses is the assumption that commercial
antivirus systems alone are inadequate to defend against advanced, compet-
itive threats. Occasionally, information assurance practitioners have advo-
cated using multiple commercial antivirus products to address these same
threats. Commercial antivirus products likely are inadequate for organiza-
tion strategic defense, because of their availability to the attacker for testing
against prior to conducting information operations.
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5. Experiments on Known Malware

These subsections describe the sources of samples for the subsequent ex-
periments and the experimental designs and the measures of effectiveness
used to test the above theories. The experimental designs focuses on estab-
lishing an assessment between MaTR and the KM n-gram research. The
measures of effectiveness chosen allow for full comparison to other work.

The remaining subsections describe both observations and experimental
results. These observations are useful as they provide valuable insight not
available in the experimental results. For instance, previous n-gram research
presents little evidence of what nm-grams truly represent, which keeps the
semantics of this method shrouded in mystery.

5.1. Data Collection

The following experiments examine only 32-bit portable executable (PE)
samples obtained from well known sources. All “clean” samples come from
harvesting of clean installs of Microsoft Windows XP, Vista, and Windows
7, while the malware samples come from an updated download of the VX
Heavens dataset [27]. Specifically, the malware, or “dirty”, samples are Tro-
jans, worms, and viruses types as identified by the antivirus label assigned to
them. Extractions of PEs from these sources yields 25,195 clean and 31,193
dirty samples for a total of 56,388 samples. These tests do not currently use
samples from SourceForge as in [3].

KM use hexdump to capture n-grams in their experiments [3, 5], but
hexdump has documented side effects when dumping hexadecimal represen-
tations when using format strings to control output [28]. Specifically, when
the format string calls for 4 bytes and the sample has less than 4 bytes
remaining, hexdump zero-pads the output. To avoid this error, a custom pro-
gram extracts the n-grams for this experiment given the requirements from

KM [3, 5].

5.2. Experimental Design

This experiment is a side-by-side comparison of leading static analysis
malware detection techniques, specifically MaTR and the previous KM n-
gram research [3, 5]. For consistency with prior research, these tests both
adopt a standard experimental design using stratified, ten-fold cross valida-
tion. Each disjoint fold contains roughly the same number of samples from
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malware and non-malware sets. During each run, a different fold functions
as the test set while the remaining folds comprise the training set.

Each fold requires a determination of the top 500 n-grams specific to
that fold’s training set for the KM technique. Classifiers train on only the
samples from a fold’s training set and test results come from application of
the trained classifier to the fold’s test set. MaTR and the KM retest use
identical folds.

These experiments use decision trees since both KM [3] and Dube, et
al. [29, 30] both found these the best performing for this problem set in
previous work. Both techniques use the ensemble TreeBagger classifier from
MATLAB [31] with default parameters and 25 trees. The major differences
in the KM retest and the original work [3] are the use of MATLAB instead of
the J48 decision tree implementation in WEKA [32] and the larger sampling.

5.3. Measures of Effectiveness

In order to fully compare these experimental results to other published
research, this effort includes the results of a variety of measures commonly
used in this research area. KM report ROC AUC results with confidence
intervals [3]. Schultz, et al. report accuracy with FPR, but also provide
confusion matrix data, which allows for calculating FNR [2]. Tesauro, et al.
include general values of accuracy and FPR [18]. ROC measures use pooled
averages across folds as described by Maloof [33]. Computed confidence
intervals result from studentized bootstrapping with the sampling defined by
the ten cross-validation folds.

Comparison of performance data from the KM retest with the original
work serves as a validation measure for the experiment. Given the high accu-
racy KM achieve in their tests, any significant lesser performance in the retest
would require a full analysis of variance using the J48 solution in WEKA [32]
and substantially smaller sample sizes to determine the the source of varia-
tion. KM claim that larger sample sizes would increase performance [3].

5.4. Data Collection Observations

Using the described KM parameters for generating n-grams yields a mean
of 2,103,005,388 unique n-grams across training sets. Given that n = 4, this
results in a 49% saturation of the possible 4-gram space. KM observe a
saturation rate of only 6% in their large dataset in their original experiment.

Determining the set of n-grams using the KM method requires extensive
“computational overhead” as they attest [3]. The datasets become too large
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to store in memory and as a result, calculations must resort to heavy disk-
utilization with deliberate runtime performance optimization. The number
of expected unique n-grams is a critical implementation factor, as it is key
in determining how best to partition the n-gram data space.

In this experiment, the KM n-gram generation technique generates a
mean of 2,103,005,388 unique n-grams across training sets. This results in a
larger saturation level of 2,103,005, 388/23? = 49% compared to the satura-
tion level of 6% from the KM research [3]. While this saturation level causes
complications for determining the top n-grams to select, it does not impede
the KM model classification performance, because the saturation of the n-
gram space does not affect final model decisions which occur in the leaves
of the decision trees. Theoretically, their model uses 500 Boolean features
which yields 2°%° = 3.27¢150 potential leaf combinations given the decision
tree classifier.

Figure 2 is a plot showing the number of unique n-grams growing as
the number of files parsed increases. Unfortunately, the two have a clearly
linear relationship for the range tested with a strong Pearson’s correlation
of 0.9950. The larger sample sizes forces calculations to predominantly disk-
based solutions.

5.5. Selected n-gram Observations

The KM method selects a total of only 505 unique n-grams to use as
features across all ten folds making fold selections quite consistent. Table
1 shows the top seven n-grams for all folds. The primary difference of the
remaining n-grams across folds is their order.

One observation about this partial listing is that the selected n-grams
appear to focus on capturing specific byte sequences peculiar to each class.
For instance, the first n-gram 0x00560001 is a 1-byte shift from the second
n-gram chosen 0x56000100. This pattern propagates through the selections
with potentially longer byte sequences daisy-chained together.

A second observation is the prevalence of zero bytes (0x00) throughout
the selections. Nearly 44% of all selected n-gram bytes are zero bytes. Closer
examination of the zero bytes reveals a potential pattern of UNICODE char-
acter representations, zero bytes followed by non-zero bytes. This pattern is
visible in 79% of all n-grams selected.

KM describe the difficulty in validating why n-grams work for classifying
PEs [3]. As an example, they found a mysterious n-gram (0x0000000a)
in their studies [3, 5], which they can not attribute as being code, data,
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or structure. This specific n-gram 0x0000000a is found in a comparable
percentage of samples in the expanded malware set from VX Heavens as KM
cite, but the same n-gram also appears in 83% of the non-malware set and
the information gain feature selection algorithm never ranks it in the top 500
for any folds. Why KM focus on this particular n-gram is uncertain as they
do not specify whether their calculations lead to its inclusion in the top 500
n-grams.

MaTR avoids some of the validation problem by using only contextually
important information as features as described in Section 3.2.2. Using com-
mon anomalies and irrefutable structural information that analysts routinely
use in making their assessments provides strong validation of MaTR’s re-
sults. As a result, an analyst can confirm its decisions based on meaningful
observations. The major difficulty with interpreting MaTR’s decisions is the
complexity of following the logical steps of an ensemble method—even the
apparently intuitive decision trees.

5.6. Model Observations

The resulting classifiers from the original KM research are ensembles of
small trees [3], averaging 90 nodes. In the KM retest, the tree sizes are much
larger averaging 2,824 nodes per tree. Given the 49% saturation of the 4-
gram space and the much larger sampling in the retest, the trees likely had to
grow substantially to minimize impurity at the leaf nodes. MaTR averages
354 nodes per tree in these tests, which is approximately 3 times the tree
size observed in previous MaTR research with smaller datasets [30].

The trees in the KM retest have less efficient representations as all features
are Boolean (nominal, “present” or “absent”), which forces trees to grow
significantly larger to accommodate the increased saturation of the n-gram
space. When training decision tree classifiers with larger sample sets, the
impurity levels of nodes near the root remain relatively high after new splits
as the sample subpopulations are more diverse (underfitting). In order to
improve classification accuracy effectively, the decision tree must grow in
size.

The simpler tree representations of MaTR are likely due to the expressive
power of augmenting nominal features with continuous interval and ratio fea-
tures or an inherent difference in feature saliency. Interval and ratio features
often represent ranges of values and relational comparisons in addition to
equality. Including such features results in a denser information representa-
tion for the decision tree.
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5.7. Ezxperimental Results

Figure 3 shows a magnification of the ROC curves for both MaTR and
the KM n-gram retest. While both methods demonstrate excellent results,
MaTR achieves the more ideal ROC curve as it tracks closer to the left
and top sides, resulting in a mean AUC of 0.999914 for MaTR compared to
0.999173 for the KM retest. Furthermore, MaTR never exhibits a lower true
positive rate (TPR) or a higher false positive rate (FPR) than the KM retest
for any given threshold values tested for the ROC plot. While the resulting
AUC performance difference is statistically significant, it is not necessarily
practically significant as both methods are close to ideal.

Tables 2 and 3 are the resulting AUC and accuracy confidence intervals
for MaTR, the KM retest, and past research. The AUC results for the KM
retest are a statistically significant 0.34 % improvement from their original
research [3, 5]. This observation is quite interesting considering the increased
saturation of the possible n-gram space for this larger test, but the classifier
adequately compensates by extending the length of branches to utilize more
of the available combination space.

Although the confidence intervals for MaTR and the KM retest are close,
MaTR demonstrates superior results that are statistically significant to both
the KM original and the retest. This consistency may indicate a higher
saliency value of structural and anomaly data for detecting malware than n-
grams, which are typically used for text classification. However, both results
strongly suggest that static heuristic methods remain viable for malware
detection.

For comparison with other research, Table 3 includes the apparent accu-
racy statistics. MaTR’s accuracy is significantly better than those for the
KM retest as the confidence intervals do not overlap. Analysis of the ad-
ditional measure now leads to practically significant results as the accuracy
results of the KM retest are nearly a full percentage point below MaTR’s
results. The accuracy advantage of MaTR is an aggregate indicator of a sig-
nificant impact on its operational utility. Discussion of this impact requires
computation of FPR and FNR (addressed later).

The best finding from Schultz’s work [2], the strings classifier, has a much
lower mean accuracy, and they do not include any confidence interval to
describe variability in their published research. The simplicity of defeating
a classifier based solely on strings [2] was a key factor in the decision to not
repeat their experiment or a similar variant.
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Additionally, Schultz’s best structure/anomaly result has a mean accu-
racy of 0.8936, which is substantially lower than MaTR’s. This discrepancy
is most likely attributed to the small sample sizes used in their work. They
state in their published research [2] that they had a limited subset of 244
PEs (206 benign and 38 malicious).

Table 4 shows the mean confusion matrix elements across the ten folds
for the experiment. In the table, TP, FP, TN and FN stand for the standard
true and false positives and negatives. MaTR averages only 5 total misclassi-
fications, while the KM retest has 57. Both results are impressive considering
the number of samples tested.

The confusion matrix data provides the values to determine the FPR and
false negative rate (FNR) as shown in Table 5. Again, Schultz, et al. do not
report confidence interval data, but their reported FPR and FNR appear
quite different than both MaTR and the KM retest results. Once again, the
MaTR results for both FPR and FNR are significantly superior to those of
the KM retest. Furthermore, the MaTR FPR and FNR is lower than the
1% and 15-20% respectively from Tesauro’s work, while MaTR additionally
detects forms of malware other than boot sector viruses.

While MaTR’s accuracy is consistent with its AUC results, the KM retest
reveals an unexplainably lower accuracy than one may anticipate. The result-
ing ROC curves previously shown in Figure 3 provide evidence that suggests
a lower accuracy for the KM retest. The observed mean TPR and FPR are
9.94e-3 and 1.37e-2 respectively. The true negative rate (TNR) is then 9.86e-
3 (I'NR =1— FPR). The average of the TPR and TNR is 0.990, which
is an estimate of the measured accuracy (0.989919) as the model has equal
misclassification costs. Generating the estimate for MaTR, the estimate is
0.999 compared to the observed measure of 0.999166. As far as the n-gram
AUC measure disparity, Lobo, et al. [34] describe how impractical operating
regions can inflate the resulting measure. While MaTR and the KM retest
have similar AUC measures, the ROC plot for MaTR in Figure 3 is nearly
ideal as it extends to the upper leftmost corner. The n-gram method does
not achieve TPR rates comparable to MaTR (0.995 TPR) with less than a
FPR of 0.02. For the same TPR, MaTR’s FPR is negligible.

Finally, these FPR and FNR results illuminate a significant operational
utility advantage of MaTR’s methodology versus KM’s. Operationally, the
FPR directly relates to additional analyst workload, which is a form of re-
source waste as the additional samples are all non-malicious. The FNR also
has operational implications, because it describes the method’s inability to
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detect malicious samples. While neither a high FPR or a high FNR is de-
sirable, arguably the FPR is most significant, because it has such cascading
effects given the normal distortion of sampling from the non-malware and
malware classes.

For example, a typical clean installation of an operating system and of-
fice productivity software normally yields approximately 10,000 unique PEs,
and this number will continually increase during system deployment. An
advanced competitor may only require 1 or 2 malware artifacts to conduct
effective offensive information operations. Given this estimate of a best case
scenario, a 0.1% FPR yields 10 additional non-malware samples for an an-
alyst to examine in addition to any malware samples detected. If the FPR
rate is higher, the factor for resource waste increases linearly. This example
also illustrates the value of a low FNR, because a method with a high FNR
may miss the small number of malware artifacts present on a system.

6. Experiments on Unknown Malware

This section describes the unique source of data for a validation experi-
ment comparing MaTR and the KM retest as well as three major commercial
antivirus products. Using publicly unknown malware samples in this valida-
tion test clearly demonstrates a major theme of this research, the extensibility
of malware detection methodologies to a realistic, operational environment
to detect currently unknown threats. The following subsections describe the
experimental designs and the measures of effectiveness used to test the above
theories. The experimental designs focuses on establishing an assessment be-
tween MaTR and the KM n-gram research as well as testing both of these
research methods against commercial antivirus products.

6.1. Data Collection

The data source for this test is a set of 278 malware samples discovered
by multiple anonymous organizations. Local organizational policies generally
restrict distribution of any discovered samples—even to antivirus vendors for
signature development. These organizations believe these samples poten-
tially include custom malware employed by aggressive competitors giving
this particular sample set high strategic value. The only samples used in this
particular test are malware samples.
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6.2. Experimental Design

This specific test compares the performance results of MaTR, the KM
retest, and three major commercial antivirus vendor products on the un-
known malware samples. The only measure recorded for this test is TPR,
because of the lack of any negative class samples and the limited threshold-
ing capabilities of the commercial antivirus products tested. In this case, the
dataset is strictly a test set split into appropriate folds. No classifier training
uses extracted features from any of the unknown malware set samples.

For MaTR and the KM retest, this test uses the highest accuracy (already
trained) classifiers from the previous test results in Section 5. Due to the
smaller test sampling, pilot studies showed relatively large confidence inter-
vals when conducting only the 10-fold cross validation runs as in the previous
tests. Accordingly, this test replicates the 10-fold cross validation runs 10
times using unique validation sets for each replication. Otherwise, this test
uses the same methodology as the previously described tests in Section 5.

The commercial antivirus products use default installation settings and
have current updated signatures at the time of this experiment. Product
scan results against the entire unknown malware set yield product-specific
sets of all signature and heuristic hits. The intersection between the sample
sets associated with each fold and these sets indicates the number of correct
detections, while the difference is the number of false negatives. Otherwise,
antivirus product test measures and confidence interval computations are
identical to MaTR and the KM retest.

6.3. Results and Discussion

Table 6 shows the performance results against the unknown malware sam-
ples. Both MaTR and KM retest results resemble their previous test perfor-
mance, but exhibit performance drops of 1.4% and 4.5% respectively. The
disparity in performance between these two techniques increases against the
unknown malware set and the differences are statistically significant. None
of the commercial antivirus products exceed 50% TPR on the unknown mal-
ware set, a clear indication of the need for detection tools similar to MaTR.

Given the antivirus product detection information, further description of
the unknown malware dataset is possible. For instance, the union of all an-
tivirus detections accounts for 60% of the 278 samples, which validates the
findings from the organizations who discovered them, but this observation
has another implication. An occasional proposition in information assurance
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circles is the suggested employment of multiple antivirus products. Consid-
ering that a combination of three commercial antivirus products yields only a
60% detection rate on these samples, implies that the return on investment,
especially for large volume enterprise license purchases, is limited.

Combining generic detection methods, such as MaTR and the KM method,
with commercial antivirus products may simplify discovery of advanced, com-
petitive threats. For instance, antivirus products detect high rates of com-
mon malware, but their performance drops dramatically against unknown
malware. However, the difference between sets of detections from a com-
mercial product and a generic detection method should contain primarily
advanced threat samples.

7. Conclusions

Pattern recognition techniques can play a substantial role in malware de-
tection especially in cyber situation awareness and mission assurance. In ex-
ceedingly complex networks, simplifying assessment of operational readiness
is a significant improvement and leads to better risk management. MaTR’s
high confidence detection rate coupled with its low FPR enable an aggressive
defense against adversary intrusion. Furthermore, its low FNR implies that
MaTR does not often mistake malware for benign software, which is also
highly encouraging.

MaTR’s performance results are convincing evidence that static heuristic
methods are still operationally viable for malware detection, even without
detailed instruction disassembly information. MaTR also demonstrates a
significant advancement over previously published static heuristic methods,
even on research using similar features. Not only does MaTR have the high-
est accuracy and AUC, but also the lowest FPR and FNR. Furthermore,
MaTR achieves superior results while using only contextually important ob-
servations as features.

The test results of unknown malware samples with MaTR, the KM retest,
and commercial antivirus products demonstrate MaTR’s suitability for de-
tection of unknown malware in an operational environment. This set of
unknown malware is a significant sampling of tools like those employed by
advanced threats. While MaTR detects nearly 99% of the unknown samples,
the commercial antivirus products combine to detect only 60%. One cannot
overstress the strategic value of such an advantage.
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Accurate detection of malware with a low FPR provides maximum effi-
ciency for prioritizing malware analysis operations, specifically prioritization
for more resource intensive dynamic analysis methods and human analysts.
A combinatorial approach can significantly augment the effectiveness of ei-
ther method alone, because the hybrid solution can more thoroughly assess
likely targets first.

7.1. Impact

The high accuracy in generic malware detection provides a significant
fine granularity capability advancement for cyber situation awareness within
complete local organization control. Given the true positive rates of both
MaTR and the KM retest versus current commercial antivirus products, a
static heuristic malware detection method is a potentially “game changing”
technology that can shift the cyber battlefield in overwhelming favor of the
defenders. It also provides critical information to enable organizational lead-
ership to consider available response options and future defense investments.
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Table 1: Top seven n-grams across all folds.
0x00560001
0x56000100
0x72007900
0x00720079
0x0043006c¢c
0x43006c00
0x44006500

Table 2: Mean AUC and confidence intervals.
Method Mean 95% CI

MaTR 0.999914 | 0.999840 — 0.999987
KM retest 0.999173 | 0.998926 — 0.999421
KM original | 0.9958 0.9934 — 0.9982

Table 3: Mean accuracy and confidence intervals.

Method Mean 95% CI
MaTR 0.999166 | 0.999007 — 0.999325
KM retest 0.989919 | 0.988897 — 0.990941
Schultz (strings) 0.9711 not reported
Schultz (DLL function calls) | 0.8936 not reported

Table 4: Mean confusion matrix for MaTR and KM n-gram retest.
Method TP | FP | TN | FN
MaTR 3112 | 2 | 2517 3

KM retest | 3,072 | 14 | 2,505 | 43
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Table 5. Confidence intervals for FPR and FNR.

Method Mean 95% CI

MaTR FPR 8.73e-4 | 5.80e-4 — 1.17e-3
MaTR FNR 8.03e-4 | 4.56e-4 — 1.15e-3
KM retest FPR 5.64e-3 | 3.65e-3 — 7.62e-3
KM retest FNR 1.37e-2 | 1.23e-2 — 1.51e-2

Schultz (strings) FPR 3.80e-2 not reported

Schultz (strings) FNR 2.73e-2 not reported

Schultz (DLL function calls) FPR | 7.77e-2 not reported
(

Schultz (DLL function calls) FNR | 2.89e-1

not reported

Table 6: Mean TPR and confidence intervals on unknown samples.

Method Mean 95% CI
MaTR 0.985569 | 0.981508 — 0.989629
KM retest | 0.949643 | 0.941552 — 0.957733

Antivirus 1

0.467606 | 0.449780 — 0.485431

Antivirus 2

0.388439 | 0.370665 — 0.406214

Antivirus 3

0.356071 | 0.340914 — 0.371229
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Figure 3: ROC curves for MaTR and KM n-gram retest.
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