
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Faculty Publications 

11-10-2023 

Legendre Pairs of Lengths ℓ ≡ 0 (Mod 5) Legendre Pairs of Lengths   0 (Mod 5) 

Ilias S. Kotsireas 
Wilfrid Laurier University 

Christopher Koutschan 
Austrian Academy of Sciences 

Dursun Bulutoglu 
Air Force Institute of Technology 

David M. Arquette 
Air Force Institute of Technology 

Jonathan S. Turner 
Air Force Institute of Technology 

See next page for additional authors 

Follow this and additional works at: https://scholar.afit.edu/facpub 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Kotsireas, I. S., Koutschan, C., Bulutoglu, D. A., Arquette, D. M., Turner, J. S., & Ryan, K. J. (2023). Legendre 
pairs of lengths ℓ ≡ 0 (mod 5). Special Matrices, 11(1), 20230105. https://doi.org/10.1515/
spma-2023-0105 

This Article is brought to you for free and open access by AFIT Scholar. It has been accepted for inclusion in 
Faculty Publications by an authorized administrator of AFIT Scholar. For more information, please contact 
AFIT.ENWL.Repository@us.af.mil. 

https://scholar.afit.edu/
https://scholar.afit.edu/facpub
https://scholar.afit.edu/facpub?utm_source=scholar.afit.edu%2Ffacpub%2F1120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholar.afit.edu%2Ffacpub%2F1120&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil


Authors Authors 
Ilias S. Kotsireas, Christopher Koutschan, Dursun Bulutoglu, David M. Arquette, Jonathan S. Turner, and 
Kenneth J. Ryan 

This article is available at AFIT Scholar: https://scholar.afit.edu/facpub/1120 

https://scholar.afit.edu/facpub/1120


Research Article

Ilias S. Kotsireas, Christoph Koutschan, Dursun A. Bulutoglu*, David M. Arquette,
Jonathan S. Turner, and Kenneth J. Ryan

Legendre pairs of lengths ℓ ≡ 0 (mod 5)

https://doi.org/10.1515/spma-2023-0105
received May 01, 2023; accepted September 07, 2023

Abstract: By assuming a type of balance for length ℓ = 87 and nontrivial subgroups of multiplier groups of
Legendre pairs (LPs) for length ℓ = 85, we find LPs of these lengths. We then study the power spectral density
(PSD) values of m compressions of LPs of length m5 . We also formulate a conjecture for LPs of lengths ℓ ≡ 0

(mod 5) and demonstrate how it can be used to decrease the search space and storage requirements for finding
such LPs. The newly found LPs decrease the number of integers in the range ≤200 for which the existence
question of LPs remains unsolved from 12 to 10.

Keywords: compressed vector, discrete Fourier transform, Hadamard matrix, periodic autocorrelation func-
tion, power spectral density, multiplier group

MSC 2020: 05B10, 05B20, 15B34

1 Introduction

The periodic autocorrelation function (PAF) of a (row) vector �ℓ∈a indexed by �ℓ is defined as ( ) =jPAFa

ℓ∑ =
−

−a a
i i i j0

1 , where ai is the complex conjugate of ai. By using the PAF, we define the concept of a Legendre pair
(LP) first studied in [4].

Definition 1. Let a and b be { }−1, 1 row vectors indexed by �ℓ. Then, ( )a b, is an LP if

�( ) ( ) { }ℓ

ℓ ℓ

∑ ∑+ = − ∀ ∈ ⧹ =
=

−

=

−

j j j a bPAF PAF 2 0 , .

i

i

i

ia b

0

1

0

1

(1)

An LP ( )a b, must satisfy ℓ ℓ∑ = ∑ ==
−

=
−

a b 1
i i i i0

1

0

1 or ℓ ℓ∑ = ∑ = −=
−

=
−

a b 1
i i i i0

1

0

1 ; see [1].

A circulant shift of a vector �ℓ∈a by �ℓ∈j , denoted ( )c aj , is a transformation such that ( ( )) = −c aaj i i j for
each �ℓ∈i . LetCa be the circulant matrix obtained from a row vector, a, where the ( )+j 1 th row ofCa is ( )c aj .

Let { }ℓ∈ −a b, 1, 1 be an LP such that ℓ ℓ∑ = ∑ ==
−

=
−

a b 1
i i i i0

1

0

1 , and 1 be the length ℓ row vector of all 1s. For a
complex number = +z x iy, let = −z x iy¯ be the complex conjugate of z. Then,
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is a ( ℓ ) ( ℓ )+ × +2 2 2 2 Hadamard matrix, a matrix with entries in { }±1 with orthogonal columns, where for a
matrix ( )=A aij , ( )=A aij , which will soon become relevant. It is well known that a Hadamard matrix of order
n does not exist if n is not divisible by 4 and >n 2. Then, ∣( ℓ )+4 2 2 , implying that ℓ must be odd for an LP of
length ℓ to exist. It is conjectured that an LP exists for all odd ℓ, or equivalently, there is an ×n n Hadamard
matrix constructed via LPs whenever n is a multiple of 4 [1].

An ×n n matrix with entries from { }− −i i1, 1, , with orthogonal columns with respect to the complex dot
product is called a quaternary (complex) Hadamard matrix. The order of a quaternary Hadamard matrix must
be even [6]. For even ℓ, if { }ℓ∈ − −i ia b, 1, 1, , satisfy equation (1) and equations

ℓ ℓ

∑ ∑= + =
=

−

=

−

a i b1 , 0,

i

i

i

i

0

1

0

1

then H in equation (2) with the upper left ×2 2 submatrix replaced by

⎡
⎣⎢
−
−

⎤
⎦⎥

i

i

1

1

is a quaternary Hadamardmatrix, and such ( )a b, is called a quaternary Legendre pair [6]. It is conjectured that
a quaternary LP exists for every even ℓ [6]. Since if a quaternary Hadamard matrix of order n exists, then a
Hadamard matrix of order n2 must also exist [6], proving this conjecture would also prove the Hadamard
conjecture, i.e., a Hadamard matrix of order n exists for every n divisible by 4.

For two groups N and H , and an action of H on N , let ⋊N H be the semidirect product of N and H as
defined by Rotman [8]. Let�ℓ

× be the group of units in�ℓ. Let ( ) = +j k i ki j, for � �( ) ℓ ℓ∈ ⋊ ×
j k, and �ℓ∈i .

Then, the group� �ℓ ℓ⋊ × acts on each vector a in �ℓ via ( ) ( )= −j k a a, i j k i,
1 . The action of ( ) ≔k d0, k for �ℓ∈ ×

k

on a is called a decimation. Decimations and cyclic shifts do not commute. In fact, ( ) = =− −d c d d c d cr i r r i r ir

1
1 .

Equivalently,

= =−c d d c d c c dor .i r r ir r k rk r
1

The action of the group � �ℓ ℓ⋊ × on �ℓ∈a is used to define an action of � � �( )ℓ ℓ ℓ× ⋊ × on LPs
(quaternary LPs) ( )a b, by (( ) )( ) (( ) ( ) )=j j k j k j ka b a b, , , , , ,

1 2 1 2
, for � �( ) ℓ ℓ∈ ⋊ ×

j k,
1

and � �( ) ℓ ℓ∈ ⋊ ×
j k,
2

,
see [1,6]. Two pairs of { }−1, 1 or { }0, 1 vectors ( ) ( )′ ′a b a b, , , are equivalent if ( )a b, is in the same orbit as ( )′ ′a b,

or ( )′ ′b a, under the action of � � �( )ℓ ℓ ℓ× ⋊ ×. Two pairs of { }− −i i1, 1, , vectors ( ) ( )′ ′a b a b, , , are equivalent if
( )a b, is in the same orbit as ( )′ ′a b, under the action of � � �( )ℓ ℓ ℓ× ⋊ ×. Clearly, if ( )a b, is an LP (quaternary
LP), and ( )′ ′a b, is equivalent to ( )a b, , then ( )′ ′a b, is also an LP (quaternary LP). The following definition
characterizes the inherent symmetries of a vector �ℓ∈a .

Definition 2. For a vector �ℓ∈a , the group

� �{ ∣( )( ) }ℓ ℓ= ∈ = ∈×
G j i j ia a, for somea

is called the multiplier group of a, and each element of Ga is called a multiplier of a.

For � �ℓ ℓ∈ ⋊ ×
g written as a product of cyclic shifts and decimations and �ℓ∈q , the following theorem

shows the connection between Gq and G qg .

Theorem 1. Let � �ℓ ℓ∈ ⋊ ×
g and �ℓ∈q . Then, = −

G gG gq qg

1 and ∣ ∣ ∣ ∣=G Gq qg .

Proof. Observe that ( ) ( )∈ ⇔ =q qr G d cq r i for some � ( )ℓ∈ ⇔ =qi d dr r( ( )) ( ( ))( ) ( )( )= = =− − −q q qg g d g g c g gr i

1 1 1

( )( )−
′ qg c gi

1 for some �ℓ′ ∈i , where =− −
′c g g ci i

1 1 for some �ℓ′ ∈i because � � �ℓ ℓ ℓ⊴ ⋊ ×. Hence, ∈ ⇔r Gq
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( ( )) ( )( ) ( )= =− −
′q q qgd g g gd g g c gr r i

1 1 for some �ℓ′ ∈i . This implies that =−
gG g Gq qg

1 . Then, ∣ ∣ ∣ ∣=G Gq qg as the
map → −

x gxg
1 is one-to-one. □

The following theorem appeared as Theorem 4 in the work of Turner et al. [9].

Theorem 2. Let ℓ be odd and { }ℓ∈b 0, 1 such that ℓ∑ ==
−

b δ
i i0

1 with ( ℓ) =δgcd , 1. Then, there is some �ℓ∈i such
that ( )′ =b bci , and

 �{ ∣ ( ) }ℓ≤ = ∈ ′ = ′′
×

b bG G j d .b b j

The next lemma that follows from Theorems 1 and 2 shows that in Theorem 2, Gb is equal to  ′Gb .

Lemma 1. Let ℓ be odd and { }ℓ∈b 0, 1 such that ℓ∑ ==
−

b δ
i i0

1 with ( ℓ) =δgcd , 1. Then, there is some �ℓ∈i such
that ( )′ =b bci and

 �{ ∣ ( ) }ℓ= = ∈ ′ = ′′
×

b bG G j d .b b j

The following lemma follows from Lemma 1.

Lemma 2. Let ℓ be odd and { }ℓ∈ −b 1, 1 such that ℓ∑ = ′=
−

b δ
i i0

1 with (( ℓ) ℓ)′ + ∕ =δgcd 2, 1. Then, there is some
�ℓ∈i such that ( )′ =b bci , and

 �{ ∣ ( ) }ℓ= = ∈ ′ = ′′
×

b bG G j d .b b j

Proof. Since ( )( ) =i j a a, for some �ℓ∈i if and only if ( )( ) ( )+ ∕ = + ∕i j a 1 a 1, 2 2 for some �ℓ∈i ,

= +G G .b b 1

2

Since, ( ) ( ℓ)
ℓ∑ + ∕ = ′ + ∕=

−
b δ1 2 2

i i0

1 and (( ℓ) ℓ)′ + ∕ =δgcd 2, 1, by Lemma 2, there is some �ℓ∈i such that
(( ) ) ( ( ) )′ = + ∕ = + ∕b b bc c1 12 2i i and

  ( )= = =′+ +
G G G G .b bb

bc
i1

1

2 2

Now
  

( )
( ) = = ′+

G G Gb bc

bc
i

i

1

2

follows from the definition of  ′Gb . □

The following corollary simplifies the search for an LP ( )a b, with multiplier groups Ga and Gb.

Corollary 1. An LP ( )a b, with multiplier groups Ga and Gb exists if and only if an equivalent LP ( )′ ′a b, with
multiplier groups  =′G Ga a and  =′G Gb b exists. Hence, a search for all nonequivalent LPs ( )a b, with multiplier
groups Ga and Gb can be implemented by searching for all nonequivalent LPs ( )′ ′a b, with multiplier groups  ′Ga

and  ′Gb .

Proof. For an LP ( )a b, , ℓ ℓ∑ = ∑ = ′ = ±=
−

=
−

a b δ 1
i i i i0

1

0

1 and ((ℓ ) ℓ)± ∕ =gcd 1 2, 1. Hence, by Lemma 2, there exits
�ℓ∈i i,1 2 such that 

( )=G G au ci1
and 

( )=G G bv ci2
, and ( ) ( )( )a bc c,i i1 2

is an LP equivalent to ( )a b, with multiplier

groups  ( ) =G Ga aci2
, and  ( ) =G Gb bci2

. □

Our repository of LPs provides many examples of LPs ( )a b, with ≠G Gu v. However, for LPs ( )a b, in our
repository with nontrivial multiplier groups, more often than not =G Gu v. On the other hand, for most LPs in
our repository, { }= =G G 1a b .
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Throughout the rest of the article, let the row vectors �ℓ∈a b, , where ℓ be odd, and ℓ= ∕
w e

πi2 . The
discrete Fourier transform of a is ( )

ℓ≔ ∑ =
−

j w aDFT
r

jr

ra 0

1 , and the power spectral density (PSD) of a is
( ) ∣ ( )∣≔j jPSD DFTa a

2 for �ℓ∈j . It is shown in the work of Fletcher et al. [4] that a pair of row vectors
{ }ℓ∈ −a b, 1, 1 form an LP of length ℓ if and only if

ℓ ℓ

∑ ∑= = ±
=

−

=

−

a b 1,

i

i

i

i

0

1

0

1

(3)

�( ) ( ) ℓ { }ℓ+ = + ∀ ∈j j jPSD PSD 2 2 \ 0 .a b (4)

If { }ℓ∈ −a 1, 1 , then ( ) { }ℓ+ ∕ ∈a 1 2 0, 1 . It is plain to see that

�( )
( )

{ }ℓ= ∀ ∈+ j

j

jPSD
PSD

4
\ 0 ,

a

a 1

2

(5)

and

( ) ∣ ( )∣
ℓ ℓ

ℓ

⎟⎜= =
⎛

⎝

∑ + ⎞

⎠
= ⎛

⎝
± ⎞

⎠
=
−

+ +
a

PSD 0 DFT 0
2

1

2
.

i i
2 0

1 2
2

a 1 a 1

2 2

(6)

The following lemma follows from equations (3)–(6).

Lemma 3. Let { }ℓ∈ −a b, 1, 1 form an LP of length ℓ. Then,

�
ℓ

( ) ( )
ℓ

{ }

ℓ ℓ

ℓ∑ ∑+
=

+
=

±
+ =

+
∀ ∈

=

−

=

−
+ +

a b

j j j

1

2

1

2

1

2
, PSD PSD

1

2
\ 0 .

i

i

i

i

0

1

0

1

a 1 b 1

2 2

The following theorem from the work of Fletcher et al. [4] determines the relation between ( )jPSDa

and ( )jPAFa .

Theorem 3. (Wiener-Khinchin theorem) The PSD of �ℓ∈a is equal to the DFT of its PAF, i.e.,

�( ) ( )

ℓ

ℓ∑= ∈
=

−

k j w for kPSD PAF .

j

jk

a a

0

1

Moreover, the PAF of a is equal to the inverse DFT of a’s PSD, i.e.,

�( )
ℓ

( )

ℓ

ℓ∑= ∈
=

−
−

j k w for jPAF
1

PSD .

k

jk

a a

0

1

The following corollary follows directly from Theorem 3 and equation (6).

Corollary 2. Let { }ℓ∈ −a b, 1, 1 form an LP of length ℓ. Then,

( ) ( )

ℓ

∑= =
=

−

j1 PSD 0 PAF ,

j

a a

0

1

and

ℓ
( ) ( )

ℓ

∑⎛
⎝

± ⎞
⎠ = =

=

−
+ + j

1

2
PSD 0 PAF .

j

2

0

1

a 1 a 1

2 2

Throughout the article, WLOG, we assume that ℓ ℓ∑ = ∑ ==
−

=
−

a b 1
i i i i0

1

0

1 . In addition, let ( ) = ∑ <e a aa
i j i j2 be the

elementary symmetric polynomial of degree 2 and ( ) = ∑p aa
i i2

2 be the power sum symmetric polynomial of
degree 2.
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For [ ]ℓ= −a aa , …,0 1 and ℓ = nm for some positive integers n and m, define = ∑ =
−

+A aj i

m

ni j0

1 for =j

−n0,…, 1. The vector � [ ]= −A A, …,m n0 1 is called the m-compression of a [2]. Throughout the article, let
� [ ]= −A A, …,m n0 1 and � [ ]= −B B, …,m n0 1 be the m-compressions of a and b.

The following theorem from the work of Turner et al. [10] shows how the DFT and PSD of the m-compres-
sion of a vector a are related to the DFT and PSD of a.

Theorem 4. Let a be a vector of length ℓ = nm, and�m be the m-compression of a. Then, � ( ) ( )=j mjDFT DFTam

and � ( ) ( )=j mjPSD PSDam
for { }∈ −j n0, …, 1 .

Compression of complementary vectors has proved to be a valuable tool for finding several previously
unknown complementary vectors (vectors whose PAF vectors’ jth entries sum to a constant for ≠j 0) in the
past decade [2,5, 6,10]. Compression-based search algorithms are based on a two-step process. In the first step,
several candidate compression vectors are computed. The second step involves searching for decompressions
of the candidate compressed vectors from the first step.

In Section 2, we find restrictions on the PSD values of LP vectors computed using only the fifth primitive
roots of unity. We then corroborate our theoretical restrictions by computing all PSD values, which are only
based on the fifth primitive roots of unity for all LP vectors that we possess. Then, based on these restrictions,
we develop Conjecture 1, which applies to ℓ ≡ 0 (mod 5) cases. We then show how this conjecture can be used
to prune the search space. Moreover, we provide evidence for Conjecture 1 by confirming that it is valid for all
ℓ ≤ 85 such that ℓ ≡ 0 (mod 5) (with the sole exception of ℓ = 75).

In Section 3, we first discuss the limitations of the methods used by Turner et al. [10] for finding LPs of
length ℓ > 77 and how to overcome those limitations. Then, by assuming that the sought after LP ( )a b, satisfies

{ } ≤ G1, 69 a and { } ≤ G1, 69 b and using the method in Section 4.1.1 of the work of Kotsireas and Koutschan [5]
with { }=H 1, 691 , we find the first known examples of LPs of length 85 that satisfy this property. The length
ℓ = 85 has been the smallest open-length case. In addition, we show how to exploit a different concept of
balance applied to LPs of composite order. As an application, we find the first examples of LPs of length 87.

In Section 4, we describe the partial searches that have been implemented for LPs of length 115.
In Section 5, we provide the current list of ten ℓ values less than 200 for which the LP existence problem

remains unsolved.

2 LPs of lengths  ≡≡ (( ))0 mod 5

For a vector of length ℓ = nm, the following lemma expresses a sum of PAFs in terms of the PAF of the
compressed vector �m.

Lemma 4. Let a be a vector of length ℓ = nm for positive odd integers n and m. Then,

�( ) ( )∑ + =
=

−

nj k kPAF PAF .

j

m

a

0

1

m

Proof.

�

( )

( )

ℓ

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

∑

⎟⎜

+ = =

= =
⎛
⎝

⎞
⎠

⎛

⎝
⎜

⎞

⎠
⎟

= =

=

−

=

−

=

−

− −
=

−

=

−

=

−

+ − + −

=

−

=

−

=

−

+ + −
=

−

=

−

+
=

−

+ −

=

−

−

nj k a a a a

a a a a

A A k

PAF

PAF .

j

m

a

j

m

i

i i nj k

j

m

i

m

r

n

ni r ni nj r k

r

n

i

m

j

m

ni r nj r k

r

n

i

m

ni r

j

m

nj r k

r

n

r r k

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

m
□
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For a vector of length ℓ = m5 , the following lemma determines ( )rmPSDa in terms of ( )jPAFa for �ℓ∈j .

Lemma 5. Let �∈ ≥m 1, { }∈r 1, …,4 , and a be a vector of length ℓ = m5 . Then,

( ) ( )
( )

( )∑ ∑ ∑= −
+ −

+
=

−

=

+⎢⎣ ⎥⎦

=

−

rm j j kPSD PAF 5
1 1 5

2
PAF 5 .

j

m

k

k

j

m

a a a

0

1

1

2

0

1r

2

Proof. Let ℓ= ∕
w e

πi2 and ′ =w w
m. By Theorem 3,

( ) ( ) ( )( ) ( )( )

( ) ( )

( )
( )

( )

ℓ ℓ

( )

∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑⎟⎜

= = ′ = + ′

= + ⎛
⎝

⎞
⎠ +

= +
⎛
⎝

− + − ⎞
⎠

+

=

−

=

−

= =

−

=

−

= =

−

=

−

=

⌊ ∕ ⌋

=

−

rm j w j w j k w

j

πrk

j k

j j k

PSD PAF PAF PAF 5

PAF 5 2 cos
2

5
PAF 5

PAF 5
1 1 5

2
PAF 5 ,

j

rmj

j

rj

k j

m

rk

j

m

k j

m

j

m

k

rk

j

m

a a a a

a a

a a

0

1

0

1

0

4

0

1

0

1

1

2

0

1

0

1

1

2 mod 5 2

0

1

from which the assertion follows directly. □

Corollary 3. For a pair of vectors ( )a b, of length ℓ = m5 , the LP constraints

( ) ( ) ℓ+ = +rm rmPSD PSD 2 2a b

are satisfied for { }∈r 1, …,4 if and only if

( ) ( )
( ) ( )

ℓ∑ ∑ ∑( + ) −
+ + +

= +
=

−

=

−

=
j j

j k j k

PAF 5 PAF 5
PAF 5 PAF 5

2
2 2

j

m

j

m

k

a b

a b

0

1

0

1

1

2

and

( ) ( ) ( )∑ ∑ − ( + + + ) =
=

−

=
j k j k1 PAF 5 PAF 5 0.

j

m

k

k

a b

0

1

1

2

The following corollary follows from Lemmas 4 and 5.

Corollary 4. Let a be a vector of length m5 for some �∈ ≥m 1. Let the m-compression of a be � =m

[ ]A A A A A, , , ,0 1 2 3 4 . Then,

� �
� �

( ) ( ) ( ) ( )
( ) ( )

⎟⎜= − + − ⎛
⎝

− ⎞
⎠

⎢⎣ ⎥⎦rm p ePSD
1

2
1 5

PAF 1 PAF 2

2
m ma 2 2

r
m m

2 (7)

for =r 1,…, 4.

Proposition 1. Let ( )a b, be an LP of length ℓ = m5 with m odd. Then, there exist integers �∈ ≥n n,1 2 0 with
ℓ+ = +n n 2 21 2 and �∈x such that

( ) ( )

( ) ( )

= + −

= − −

⎢⎣ ⎥⎦

⎢⎣ ⎥⎦

rm n x

rm n x

PSD 1 5 ,

PSD 1 5

a

b

1

2

r

r

2

2

(8)

for =r 1,…, 4, where

� � � �( ) ( ) ( ) ( )
=

−
= −

−
x

PAF 1 PAF 2

2

PAF 1 PAF 2

2
.

m m m m (9)
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Proof. Equation (8) directly follows from equation (7), and the fact that an LP ( )a b, of length ℓ = m5 satisfies
( ) ( ) ℓ+ = +rm rmPSD PSD 2 2a b for =r 1,…, 4. Since, by our general assumption, the vectors a and b satisfy

ℓ ℓ∑ = ∑ ==
−

=
−

a b 1
i i i i0

1

0

1 , the same holds true for their m-compressions, i.e., ∑ = ∑ == =A B 1
i i i i0

4

0

4 . Consequently,

� �( ) ( )(∑ ) = + == A p e2 1
i i m m0

4 2

2 2 , and analogously for �m. Then, by Corollary 4,

� � �

� � �

( ) ( ) ( )

( ) ( ) ( )

= − = ( − )

= − = ( − )

n p e p

n p e p

1

2

1

4
5 1 ,

1

2

1

4
5 1 .

m m m

m m m

1 2 2 2

2 2 2 2

(10)

This shows that n1 and n2 are integers, because �( )p m2
is the sum of five odd squares and hence equals

1 mod 4. To see that x is an integer, note that an odd m implies that � ( )kPAF
m

and � ( )kPAF
m

for =k 1, 2 are all
odd. Equation (9) follows from Corollary 4 and equation (8).

We will next prove that ≤ n0 1. By symmetry, this will also give us ≤ n0 2. By equations (7) and (10)

� �( ) ( )
⎟⎜= − = −

⎛

⎝

∑ ⎞

⎠
=n p p A4

25 5

1

25 5 5
.

m m i i1 2 2 0

4 2

Hence, ∕n4 251 is the population variance of the numbers in { }A A A A A, , , ,0 1 2 3 4 implying that ≤ n0 1. □

Experimental evidence gathered for ℓ = 15, 25, 35, 45, and 55 indicates that there are LPs of these orders
such that =x 0 and

�

�

( ) ℓ

( ) ℓ

= ( − ) = + = +

= ( − ) = + = +

n p m

n p m

1

4
5 1 1 5 1,

1

4
5 1 1 5 1.

m

m

1 2

2 2

(11)

Solving equation (11) for �( )p m2
and �( )p m2

, we obtain that equation (11) is equivalent to

� �( ) ( )= = +p p m4 1.m m2 2

The next two lemmas determine restrictions on n n,1 2, and x in Proposition 1.

Lemma 6. Each of n n,1 2, and x in Proposition 1 must be even.

Proof. By symmetry, it suffices to prove the result for n1 and x . Let a be as in Proposition 1. By replacing a with
( )+ ∕a 1 2 in Lemma 5 and by equation (5), we obtain that

( ) = + =
+

+ m

α α n x

PSD
2 2

5
5

4

1 2 1
a 1

2

for some �∈α α,1 2 . Hence, by the linear independence of 1 and 5 in the field extension �[ ]5 , we have
= ∕α n 21 1 and = ∕α x 22 , implying that both n1 and x must be even. □

Lemma 7. Let n n,1 2, and x be as in Proposition 1. Then, ( )+ ≡n x 0 mod 4i for =i 1, 2.

Proof. By symmetry, it suffices to prove the result for n1 and x . Let ′ = ∕
w e

πi2 5 and a be as in Proposition 1. Then,
by the proof of Lemma 5,

( ) ( )( )∑ ∑= + ′ = +
= =

−

m j k w n xPSD PAF 5 5 .

k j

m

k

a a

0

4

0

1

1

Now, by equation (5),

Legendre pairs of lengths ℓ ≡ 0 (mod 5)  7



( ) ( )( )∑ ∑= + ′ =
+

= =

−
+ +m j k w

n x

PSD PAF 5
5

4
.

k j

m

k

0

4

0

1

1
a 1 a 1

2 2

Since ( ) ( )( ) ( )+ = − −+ ∕ + ∕j k j kPAF 5 PAF 5a 1 a 12 2 for { }∈k 1, 2 ,

( ) ( ) (( ) ( ) )= + ′ + ′ + ′ + ′+ m S S w w S w wPSD ,0 1 2
2 2

a 1

2

where ( )( )= ∑ =
−

+ ∕S jPAF 5
j

m

a 10 0

1

2 and ( )( )= ∑ +=
−

+ ∕S j iPAF 5i j

m

a 10

1

2 for =i 1, 2. Observe that �∈ ≥S S S, ,0 1 2 1. Then,
since �( ) ( ) ( ) [ ]′ + ′ = ′ + ′ − ∈ ′ + ′w w w w w w22 2 2 ,

�( ) ( ) (( ) ( ) ) [ ]= + ′ + ′ + ′ + ′ ∈ ′ + ′+ m S S w w S w w w wPSD .0 1 2
2 2

a 1

2

Then, since = ′ + ′ +w w5 2 2 1,

�( )
( )

[ ]=
+

=
+ + ′ + ′

∈ ′ + ′+ m

n x n x x w w

w wPSD
5

4

2

4
.

1 1
a 1

2

Hence, ( )+ ≡n x 0 mod 41 . □

The following general lemma will be used to find another restriction on n1 and n2 in Proposition 1.

Lemma 8. Let a be a vector of length ℓ = mn for some positive integers m and n. Then,

�( ) ( ) ( )∑ ∑= =
=

−

=

−

km n xn nPSD PAF PAF 0 .

k

n

x

m

a a

0

1

0

1

m

Proof. Since �( ) ( )=km kPSD PSDa m
, by applying the inverse Fourier transform to � �[ ( ) ( )]−nPSD 0 … PSD 1

m m
,

we obtain � �[ ( ) ( )]−nPAF 0 , …,PAF 1
m m

, which at 0 is what the lemma claims (cf. Theorem 3). □

The following lemma provides an additional restriction on the values of n1 and n2 in Proposition 1.

Lemma 9. Let na b, , ,1 and n2 be as in Proposition 1. Then, ( )≡n 6 mod 10i for =i 1, 2.

Proof. By symmetry, it suffices to prove the result for =i 1. By Lemma 8 and Proposition 1,

( ) ( ) ( )∑ ∑ ⎟⎜= + =
⎛
⎝

⎞
⎠

≡
= =

−

km n xPSD 1 4 5 PAF 5 0 mod 5 .

k x

m

a a

0

4

1

0

1

Alternatively, we can employ �( ) = +p s4 1m2
(see the proof of Proposition 1) to deduce that =n1

�( )( )− ∕ = +p s5 1 4 5 1m2
for some integer s. Now the result follows from the Chinese remainder theorem

since n1 must be even by Lemma 6. □

The following corollary provides upper and lower bounds on n1 and n2 in Proposition 1.

Corollary 5. Let ℓ = m5 , and let a, b, n1, and n2 be as in Proposition 1. Then, ℓ≤ ≤ −n6 2 4i for =i 1, 2.

Proof. By Proposition 1, we obtain ℓ≤ ≤ + = +n m0 2 2 10 2i for =i 1, 2. By Lemma 9, we obtain ≤ ≤n6 i

ℓ − = −m2 4 10 4 for =i 1, 2. □

The lower bound for ni in Corollary 5 is achieved by taking � [ ]= − −1, 1, 1, 1, 1 .m

The following corollary now follows from Proposition 1, Corollary 5, and Lemma 7.

Corollary 6. Let ℓ = m5 , and let a, b, n1, n2, and x be as in Proposition 1. Then, there exist nonnegative integers k1

and k2 such that = +n k10 6i i for =i 1, 2, + = −k k m 11 2 , and + ≡k x2 2i (mod 4).

8  Ilias S. Kotsireas et al.



Corollary 6 summarizes all the constraints obtained in this section regarding n1, n2, and x in equation (8).
In fact, all the constraints regarding n n,1 2, and x that appear before Corollary 6 are implied by Corollary 6.

Exhaustive searches for ℓ = 5, 15, 25 have revealed that most LPs of these lengths have ℓ= = +n n 11 2 ,
where n1 and n2 are as in Proposition 1. The case ℓ= = +n n 11 2 corresponds to taking ( )= = − ∕k k m 1 21 2 in
Corollary 6. Non-exhaustive searches for larger odd values of ℓ, which are multiples of 5, have revealed the
same pattern, i.e., the standard relationship ( ) ( ) ℓ+ = +m mPSD PSD 2 2a b is materialized (often but not
always) in the same manner. These observations give rise to the following conjecture.

Conjecture 1. For every odd positive integer ℓ ( )≡ 0 mod 5 , there exists at least one LP ( )a b, of length ℓ = m5

such that

( ) ℓ ( )

( ) ℓ ( )

= + + −

= + − −

⎢⎣ ⎥⎦

⎢⎣ ⎥⎦

rm x

rm x

PSD 1 1 5

PSD 1 1 5

a

b

r

r

2

2

(12)

for =r 1,…, 4, and for some nonnegative integer (ℓ ) ℓ ( )≡ − + ≡ +x 1 1 mod 4 .

By formula (8), Conjecture 1 holds for one r if and only if =n n .1 2 Again, by formula (8), if Conjecture 1
holds for one r , then it also holds for the other rs. Conjecture 1 states that for each odd positive ℓ ( )≡ 0 mod 5 ,
there exists a length ℓ LP ( )a b, such that ℓ= = +n n 11 2 in Proposition 1. That is, the constant ℓ +2 2 can be
distributed in a “balanced”manner between ( )rmPSDa and ( )rmPSDb for { }∈r 1, …,4 . On the other hand, there
exist LPs ( )a b, of length ℓ = m5 , which do not satisfy =n n1 2. Table 1 provides computational evidence for
Conjecture 1. Cases =m 1, 3, 5 are based on complete – and the remaining cases are based on partial –
classifications of all nonequivalent LPs, where equivalent LPs satisfying Conjecture 1 have the same x value.
This is because

( ) ( )( ) =rm krmPSD PSDj k a a,
1

for each � �( ) ℓ ℓ∈ ⋊ ×
j k,
1

and { }∈r 1, …,4 .
The following proposition provides necessary and sufficient constraints on the m-compressed vectors

� �( ),m m of an LP ( )a b, of length ℓ = m5 to satisfy equation (12).

Proposition 2. The m-compressed vectors� [ ]= A A, …,m 0 4 and� [ ]= B B, …,m 0 4 of an LP ( )a b, of length ℓ = m5

satisfy the conditions in Conjecture 1 if and only if

� �� �( ) ( ) ( ) ( )= = = = +p p mPAF 0 PAF 0 4 1.m m2 2m m
(13)

Proof. This result follows from Proposition 1 and equation (10). □

Equation (13) in Proposition 2 drastically reduces the search space for an LP ( )a b, satisfying the conditions
in Conjecture 1. For such an LP, we are only interested in all-odd solutions to equation (13) since Ai and Bi are

Table 1: Computationally verified cases for Conjecture 1 with their corresponding x value(s)

m  == m5 x

1 5 2
3 15 0, 4

5 25 2, 6, 10

7 35 0, 8, 16

9 45 2, 6, 10, 14, 18

11 55 4, 8, 12, 20, 24

13 65 14
17 85 18

Legendre pairs of lengths ℓ ≡ 0 (mod 5)  9



odd numbers for =i 0,…, 4. Another consequence of Proposition 2 is that the alphabet of the possible m-com-
pressed vectors � �( ),m m is also significantly truncated. More specifically, while the full alphabet for candi-
date m-compressed vectors is

{ ( ) ( ) }− − − − + −m m m m, 2 , …, 1, 1, …, 2 , ,

by Proposition 2, Ai is an odd integer with ∣ ∣ ≤ − <A m m4 3 2i for �ℓ∈i .
Next, we show that Conjecture 1 cannot be ruled out by the necessary constraints [equation (13)] and

∑ = ∑ == =A B 1
i i i i0

4

0

4 for LPs of lengths ℓ = 5, 15, 25, 35, 45, 55, 65, 75, 85, 95, 105, and 115. In Table 2, we sum-
marize the all-odd solutions to equation (13) for odd ℓ such that ℓ = m5 and { }∈m 1, …,23 . In the last column,
we record the all-odd solutions (up to sign changes and permutations) of the five sums-of-squares Diophantine
equations of the fourth column. Since the linear equations ∑ = ∑ == =A B 1

i i i i0

4

0

4 must also be satisfied, some of
these all-odd solutions are ruled out, and this is indicated by boldface. Conjecture 1 has practical value as it can
be used to prune the search space when ℓ ≡ 0 (mod 5) by only decompressing m-compressions, which are
compatible with the all-odd solutions in Table 2.

3 Finding LPs of lengths  == 85 and  == 87

The orbit of a vector b under circulant shifts and decimations is called the decimation class of b [9]. Since
� � �( )ℓ ℓ ℓ× ⋊ × acts on LPs, the search space for LPs is drastically reduced by searching only across decima-
tion class representatives [4]. In fact, to classify { }0, 1 LPs up to equivalence, in light of equation (3), Fletcher
et al. [4] exhaustively generated a set of all decimation class representatives { }ℓ∈b 0, 1 for odd ℓ ≤ 47 such that

(ℓ )
ℓ∑ = + ∕=

−
b 1 2

i i0

1 . By equation (3), they then deleted the class representatives b such that ( ) (ℓ )> + ∕jPSD 1 2b

for some � { }ℓ∈j \ 0 . Then, among all decimations of a given vector b, they selected the decimation ( )bdk with
∣ ( ) (ℓ ) ∣( ) − + ∕PSD 1 1 4bdk

of greatest magnitude to be the representative of its decimation class, where they
required a vector b to have two different decimation class representatives if

Table 2: All-odd solutions to equations (13)

 m (( ))
(( ))
rm

rm

PSD

PSD

a

b

∑∑
∑∑

==

==

A

B

i i

i i

0

4
2

0

4
2

All-odd solutions

5 1
( )+ ± ⎢⎣ ⎥⎦ x5 1 1 5

r

2
⋅ + =4 1 1 5 [1, 1, 1, 1, 1]

15 3
( )+ ± ⎢⎣ ⎥⎦ x15 1 1 5

r

2
⋅ + =4 3 1 13 [1, 1, 1, 1, 3]

25 5
( )+ ± ⎢⎣ ⎥⎦ x25 1 1 5

r

2
⋅ + =4 5 1 21 [1, 1, 1, 3, 3]

35 7
( )+ ± ⎢⎣ ⎥⎦ x35 1 1 5

r

2
⋅ + =4 7 1 29 [1, 1, 1, 1, 5], [1, 1, 3, 3, 3]

45 9
( )+ ± ⎢⎣ ⎥⎦ x45 1 1 5

r

2
⋅ + =4 9 1 37 [1, 1, 1, 3, 5], [1, 3, 3, 3, 3]

55 11
( )+ ± ⎢⎣ ⎥⎦ x55 1 1 5

r

2
⋅ + =4 11 1 45 [1, 1, 3, 3, 5], [3, 3, 3, 3, 3]

65 13
( )+ ± ⎢⎣ ⎥⎦ x65 1 1 5

r

2
⋅ + =4 13 1 53 [1, 1, 1, 1, 7], [1, 1, 1, 5, 5], [1, 3, 3, 3, 5]

75 15
( )+ ± ⎢⎣ ⎥⎦ x75 1 1 5

r

2
⋅ + =4 15 1 61 [1, 1, 1, 3, 7], [1, 1, 3, 5, 5], [3, 3, 3, 3, 5]

85 17
( )+ ± ⎢⎣ ⎥⎦ x85 1 1 5

r

2
⋅ + =4 17 1 69 [1, 1, 3, 3, 7], [1, 3, 3, 5, 5]

95 19
( )+ ± ⎢⎣ ⎥⎦ x95 1 1 5

r

2
⋅ + =4 19 1 77 [1, 1, 1, 5, 7], [1, 1, 5, 5, 5], [1, 3, 3, 3, 7], [3, 3, 3, 5, 5]

105 21
( )+ ± ⎢⎣ ⎥⎦ x105 1 1 5

r

2
⋅ + =4 21 1 85 [1, 1, 1, 1, 9], [1, 1, 3, 5, 7], [1, 3, 5, 5, 5], [3, 3, 3, 3, 7]

115 23
( )+ ± ⎢⎣ ⎥⎦ x115 1 1 5

r

2
⋅ + =4 23 1 93 [1, 1, 1, 3, 9], [1, 3, 3, 5, 7], [3, 3, 5, 5, 5]
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� �
( )

ℓ
( )

ℓ

( ) ( )

⎛
⎝ −

+ ⎞
⎠ = − ⎛

⎝ −
+ ⎞

⎠ ≠
∈ ∈× ×

max PSD 1
1

4
min PSD 1

1

4
0.b b

k

d

k

dk k

In the second step, they sorted the list of class representative bs according to

( )
ℓ

−
+

PSD 1
1

4
.b

In the last step, they located pairs of class representatives a and b that satisfied

( )
ℓ

( )
ℓ

−
+

+ −
+

=PSD 1
1

4
PSD 1

1

4
0.a b

(14)

To confirm that the LP property was satisfied by all the resulting pairs, they also deleted pairs ( )a b, satisfying
equation (14) but not equation (1). In the end, Fletcher et al. [4] classified all LPs of length ≤47 up to equivalence
using this method. A similar method that additionally exploited simultaneous decompressions of candidate
compressed vectors was implemented in the work of Turner et al. [10]. This method found an LP of length 77
for the first time.

For lengths ℓ = 55 and 77, Table 3 reports the decimation class counts for the number of decimation classes
of length ℓ, { }0, 1 vectors with (ℓ )+ ∕1 2 ones reported in [9], and the solution times for the simultaneous
decompression-based searches reported in [10].

Assuming that the number of compressed pairs and the time required for decompression scales
linearly on average with the number of decimation classes, we expect the Table 4 time requirements for
an exhaustive search or partial search to first solution if the method in [10] is used for lengths ℓ = 85

and ℓ = 87.
These time estimates are optimistic as experiments suggest that the growth rate is superlinear in the

number of decimation classes. This growing magnitude of complexity precluded Turner et al. [10] from
investigating larger open LP problems. Partial searches for LPs using the compression method for ℓ > 77

only remain viable by reducing the number of complementary compressed vectors or rather by selecting the
complementary compressions with a higher likelihood of producing an LP. Alternatively, by Corollary 1, we
can search for an LP ( )a b, that has multiplier groups Ga and Gb, both containing some nontrivial elements of
�×

n
. This would reduce the search space drastically and can bring ℓ > 77 cases within computational reach if

such an LP exists. For ℓ = m3 , { }∈m 39, 43, 49 , Kotsireas and Koutschan [5] used a method that exploits such a
property along with a method that reduces the possible values of ( )mPSDa and keeps only the vectors whose

( )mPSDa are within the reduced set and found the first examples of LPs of lengths 117, 129, and 147. Kotsireas
and Koutschan [5] also found an LP of length 133 by solely restricting the search to LPs ( )a b, whose multiplier
groups Ga and Gb that both contained the group �{ }= < ×

G 1, 11, 121 133.

3.1 LPs of length  == 85

We used the method in Section 4.1.1 in the work of Kotsireas and Koutschan [5] with { }=H 1, 691 and Corollary
1 to restrict the search space for LPs of length ℓ = 85 by assuming that the sought-after LP ( )a b, has multiplier
groups Ga and Gb satisfying { }= ≤H G1, 69 a1 and { }= ≤H G1, 69 b1 . This method found the first known exam-
ples of LPs of length ℓ = 85. This had been the smallest previously unknown length case for LPs. The subgroup

Table 3: Decimation class counts in the work of Turner et al. [9] and solution times for simultaneous decompression-based searches in
the work of Turner et al. [10]

Length  Number of decimation classes Exhaustive search (CPU hours) One solution (CPU hours)

55 ×1.738341231644 1012 101, 542.4 —

77 ×2.945564382817 1018 — 182, 280

Legendre pairs of lengths ℓ ≡ 0 (mod 5)  11



{ }=H 1, 691 of �×
85 acts on �85 and yields 16 orbits of size 1 and 34 orbits of size 2. We searched for an LP of

length ℓ = 85, which could be obtained by combining the orbits of the subgroup H1. This restriction has
the benefit of reducing the search space, provided that such an LP exists. We chose 12 orbits of size 1 and
15 orbits of size 2 to make blocks of size ⋅ + ⋅ =12 1 15 2 42. Here, each block of size 42 consists of positions

of −1s determining the vectors a and b. Therefore, the size of the search space was ⎛
⎝

⎞
⎠ ⋅ ⎛

⎝
⎞
⎠ =16

12

34

15

⋅ =1,820 1,855,967,520 3,377,860,886,400 . This search was not exhaustive and was interrupted after traversing
2.6% of the search space. This took about 100 h of CPU time. This search was done on 64 compute nodes, each
with two 8-core Intel Haswell CPUs (Xeon E5-2630v3, 2.4Ghz) and 128 GB RAM. For this search, we implemented
the same PSD test in Section 4 of the work of Kotsireas and Koutschan [5] without checking if the PSD value at
ℓ∕3 is from a finite list of candidates, and used the same method as in Section 4 of the work of Kotsireas and
Koutschan [5] to identify LPs among vectors that passed the PSD test. However, this search did not take
advantage of Conjecture 1 by only keeping the vectors a that satisfied � ( ) =PAF 0 69

17
for the 17 compression

�17 of a as Conjecture 1 had not yet been formulated at the time of the search. Our search yielded four
equivalent (one nonequivalent) LPs of length ℓ = 85 made out of six different vectors. Their lexicographic rank
encodings as subsets of size 12 out of 16 and 15 out of 34 are

({ } { })

({ } { })

({ } { })

({ } { })

12, 1321116338 , 42, 1275934280 ,

12, 1843909851 , 42, 606586783 ,

42, 1275934280 , 9, 1555522731 ,

42, 606586783 , 9, 788215097 .

For lexicographic ranking and unranking algorithms for subsets of size k , we refer the readers to the work of
Kreher and Stinson [7]. For the first LP ( )a b, of length ℓ = 85 shown above, its lexicographic rank encoding
({ } { })12, 1321116338 , 42, 1275934280 is decoded as follows:

• In the space of ⎛
⎝

⎞
⎠ = 1,820

16

12
, 12 subsets of { }1, …,16 , decode

{ }

{ }

=
=

a

b

12 as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15 ,

42 as 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 14, 15 .

ones

ones

• In the space of ⎛
⎝

⎞
⎠ = 1, 855, 967, 520

34

15
15 subsets of { }1, …,34 , decode

{ }

{ }

=
=

a

b

1321116338 as 3, 4, 5, 7, 10, 11, 22, 24, 25, 27, 28, 29, 30, 31, 34 ,

1275934280 as 2, 8, 10, 11, 12, 15, 19, 21, 23, 25, 26, 28, 29, 33, 34 .

twos

twos

• Enumerate the 16 orbits of size 1 in increasing order as follows:

{{ } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { }}=O 5 , 10 , 15 , 20 , 25 , 30 , 35 , 40 , 45 , 50 , 55 , 60 , 65 , 70 , 75 , 80 .1

• Enumerate the 34 orbits of size 2 in increasing order of their smallest element as {{ }=O 1, 692 , { }2, 53 , { }3, 37 ,
{ }4, 21 , { }6, 74 , { }7, 58 , { }8, 42 , { }9, 26 , { }11, 79 , { }12, 63 , { }13, 47 , { }14, 31 , { }16, 84 , { }17, 68 , { }18, 52 , { ]19, 36 ,
{ ]22, 73 ,{23, 57},{24, 41},{27, 78},{28, 62},{29, 46},{32, 83},{33, 67},{34, 51},{38, 72},{39, 56},{ }43, 77 , { }44, 61 ,
{ }48, 82 , { }49, 66 , { }54, 71 , { }59, 76 , { }}64, 81 .

• Make a block of size 42 of the indices of the positions of the −1 elements in a, by combining 12 elements of O1

whose indices are given by aones and 15 elements of O2 whose indices are given by atwos. This yields the

Table 4: Expected time needed for an exhaustive search and partial search to first solution using the method in the work of Turner
et al. [10]

Length  Number of decimation classes Exhaustive search (CPU hours) One solution (CPU hours)

85 ×6.100692175209 1020 ×3.563621 1013 37, 752, 839

87 ×2.693812140345 1021 ×1.573547 1014 166, 700, 847

12  Ilias S. Kotsireas et al.



following a block of size 42: {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 70, 75, 3, 37, 4, 21, 6, 74, 8, 42, 12, 63, 13, 47, 29, 46,
33, 67, 34, 51, 39, 56, 43, 77, 44, 61, 48, 82, 49, 66, 64, }81 .

• Make a block of size 42 of the indices of the positions of the −1 elements in b by combining 12 elements of O1

whose indices are given by bones and 15 elements of O2 whose indices are given by btwos. This yields the
following b block of size 42: {5, 10, 15, 20, 25, 30, 35, 40, 50, 55, 70, 75, 2, 53, 9, 26, 12, 63, 13, 47, 14, 31, 18, 52, 24, 41,
28, 62, 32, 83, 34, 51, 38, 72, 43, 77, 44, 61, 59, 76, 64, }81 .

• The above a and b blocks (both of size 42) yield an LP for ℓ = 85.

For the first LP ( )a b, of length ℓ = 85 shown above, the 17 compressions are

� �[ ] [ ]= − = −1, 3, 3, 1, 7 , 3, 1, 1, 3, 7 .17 17

These possess the properties required by Proposition 2. That is,

� �( ) ( )= = ⋅ + =PAF 0 PAF 0 4 17 1 69.
17 17

As a consequence, the coefficients of 5 in ( )rPSD 17a and ( )rPSD 17b cancel out for =r 1,…, 4. Specifically,

( ) ( )

( ) ( )

= + + − ⋅

= + − − ⋅

⎢⎣ ⎥⎦

⎢⎣ ⎥⎦

r

r

PSD 17 85 1 1 5 18

PSD 17 85 1 1 5 18.

a

b

r

r

2

2

Remark 1. We did not use Conjecture 1 or Corollary 6 in our search for an LP of length 85 because neither
Conjecture 1 nor Corollary 6 had been formulated when we implemented our search. However, the LP we
found happened to satisfy equation (12) in Conjecture 1.

3.2 LPs of length  == 87

Next, we describe our search method for LPs ( )a b, of length ℓ = 87. First, we need the following theorem,
which is a special case of Theorem 3 in [2]:

Theorem 5. Let ( )a b, be an LP of length ℓ = dm. Then, the m-compressed vectors � �( ),m m satisfy

�

� �

� �

( ) ( ) ℓ
ℓ

ℓ
ℓ

( ) ( )
ℓ

{ }

+ = − ⎛
⎝ − ⎞

⎠ = + −

+ = − ∀ ∈

d d

j j

d

j

PAF 0 PAF 0 2 2 1 2 2
2

,

PAF PAF
2

, \ 0 .d

m m

m m

By Theorem 5, the three-compressed vectors � �( ),3 3 of an LP ( )a b, of length ℓ = 87 must contain 14
elements with an absolute value equal to 3 and ⋅ − =2 29 14 44 elements with an absolute value equal to 1.
Experimental evidence from the study of other lengths that are divisible by 3 indicates that� 3 and �3, which
have an equal number of elements with an absolute value equal to 3, are more likely to yield LPs. Hence, we
computed approximately 6,000 candidate 3-compressions satisfying the following constraints:
1. The vectors � � { }∈ − − + +, 3, 1, 1, 33 3

29 contain 14 elements with an absolute value equal to 3 and 44
elements with an absolute value equal to 1.

2. � �( ) ( ) ( )+ = − ⋅ = −s sPAF PAF 2 3 6
3 3

for =s 1,…, 28.
3. � �( ) ( ) ℓ+ = + = ⋅ + =s sPSD PSD 2 2 2 87 2 176

3 3
for =s 1,…, 28.

4. ∑ = ∑ == =A B 1
i i i i0

28

0

28 .
5. Each of� 3 and �3 contains 7 elements with an absolute value equal to 3 and 22 elements with an absolute

value equal to 1.
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Among the above constraints, only constraint 5 is not necessary for a length 87 LP to exist. However,
imposing constraint 5 was essential in greatly reducing the search space to a part where solutions are most
likely to exist. Subsequently, we ran our C 3-uncompression code for approximately 2,000 candidate 3-com-
pressions and discovered the following two LPs of order ℓ = 87:

[

]

[

]

[

]

[

]

= − − − − − − − − − − − − − − − −
− − − − − − − − − − − − − − − −

− − − − − − − − − − −
= − − − − − − − − − − − − − −

− − − − − − − − − − − − − −
− − − − − − − − − − − − − − −

= − − − − − − − − − − − − − − −
− − − − − − − − − − − − − −

− − − − − − − − − − − − − −
= − − − − − − − − − − − −

− − − − − − − − − − − − − − − − −
− − − − − − − − − − − − − −

a

b

a

b

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 .

Both of the above LPs of length ℓ = 87 3-compress to

�

�

[ ]

[ ]

= − − − − − − − − − − − − −
= − − − − − − − − − − − − −

3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 3, 1 ,

3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1 .

3

3

There are seven ±3 s in each of the two vectors � 3 and �3, and this “balanced” configuration yields LPs of
length ℓ = 87. Based on the analysis at the beginning of this section, we can make the following claim.

Claim 1. Without imposing constraint 5, a successful outcome of our search for a length 87 LP would not have
been possible.

4 Searching for LPs of length  == 115

By using Corollary 1, two nonexhaustive searches for an LP ( )a b, of length 115 with multiplier groups Ga and
Gb both containing the subgroup { }1, 91 were performed. The first search was done before Conjecture 1 was
formulated, hence it did not use it. For the first search, the combinations of 0 cosets of size 1 and 29 cosets of

size 2 were considered, yielding a search space of size ⎛
⎝

⎞
⎠ ⋅ ⎛

⎝
⎞
⎠ = 3,560,597,348,629,860

4

0

55

29
. The computation was

aborted after almost 4% of the search space was traversed. This took about 4,359 days of CPU time, and the
output files took up 76 GB of disk space. The second search was done with the implementation of Conjecture 1.
This time, combinations of four cosets of size 1 and 27 cosets of size 2 were considered, yielding a search space

of size ⎛
⎝

⎞
⎠ ⋅ ⎛

⎝
⎞
⎠ = 3,824,345,300,380,220 .

4

4

55

27
This computation was aborted after 3,436 CPU days, when slightly

more than 10% of the search space was traversed. The output files occupied about 64 GB of disk space. For both
of the searches, the same PSD test in Section 4 of the work of Kotsireas and Koutschan [5], without checking if
the PSD value at ℓ∕3 is from a finite list of candidates, was implemented. Both searches used the same method
as in Section 4 of the work of Kotsireas and Koutschan [5] to identify LPs among vectors that passed the PSD
test. The comparison of the two partial searches shows the significant gain (both time-wise and space-wise)
that is obtained from implementing Conjecture 1. Neither the first, nor the second search yielded an LP of
length 115. Both of the searches were done on 64 compute nodes, each with two 8-core Intel Haswell CPUs
(Xeon E5-2630v3, 2.4Ghz) and 128 GB RAM.
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5 Conclusion and future research

Recently, LPs of length 77 were found in [10], and lengths 117, 129, 133, and 147 were found in the work of
Kotsireas and Koutschan [5] for the first time. In this article, we find LPs of (the previously open) lengths 85 and
87. This reduces the list of integers <200 for which the existence of LP problem remains open to the following
ten values:

115, 145, 159, 161, 169, 175, 177, 185, 187, 195.

An LP ( )a b, as defined in this article corresponds to a difference family in�ℓ [1]. In the work of Djokovic
and Kotsireas [3], previously known theory to search for difference families in �ℓ was generalized to search
for difference families in finite abelian groups. A possible direction for future research is generalizing the
theory in this article to difference families in finite abelian groups, i.e., by the structure theorem of finite
abelian groups, groups of the form � � �× × ⋯ ×d d dm1 2

, where di divides +di 1 for = −i m1,…, 1, and
( )≡d 0 mod 5m .
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