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Abstract 

This paper presents a stochastic imputation approach for large datasets using a correla-
tion selection methodology when preferred commercial packages struggle to iterate 
due to numerical problems. A variable range-based guard rail modification is proposed 
that benefits the convergence rate of data elements while simultaneously providing 
increased confidence in the plausibility of the imputations. A large country conflict 
dataset motivates the search to impute missing values well over a common threshold 
of 20% missingness. The Multicollinearity Applied Stepwise Stochastic imputation 
methodology (MASS-impute) capitalizes on correlation between variables within the 
dataset and uses model residuals to estimate unknown values. Examination of the 
methodology provides insight toward choosing linear or nonlinear modeling terms. 
Tailorable tolerances exploit residual information to fit each data element. The method-
ology evaluation includes observing computation time, model fit, and the comparison 
of known values to replaced values created through imputation. Overall, the meth-
odology provides useable and defendable results in imputing missing elements of a 
country conflict dataset.

Keywords: Correlation, Country conflict, Imputation, Stochastic regression

Introduction
Many popular multiple imputation methods rely on a regression framework to develop 
plausible missing values [1]. Although no single imputation method succeeds at being 
the best in all imputation applications [2], some studies demonstrate k-nearest neigh-
bors as the best single imputation method and predictive mean matching (pmm) as the 
best multiple imputation method for the datasets considered [3]. Prior country conflict 
dataset imputations by Ahner and Brantley [4] and Kane [5] also contend that pmm, a 
regression approach multiple imputation bounded to only known values for estimates, 
exhibited superior performance toward their country conflict datasets compared to 
other tested approaches. However, these prior studies were limited to small datasets of 
32 variables. When expanding the 32-variable country conflict dataset into a very large 
dataset, the preferred pmm approach broke down due to numerical problems [6]. In 
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Leiby and Ahner [6], a new regression approach investigated capitalizing on dependent 
variable correlation in a stochastic regression framework to overcome numerical prob-
lems. Although the approach provided promise with favorable results, the algorithm also 
suffered from some “out-of-bounds” imputations and concerns over multicollinearities 
within the independent variables [6]. This research extends the Large Dataset Impu-
tation through Correlation-based Regression approach found in [6] to develop robust 
imputations by including variable range-based guard rails and exploring correlation 
selection discounts.

The large dataset considered consists of 932 continuous data proxies or data elements 
from the Internal Conflict Database [6] allowing direct comparisons between the initial 
method’s results and the extension presented in this paper. The scope of observations 
involves annual data over 10 years from 173 United Nations (UN) member countries 
that possess a total population of over 250K. The observations are recorded as country-
year pairs for a total of 1730 observations. This dataset supplies a diverse selection of 
multiple data elements spanning all three country conflict aspects of political, economic, 
and social influences. Completing the dataset with plausible imputations assists peace 
researchers in developing solutions through increasing sample size power, especially 
when employing analytical modeling.

Within the dataset, 74 of the 932 data elements were complete cases with all country-
year observations. Considering all three patterns of missingness, the missingness of an 
observation in a data element averaged 17.5% while the missingness of a data element 
for a country-year pair observation averaged 14.0%. The diversity of missingness in this 
large dataset presents a good opportunity for multiple imputation which has demon-
strated to be robust even when datasets depart from the normality assumption or when 
the proportion of missingness may be high [7].

The overwhelming majority of data analysis techniques require complete data as 
mathematical operations cannot be applied to non-values. An easy solution to over-
coming this problem is using listwise deletion on the observations with missing values, 
however, such methods increase biasness, underpower sample sizes, or insert unreliable 
estimates [8]. For example, when considering this dataset, listwise deletion would reduce 
the desired 1730 observations down to an unacceptable 3. Imputation, a mathematical 
process of inferring a value to an undocumented attribute of an observation, is then nec-
essary to create a more useable dataset for analysis.

With Rubin’s proposal of multiple imputation, the identification of three distinct pat-
terns of missingness became standard practice, which include missing completely at 
random (MCAR), missing at random (MAR), and missing not at random (MNAR) [9]. 
Within the large dataset, all three categorizations can be observed, which accounts for 
some of the numerical problems encountered when applying pmm. Country conflict 
data often carries the complexity of missing data through multiple lenses: seeing miss-
ingness through unique country-year pairs as observations, missingness through unique 
countries over a time-series of years, and missingness as individual occurrences across 
multiple variables. Some of the missingness could be identified as missing at random, 
while some are obviously worse case as missing not at random.

MCAR is data missing as a random effect in the sample, or in more colloquial terms, 
due to just bad luck. The missingness is not correlated or dependent to any observed 
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or unobserved independent or dependent measurement. MCAR data is rarely found in 
practice, however, it can be perceived that very low missingness in a dataset could be 
identified as such. Each complete data vector would consist of 1730 observations, where 
each represented country may have 10 time-series data points. A worst-case scenario 
would imply that all missingness came from one country. Therefore, keeping missing-
ness less than half the country observations and claiming MCAR would place a data ele-
ment with at most 4 missing observations and still be considered MCAR. This happens 
in 73 of the 932 data elements.

More commonly, MAR ties the missingness to an observed measurement, however, 
the missing data does not depend on the value of the missing data. In the dataset, such 
missingness may manifest in areas such as the Corruption Perception Index score not 
being recorded for a country that is in conflict or data not being measured due to a 
country having an autocratic government and controlling what information is available 
to the public. However, the missing values may be validly imputed by considering other 
observed variables in a model. This assumption would fit the majority of missingness in 
the dataset.

MNAR ties the value of the missingness to the missing value itself or when the miss-
ingness may not be understood by any other observed value. This could manifest at 
the intersection where both high missingness rates are seen across the time-series 
and within a variable column. Such examples include a country having no time-series 
data for a variable and the variable across countries also having high missingness; for 
instance, observational data for the Democratic Republic of Korea having no time-series 
data for Battle-Related Deaths along with the data element also having a cumulative 
84% missingness. This applies to at least three data elements which are observed with 
scrutiny.

Two main issues surfaced in [6] while developing the concept for the Large Dataset 
Imputation through Correlation-based Regression approach. First, there are concerns 
about multicollinearity of independent variables effecting the stability of regression coef-
ficients. Second, regression results may produce imputation estimates that are outliers 
to the distribution of known values undermining the confidence in the plausibility of 
the imputed values. The combination of these two issues are assumed responsible for 
the imputed data vectors that experienced extremely high root mean square error values 
[6]. These issues are addressed in this new imputation process Multicollinearity Applied 
Stepwise Stochastic Imputation (MASS-impute).

Model implementation
Reviewing the original proposed algorithm, the steps can be categorized into three main 
segments: pre-processing, regression modeling, and imputation development. Pre-pro-
cessing consists of two parts: developing a correlation matrix used for nominating vari-
ables and a ranking of variables by missingness. The correlation matrix consists of the 
absolute value Pearson correlation coefficients, r, used for variable selection, and desig-
nated as matrix Q. The rank ordering of data elements establishes that order for impu-
tation with the least missing elements undergoing the imputation process before data 
vectors with more missingness. This is consistent with other imputation methods using 
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multiple imputation by chain equations (MICE) [10]. No changes to the pre-processing 
segment were made from the original method in [6].

The modeling segment selects up to 10 variables for inclusion into a regression 
model to estimate the missing values of a single data element, of which 96% of data 
elements typically select the maximum, varying slightly from iteration to iteration. 
Producing candidate regression coefficients uses a stepwise process of evaluating 
candidate variables with the goal of increasing the adjusted-R2 statistic. The original 
method selected candidate independent variables that had high r linear correlation 
scores with the dependent variable. The method structures itself by leveraging vari-
ables that provide as much useful information as possible to estimate missing data 
points. Theoretically, if one independent variable were perfectly correlated with 
the dependent data element having missing values, then it would be expected that 
perfect prediction could be obtained. Therefore, when selecting individual candi-
date variables for inclusion into the model, the main criteria focuses on increasing 
the adjusted-R2 without regard to multicollinearity with other independent vari-
ables. Often, analysts highlight multicollinearity as a concern when building models; 
modeling with highly correlated independent variables produce unstable estimates, 
inflated variances, and confounding effects, although coefficient instability may be a 
consequence of multicollinearity rather than a product of it [11, 12]. To clarify, the 
perceived multicollinearity problem consists between only the univariate independ-
ent data elements themselves but not with modeling constructs such as interaction 
product terms. Modeling square terms or product terms often highly correlate with 
the individual independent variables, yet do not create multicollinearity problems 
as “multicollinearity neither affects the value of the coefficient of the product term 
nor inflates its standard error” [13]. The multicollinearity problem typically concerns 
model analysis rather than modeling for imputation purposes. Still, imputation prac-
titioners pause for concern when reading van Buuren’s statement that using several 
hundred variables in multiple imputation cannot be feasible due to multicollinear-
ity and computational problems [14]. Solutions to the multicollinearity problem often 
include removing variables to increase parsimony. Some suggest removing variables 
in imputation models should they have large amounts of missing data due to incom-
plete cases, failure to have adequate association with the dependent variable (abso-
lute correlation value greater than 0.5), or high correlation with other independent 
variables resulting in not adding additional value to the model [12]. Yet excluding 
variables with high partial correlation simultaneously increases the risk of omitted 
variable bias [11]. Despite the hazards of multicollinearity, the implications may be 
better described as a problem of degree rather than kind [15], therefore this research 
presents variable selection conditioned on degrees through correlation discounting. 
In other words, multicollinearity of independent variables may be addressed through 
variable selection with a discount.

Before applying a discount to the variable selection criteria, it is necessary to estab-
lish when to apply a discount. If correlation is too high, multicollinearity concerns 
exist and discounting is deemed necessary. If discounting is applied too heavily, the 
algorithm may omit valuable variables resulting in a less than optimal imputation. To 
aid in proper variable selection, five categories of correlation are defined: very high 
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(1.0–0.9), high (0.9–0.7), moderate (0.7–0.5), low (0.5–0.3), and negligible (0.3–0.0) 
as illustrated in Table 1. Some data elements have correlation values in each correla-
tion category while others data elements may only be represented in a few categories. 
It was noted that 5 of the 932 data elements consisted of all correlation values below 
0.5, suggesting they would not be strong candidates for inclusion in the model.

The method uses a forward stepwise linear regression approach, in the form of 
ŷ = β ∗ X where ŷ are imputed results from X data elements with associated β coef-
ficients, which economizes on computational effort. Through this method of stepwise 
addition by correlation value, the method nominates variables with the highest r abso-
lute value. Limiting the multivariate regression equation to only 10 variables, it is highly 
unlikely that correlation values below 0.5 are included in any models. However, address-
ing multicollinearity, the high correlation between independent variables adding little 
value is addressed through exploring discounting of a variable’s r value based on its cor-
relation with variables already in the model. This provides the first deviation from [6] as 
variables are now nominated through a discount matrix rather than matrix Q in order 
to mitigate multicollinearity between independent variables. Data elements with at least 
one very high correlated variable account for 64% of the dataset, having a median num-
ber of just one variable, as illustrated in Fig. 1. If no discounting is present when select-
ing variables, 415 data elements have at least the first two candidate variables with an 
absolute value collinearity above 0.9 and 139 data elements potentially consisting of all 
10 variables within that very high category. The discount process alleviates this situation.

Table 1 Correlation categories with no discounting

Correlation category Number of data elements Percent of elements 
including category (%)

Very high (1.0–0.9) 597 64

High (0.9–0.7) 709 76

Moderate (0.7–0.5) 829 89

Low (0.5–0.3) 919 99

Negligible (0.3–0.0) 932 100

Fig. 1 “Very high” correlated values in data elements
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Four discount strategies were examined on a degree scale and are described as follows: 
None, Cube, Square, and Max. The None discount is the base case where no discount is 
applied. The algorithm chooses the next best variable based on correlation with the depend-
ent variable. This baseline case illustrates the effects of multicollinearity among independ-
ent variables in the imputation model and whether multicollinearity should be a concern. 
Although almost-linear related predictors are frequently a source of problem for imputa-
tion [8], this baseline assists in quantifying how much a problem may be present within the 
large country conflict dataset considered [14]. At the other extreme is the Max discount. 
The Max discount chooses the next best variable based on adjusted correlation with the 
dependent variable by comparing each candidate variable’s correlation with the depend-
ent variable after subtracting the maximum correlation between the candidate variable and 
the variables already included in the model. The Max discount, along with the Square and 
Cube variant can be seen in Eqs. 1–3 (Max, Square, Cube respectively), where Ai,j is the dis-
counted absolute value correlation score, Qi,0j are the original absolute value Pearson corre-
lation coefficients for dependent variable i and nominated independent variable j, and Qi,nj 
are the original absolute correlation values of variables currently added to the model associ-
ated with the dependent variable. Matrix A then, in all cases, is the transformed correlation 
matrix after the appropriate discount from with to choose the next data element j with the 
maximum discount value.

For example, using Max discount, consider the data a–f as shown in Table 2. Data ele-
ment a is set as the dependent variable and data elements b and c as independent vari-
ables already in the model. For every unmodelled data element, elements d–f, subtract 
from the associated correlation value of a, the maximum value between the correlation 
values associated to the already modeled data elements b and c. Data element e would be 
selected for the next modeled independent variable having the highest adjusted correla-
tion value after discount. The Square and Cube discounts choose the next best variable 
based on adjusted correlation with the dependent variable after subtracting the respec-
tive squared maximum or cubed maximum absolute value correlation value of each cur-
rently modeled term from the dependent variable’s correlation value, thus reducing the 
effect of the discount. Additionally, the adjusted correlation value of the candidate data 

(1)Max : Ai,j = Qi,0j −max(Qi,1j ,Qi,2j , . . . ,Qi,nj)

(2)Square : Ai,j = Qi,0j − [max(Qi,1j ,Qi,2j , . . . ,Qi,nj)]
2

(3)Cube : Ai,j = Qi,0j − [max(Qi,1j ,Qi,2j , . . . ,Qi,nj)]
3

Table 2 Adjusted correlation using max discount

Unmodeled 
variable

Correlation 
with a

Correlation 
with b

Correlation 
with c

Discount 
(max.)

Adjusted 
correlation

d 0.8 0.1 0.7 0.7 0.1

e 0.5 0.2 0.1 0.2 0.3

f 0.4 0.1 0.2 0.2 0.2
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element must have a positive value, Ai,j ≥ 0 , or the algorithm stops adding variables to 
the model. All values in Q are absolute values, so a negative discount value would be an 
imaginary number and infeasible for consideration.

Through the discounting, all data elements eliminate any second candidate variables 
having very high collinearity as seen in Table 3. The quantity of data elements potentially 
choosing a second candidate variable with high collinearity is noted under the column 
quantity of data elements. However, by the third selection of a candidate variable, all 
variables would be in the moderate category thus satiating any concerns about multi-
collinearity, but potentially increasing the risk of omitting key variables. Comparing the 
validation statistics between the degrees of discounting should identify where the bal-
ance may lie between too much collinearity and key variable omittance.

Now that the degree of multicollinearity is addressed, the implementation of preserv-
ing the stochastic element of imputation is modeled. Within the modeling segment, the 
stochastic noise values are saved. For the first iteration of the algorithm, only known 
values (non-imputed) are used to select variables and produce coefficients. The residuals 
from this first iteration are saved and set aside to be used for all subsequent iterations as 
stochastic variation as well as in determining convergence.

The final segment, imputation, takes the regression coefficients from modeling, 
applies them to the related independent missing data values, and produces a point 
estimate. Randomly choosing a value from the normal distribution of residuals saved 
on the first iteration provides the uncertainty added to the estimate. The second 
modification to the original algorithm concerns setting limiting bounds for estimat-
ing imputations. The original regression models were unbounded and therefore could 
produce unreasonable estimates unlike a contrasting methodology such as pmm. 
Taking the Battle-Related Deaths data element as an example, the model regres-
sion coefficients could estimate some imputed observations with negative numbers. 
A negative death has no clear or rational interpretation, which implies that the data 
element should not allow for such values. Additionally, there are no known negative 
values in the original data distribution, which would cause further plausibility con-
cerns if left unchecked. Therefore, the imputed estimates are assessed with considera-
tion toward the known values within the data vector. This assessment acts like guard 
rails. There are three types of variable range-based guard rails implemented in the 
algorithm. First, if the minimum and maximum of the known data points are 0 and 
100, it is assumed the data vector is a percentage and therefore all imputations are 
bounded between 0 and 100. Second, if the known data points present no negative 
values, it is assumed the data must be positive only and bounded as such. Third, if 

Table 3 Second variable correlation categories after discounts

Correlation category Number of data elements Percent including category

Cube Square Max. Cube (%) Square (%) Max. (%)

High (0.9–0.7) 25 8 3 3 1 0

Moderate (0.7–0.6) 82 41 7 9 4 1

Moderate (0.6–0.5) 230 98 28 25 11 3

Low (0.5–0.3) 902 244 153 97 26 16



Page 8 of 20Leiby and Ahner  Journal of Big Data           (2023) 10:23 

the known data vector contains both positive and negative values, then the bound 
set is 1.5x the maximum and minimum known values. The wider range accounts for 
potential unobserved nonresponses outside the observed values in the model with-
out allowing extreme extrapolation. Any imputed point estimates that are outside the 
bounds are set to the bound and then applied with applicable noise to stay within 
the bounds. However, some point estimates that are already within the bounds still 
may produce imputations outside the bounds when the stochastic element of noise is 
applied, therefore, the data vector is assessed a second time after the noise application 
to ensure all imputed values remain inside the bounds.

The final step in the imputation segment considers the stopping condition. Due to 
the importance to the process, the idea of convergence is expounded. One of the larg-
est issues plaguing multiple imputation techniques manifests in knowing when enough 
iterations are complete. Defining convergence becomes even more of a nebulous term 
because of the stochastic nature of the algorithm accounting for the uncertainty of the 
imputed value. Stochastic convergence has four main definitions: observing a conver-
gence in distribution, a convergence in probability, a convergence almost surely, and con-
vergence in r-mean. Van Buuren notes that there is no clear-cut method for determining 
convergence in multiple imputation, however, the MICE package in R defines conver-
gence as “when the variance between the different sequences is no larger than the vari-
ance with each individual sequence” [14]. A Python implementation of MICE in Iterative 
Imputer notes that their experimental algorithm could warrant more investigation into 
their convergence criteria (#14338) where certain datasets fail to converge and debate 
continues on what criteria to use against the tolerance parameter [16]. The Autoimpute 
documentation does not expound upon stopping conditions and settles with simply stat-
ing that increasing the posterior sampling chains may improve the chance of conver-
gence [17]. Nevertheless, an algorithm benefits from a stopping condition to assess the 
completion of the imputation outside a user defined value for iterations, which typically 
is convergence within a tolerance.

The noise aspect in stochastic regression adds uncertainty to the regression point esti-
mate by exploiting the residuals in the known data points. Leveraging van Burren and 
the sentiments expressed in Iterative Imputer and Autoimpute, consecutive iterations of 
dependent variables within the distribution range of the residuals should satisfy a clas-
sification of convergence. The difference between the regression point estimate and its 
prior iteration estimate becomes the assessment for convergence. These estimates are 
prior to the addition of the stochastic noise. If every observation in the data element for 
the iteration has an absolute value difference less than the stopping criteria, then the 
data element is converged and no longer assessed for imputation. This leads toward the 
question of a good stopping criteria. In the three previously mentioned commercial pro-
grams, the stopping criteria is a user inputted tolerance. However, a user inputted toler-
ance does not account for the different scales that may be present in the large set of data 
elements. Capitalizing on the residuals used for the stochastic nature of the algorithm 
can assist in formulating tailored stopping tolerances for each data element. The return 
on a tailored tolerance manifests in observing the distribution of the first iteration 
residuals for each data vector. Observing the adjusted-R2, experimenting with various 
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standard deviation tolerances of the residuals, little improvement manifests in selecting 
a tighter than three standard deviation parameter for the stopping condition tolerance.

Acknowledging the initial presentation of the algorithm presented in [6], the modi-
fications to the pseudocode are presented in Fig.  2. The inclusion of the discount 
strategy is seen in step 3b with additional effects in 3c and 3h. Instead of eliciting 
candidate variables from the Q matrix, candidate variables are selected from the A 
matrix, which is updated with every variable selection. The variable range-based 
guard rails are introduced in step 4c with a second variable range-based guard rail 
check in 4e.

Methodology evaluation
Validation of the methodology continues with the same three metrics conducted in 
[6]: time evaluation illustrated by number of data element convergences, model fit 
calculated by adjusted-R2, and prediction accuracy through the proxy of recreat-
ing known values through imputations and assessed under a normalized root mean 
square error (NRMSE). Due to different scales between the data elements, nor-
malization of the error is necessary to make comparisons between data elements. 
The normalization used in this study leverages the original range of the data vector 

Fig. 2 Multicollinearity applied stepwise stochastic imputation (MASS-impute)
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as illustrated in Eq.  4, where x1ip are the known values in the test set, x̂1ip are the 
imputed values corresponding to x1ip with N1p test set observations, and x2p are the 
known values in the original set, all for the pth data element of P total elements. The 
test set randomly selected 8% of known observations to be recreated through imputa-
tion. Finally, since an instance of an imputed value is not unique, 30 imputed com-
plete datasets are used for analysis.

Randomly removing known values and checking the accuracy of the imputations against 
the known values provides an evaluation akin to MCAR. When data is MAR, other vali-
dation measures may be more appropriate. Van Buuren observed distributions and scat-
terplot values to observe if the estimates overlayed with known results appeared as if 
nothing had ever been missing when checking the plausibility of multiple imputation 
results [18]. For a set of imputation results, visual inspection via a scatterplot should pre-
sent further evidence about the plausibility of the imputation, both in distribution and in 
position.

There are also a few statistical tests to evaluate the plausibility of results. Should the 
known values follow a normal distribution, or the quantity of imputed values be suf-
ficiently small, a parametric two-sample t-test would highlight inconsistencies in the 
means. The null hypothesis being that the known data and the imputed data are drawn 
from populations that share the same mean. If the p-value of the test is greater than some 
confidence level, then the difference in means appears insignificant and the perception is 
that the sample means are the same and assumed to come from similar distributions. 
However, if the distribution is unknown, the non-parametric Wilcoxon–Mann–Whitney 
(WMW) test also highlights inconsistencies between two independent groups, but with 
relation to medians. WMW test asserts that if the data values of two quantities xn and 
ym are ordered, the arrangement when counting how many times y precedes x, desig-
nated as U, is significant if P(U ≤ U) is under some confidence interval [19]. The null 
hypothesis states that the known data and the imputed data are drawn from populations 
that share the same median. These two inferential tests examine descriptive metrics of 
the imputations; therefore, a goodness-of-fit test is also examined. Two well-known 
goodness-of-fit tests are the Kolmogorov–Smirnov and the Anderson–Darling. A sim-
ple understanding of the two tests see the one-sample Kolmogorov–Smirnov test as a 
supremum proximity analysis of the empirical distribution function, and the one-sample 
Anderson–Darling test as an evaluation of how close the points are to a straight line 
estimated in a probability graphic [20]. The two-sample Anderson–Darling (AD) test 
is similar to the Kolmogorov–Smirnov in that it is a goodness-of-fit test, but is said to 
dominate Kolmogorov–Smirnov in observing smaller moments in the distribution [4] 
due to its sensitivities in the extreme ends of distributions [21]. For this research, the 
AD is used, consistent with other country conflict imputation research [4, 5]. The null 
hypothesis proposes that the known and imputed values are drawn from the same popu-
lation without having to specify the distribution function of that population.

(4)NRMSE =

P
∑

p=1

√

∑N1p

i=1
(x̂1ip − x1ip)2/N1p

max(x2p)−min(x2p)
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Python SciPy packages [22] provided ease of use implementation to generate p-values. 
The ttest_ind package set the assumed variance between the vectors as not equal. The 
mannwhitneyu and the anderson_ksamp packages used default values. This study used a 
significance level of 95%. Each imputed dataset was assessed against the known values in 
the data element vector to quantify how many imputation sets satisfied the test.

Model results
The model results highlight the benefits of the methodology in three aspects: micro, 
macro, and comparative. The micro aspect looks at the application of variable range-
based guard rails, a change in controlling the aperture of the results, with a focus on 
improving the methodology to the previous evolution. The macro aspect evaluates the 
application of discounting, a change in nominating variables for inclusion, with a focus 
on identifying the degree of multicollinearity hindrances and objectively selecting the 
optimal discount. The comparative aspect dives into the imputations themselves when 
the method is optimally configured to defend the plausibility of the method’s results.

When researching categories of correlation, Nguyen highlighted that  independent 
variables with inadequate association toward the dependent variable should be removed 
from the model [12]. Five data elements had a maximum correlation value below 0.5, 
which, using Nguyen’s advice, would recommend no modeling variables for imputation. 
Of the five data elements containing only correlation values below 0.5, their percent 
missingness were 0.3%, 2.1%, 5.2%, 7.9% and 36.2%. Despite their correlation limitation, 
the three lowest missingness met the convergence criteria in all model-runs by at least 
iteration 8 and therefore should not be a cause for concern for instability. The two with 
higher missingness would often converge by iteration 5, although 3 of 10 exploratory 
model-runs saw non-convergence when allowed to run out to 100 iterations. Still, the 
data elements below the minimum threshold by Nguyen do not appear to unduly suffer 
regarding the validation metrics within this methodology and therefore it is likely that 
Nguyen’s bottom threshold of 0.5 may be set too high.

Micro aspect

The application of variable range-based guard rails provided many benefits to the 
models. As in [6], three regression model constructs were considered, linear (LR), 
nonlinear (NL), and nonlinear with first-order interactions (NFI). The LR model 
retained the fastest convergence rates compared against the NL and NFI models, and 
the ’with variable ranged-based guard rails (WGR) continued to improve all models 
compared to the original (Orig) models from [6] as illustrated in Fig.  3. The over-
all time comparisons between the Orig models compared to the WGR models is less 
pronounced, although the NL-WGR model converged faster than the LR-Orig model. 
In practice, the LR-Orig model completed 20 iterations after 52.3± 0.4 minutes using 
an Intel i7-9700K with 64GB of RAM in Python 3.8.8, however, even with the inclu-
sion of the variable range-based guard rails increasing the checks within the algo-
rithm, increasing the complexity of the models with squared terms still enjoys similar 
completion times due to converging on earlier iterations. This is significant where 
each additional unconverged data element adds compounding time to the completion 
of an iteration where the NFI-Orig model finished after 3 h 50 min for an average of 
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461 unconverged data elements. The algorithm with variable range-based guard rails 
included more statistical outputs, so a direct comparison is not practical, but even 
with the additional workload, the NFI-WGR finished significantly faster with an aver-
age of 2 h 49 min. In fact, the NFI-WGR averaged only 33 unconverged data elements 
more than the LR-Orig model, converging sooner, and therefore theoretically output-
ting faster than NL-Orig or NFI-Orig models.

The model fit continued to retain similar features with or without variable range-
based guard rails. As seen in Fig. 4, the second iteration saw a decrease in adjusted-
R2, which is an artifact of both a preliminary mean imputation for missing values in 
the independent variables for only iteration 1 as well as the iteration 2 models being 

Fig. 3 Model convergence rate of data vectors, N = 10

Fig. 4 Model average adjusted-R2, N = 10
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constructed with more observations from the first round of imputations. As with the 
Orig models, this one-time mean imputation bias decreases as each round of imputa-
tions develops more plausible results and converges on a value within the range of 
noise. Although the WGR models do not rebound to the level of the Orig models, the 
measurement retains average values above 80% and demonstrate more stable results, 
especially when implementing the NFI model.

The main benefit of the variable range-based guard rails surfaces when cross-check-
ing known values against imputed values. Although the median NRMSE values of the 
Orig models demonstrated low values, the LR-Orig model sum value was quite high 
due to four outliers and the NL-Orig and NFI-Orig sums were excessive due to com-
pounding artifacts of outliers. When variable range-based guard rails are implemented, 
these outliers are severely reduced. The maximum data element NRMSE were 0.471 
(LR-WGR), 0.477 (NL-WGR), and 0.417 (NFI-WGR) with variable range-based guard 
rails as opposed to values from the Orig models without variable range-based guard rails 
that ranged into the thousands. As with results from the Orig models, the distributions 
are still not normal as shown by averages of 0.054 (LR-WGR), 0.049 (NL-WGR) and 
0.042 (NFI-WGR), and median values lower at 0.022, 0.019 and 0.013 respectively. This 
brings the NRMSE sums into reporting range: 50.120± 0.059 (LR-WGR),48.797± 0.054 
(NL-WGR), and 38.716± 0.040 (NFI-WGR). The immediate change from the imple-
mentations of the original algorithm without guard rails is that now the LR model has 
the worst NRMSE with the models incorporating increased complexity subsequently 
improving, as expected. This agrees with the hypothesis that many data elements con-
tain curvilinear relationships within the variable as observed with some economic indi-
cators as well as first-order interactions. Checking to ensure that bias is not a factor with 
either missingness or the rate of convergences, the indications appeared weak at best. 
The NRMSE of the data elements were contrasted against the number of missingness 
within the data element producing an average correlation coefficient of 0.15. Admin-
istering a similar test against the iteration of convergence, the correlation coefficient 
was −0.25 . If the data element did not converge, the iteration was designated as N = 21, 
which is not necessarily true and may underestimate the correlation strength. With a 
negative correlation coefficient, it appears that data elements that converge later may 
benefit from a lower NRMSE. The maximum NRMSE always came from an iteration 
2 data element and many outliers disappeared after iteration 7. A future modification 
to the algorithm may include pausing the stopping condition check until at least seven 
iterations have concluded to benefit from a closer threshold in reproducing known val-
ues with the imputations.

Macro aspect

The benefit of variable range-based guard rails brought the imputations into a more 
plausible and defendable range of values. However, concerns of multicollinearity 
between independent variables used within the imputation models are still present 
despite the variable range-based guard rails. To dispel the concerns or minimize 
collinearity, collinearity discounts were applied to the variable selection process. 
Depending on the model, the discount had varying effects concerning convergence 
as illustrated in Fig. 5. The LR model benefited from increased convergence rates with 



Page 14 of 20Leiby and Ahner  Journal of Big Data           (2023) 10:23 

each degree of discounting. The standard error between runs was small regardless 
of model or discount combination averaging just over 1 data element. The NL mod-
els experienced an initial improvement toward convergence with the cubed degree of 
discounting, but subsequent degrees of discounting were statistically the same. NFI 
models saw the opposite effect. No discounting and the squared degree of discount-
ing were statistically the same, while max discounting saw appreciable benefit in con-
vergence. Although the discounting saw gains in convergence, it remains unclear if 
faster convergence produces more plausible imputations as the other metrics would 
indicate more defensible results from the slower NFI model rather than the faster LR 
model.

The average adjusted-R2 values tells a different story. The increasing degree of dis-
counting for all models reduced the adjusted-R2 as seen in Fig. 6. The standard error 
for N = 20 was extremely tight with a maximum of 0.0003, meaning each model-dis-
count pair were statistically different. As with the comparison between with variable 
range-based guard rails and without guard rails, the difference in adjusted-R2 is small. 
However, with all models showing similar trends and small standard error, multicol-
linearity does not appear to be as big of an influence as first feared. This isn’t to say 
that high multicollinearity does not exist, but that it does not hinder the development 
of plausible imputations. When the dependent variable is highly correlated to at least 
one dependent variable, then the  R2 value should be high. The problem with multi-
collinearity surfaces when multiple dependent variables are highly correlated so that 
the coefficients cannot differentiate stable relationships to the dependent variable. 

Fig. 5 Remaining unconverged data elements, iteration 20, N = 20

Fig. 6 Discount model average adjusted-R2, iteration 20, N = 20
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In other words, there may be multiple solutions to the coefficients to exact the same 
value to the dependent variable. As mentioned previously, this is a problem of analy-
sis, not necessarily a problem with result. Seeing how adjusted-R2 penalizes adding 
independent variables of little value, high adjusted-R2 compared between model dis-
counts infers more defensible imputations.

Verifying the assumption that higher adjusted-R2 leads to more defensible imputations 
is supported by the NRMSE metric. Lower deviation from the known value is better and 
the NRMSE results shown in Fig. 7 confirm that the high adjusted-R2 of NFI produces 
lower NRMSE than the other models. The translation for the LR and NL models is con-
sistent with the adjusted-R2 results, however, the NFI is less clear. Again, the standard 
error is tight signifying that all model-discount pairs are statistically different. The cube 
and square degree of discount for the NFI model produces imputations closer to their 
known values over using no discount. But discounting too heavily nominates independ-
ent variables that are too far removed from alternate variables that have higher cor-
relation values with the dependent variable. Looking at each of the validation metrics 
supports a different model-discount approach. However, the NRMSE defense could be 
weighted the heaviest by explicitly connecting imputations to known values. With the 
NFI model in agreement between NRMSE and adjusted-R2 concerning the best mode-
ling approach, it can be concluded that multicollinearity does cause a degree of problem 
for generating the best imputations and that a cube discount for correlation selection is 
warranted.

Comparative aspect

Thirty imputed complete datasets were generated for comparative testing by configur-
ing the methodology to allow for first-order interaction while nominating variables with 
a cubed correlation discount following with variable range-based guard rails. Since it is 
computationally challenging to quickly test all data elements, this report compares only 
three data elements, one each from three different categories: low ( < 5% ) missingness 
with quick convergence, high ( > 50% ) missingness with quick convergence, and signifi-
cant missingness (20–50%) without convergence. The low missingness converged on 
iteration 2 requiring only 1 value for imputation. The high missingness converged on 
iteration 6 requiring 1437 imputed values, or 83.1% of the data element. The significant 
missingness required 526 imputed values, or 30.4%.

Fig. 7 Discount model NRMSE, iteration 20, N = 20
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The scatterplots for the three datasets are provided in Figs. 8, 9, 10. The blue points 
indicate the known data points, while the orange points indicate the imputed data for 
the selected variable across all 30 imputed datasets. In Fig. 8, the one missing value in 
low missingness had an imputed value varying between 100 and 95.36. The missing value 
was in the year 2006, with the other nine years showing 100. One might assume that 
2006 would also be 100, but the stochastic nature of the unknown allows for a chance of 
deviation. In Fig. 9, the high missingness tells a different story. Each column of orange 
data points shows up to 30 alternative values. At first sight, there may be questions about 
the plausibility, however, the descriptive statistic of standard deviation places the plau-
sibility into perspective. For further analysis, the standard deviation across years was 
assessed for each country using the known data. When the same was accomplished for 
the imputed data, no country exceeded the maximum standard deviation of the known 
data, allowing the variability shown in the scatterplot. As for the non-converged data in 

Fig. 8 Converged data element, 0.1% missingness

Fig. 9 Converged data element, 83% missingness

Fig. 10 Non-converged data element, 30% missingness
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Fig.  10, the standard deviation analysis was not as straightforward, where all 30 data-
sets had a high maximum standard deviation. The maximum standard deviation of 
the known data was 2.33E14 whereas the imputed data ranged between 2.78E14 and 
6.90E14. As a positive, it appears that the known data may see trends of increasing val-
ues over time as observations 1–173 are in year 2006 and subsequent ranges proceeding 
by year. The imputed values also demonstrate that potential movement. The takeaway 
from all three figures is that the imputed values appear to be within a reasonable distri-
bution of the known data.

Concerning the inferential tests, it was no surprise that all three tests showed no statis-
tical significance when comparing the distribution of the 30 generated datasets to each 
other in the low missingness scenario. The imputed values were all within the range of 
known values and it was unlikely that one data point would significantly skew the mean, 
median, or distribution shape. The high missingness example saw a significant differ-
ence in mean for 16 of the 30 datasets. Furthermore, all 30 datasets saw p-values below 
0.05 signifying statistical differences in the median and distribution shape. Despite these 
results, the consideration of high missingness and the MAR assumption could still find 
the results plausible. The imputed values could be categorically from samples that either 
are adverse from measuring or are difficult to measure, as expressed in the earlier exam-
ples of the Corruption Perception Index or the Democratic Republic of Korea. Similar 
findings were observed in the non-converged example; 6 datasets demonstrating statisti-
cal differences in mean and all 30 datasets demonstrating statistical differences with the 
WMW and AD tests.

Summary
The original Large Dataset Imputation through Correlation-based Regression method 
[6] demonstrated much promise through a multiple imputation stepwise correlation 
approach. It provided a balance between the analyst’s trade-off of time, computational 
power, and accuracy. Two main concerns of this original approach revolved around mul-
ticollinearity and the potential for extreme outlier values. This paper alleviates both of 
those concerns through exploring a full range of discounts to the variable nomination 
process and bounding imputation estimates within a variable ranged-based guard rail 
process. Both processes strengthened the plausibility and defensibility of the imputed 
results.

Multicollinearity is a problem of analysis in determining coefficients for cause and 
effect, rather than a bias in output. The None discount demonstrated superior results 
in the LR and NL models. Only when a small degree of discounting was applied to the 
NFI model did any perceived effect of collinearity surface resulting in the Cube discount 
being superior for the dataset considered. However, specifying the appropriate model 
type, from LR to NL to NFI, demonstrated greater gains than the effects of discounting 
collinearity.

To further enhance the prior approach, variable range-based guard rails were devel-
oped that bounded the imputations into a plausible range and deterred subsequent 
iterations within the algorithm to exacerbate outliers. In hindsight, it aligns with the 
superiority of pmm on small datasets where imputations are likewise bounded to values 
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already seen in the dataset. Unlike pmm, the variable ranged-based guard rails allow 
values that are probable in the distribution yet not observed, widening the aperture for 
plausible values.

Providing three aspects of analysis assisted in quantifying progress while increasing 
the defensibility of the method. The micro aspect analysis highlighted the improvements 
in convergence rates of individual data elements compared to [6] while maintaining 
strong goodness of fit. The macro aspect analysis quantified how little collinearity effects 
hinder the imputation through the adjusted-R2 results demonstrating decreasing values 
with discounting and all but the interactions modeling showing lower NRMSE without 
discounting, dispelling concerns over using a correlation-based selection process. The 
comparative aspect analysis visualized the imputations to the known value distributions 
for a qualitative approach to plausibility. The inferential tests conducted alongside the 
visual assessment and descriptive statistics demonstrated opposing theories on plausi-
bility, which cautions analysts from relying on a single metric when evaluating imputa-
tions. When working with MAR and NMAR data, an expert in the data is necessary for 
more conclusive analysis.

Outside of overcoming numerical problems in generating imputations, the improved 
approach also provided insight into the rate of convergence. Rather than providing a 
user-specified static tolerance for a stopping condition, the approach relied on the data 
itself to generate tailored data element tolerances by exploiting the residuals in modeling 
the known data. The concept leans on the definition of stochastic convergence of the r-th 
order mean where the difference of successive iterations is statistically zero. Using the 
distribution of the residuals captured in the first iteration of only known values, which 
were also used for noise, the algorithm conducts a check between iteration N and N + 1 
to measure the difference between estimates. Should the difference be within 3 standard 
deviations of the distribution of residuals convergence is assumed and the stopping con-
dition applied.

Although the MASS-impute algorithm improved the original correlation-based 
approach, there are still areas that require further refinement. It was noted that the 
worst NRMSE values were captured during the first iterations, so further modifications 
to the algorithm may investigate not allowing stopping conditions until after a set num-
ber of iterations. Such changes would increase the processing time of the algorithm, but 
at the potential benefit of improved accuracy. The investigation would illuminate the 
trade space between these two analytical trade-offs for balancing out the algorithm’s 
parameters. Additionally, as seen in the comparative analysis, some of the high standard 
deviations in the imputations continue to be a concern. Known outliers in some datasets 
may be allowing too much variability in the noise element of the algorithm. The high 
missingness scatterplot showed three known values that would pull at the regression line 
used to generate the noise residuals. These outliers could potentially be adding too much 
variability to the stochastic nature of the estimates, especially when the outliers are more 
prevalent as in the non-converged example. Future modifications may investigate better 
accounting for these outliers when producing the pool of noise.

Using MASS-impute, the multiple imputations appear plausible while dispelling con-
cerns about variable selection based on correlation. As with the finding in [6], the evolu-
tion of the methodology continues to balance computation time, power and accuracy in 
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achieving traceable, defensible imputations for large datasets, including those that may 
exhibit over 20% missingness for some variables.

Abbreviations
AD  Two-sample Anderson–Darling test
FNI  Nonlinear with first-order interactions
LR  Linear
MAR  Missing at random
MASS-impute  Multicollinearity applied stepwise stochastic imputation
MCAR   Missing completely at random
MICE  Multiple imputation by chain equations
NL  Nonlinear
NMAR  Missing not at random
NRMSE  Normalized root mean square error
Orig  Original
UN  United Nations
WGR   With variable range-based guard rails
WMW  Wilcoxon–Mann–Whitney test
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