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Abstract

In this paper we advocate for Isaacs’ method for the solution of differ-
ential games to be applied to the solution of optimal control problems.
To make the argument, the vehicle employed is Pontryagin’s canoni-
cal optimal control example, which entails a double integrator plant.
However, rather than controlling the state to the origin, we correctly
require the end state to reach a terminal set that contains the origin
in its interior. Indeed, in practice, it is required to control to a pre-
scribed tolerance rather than reach a desired end state; achieving tight
tolerances is expensive, and from a theoretical point of view, constrain-
ing the end state to a terminal manifold of co-dimension n-1 renders
the optimal control problem well-posed. Thus, the “correct” solution
of the optimal control problem is obtained. In this respect, two tar-
get sets are considered: a smooth circular target and a square target
with corners; obviously, the size of the target sets can be shrunk to
become very small. Closed-loop state-feedback control laws are devel-
oped which drive the double integrator plant from an arbitrary initial
state to the target set in minimum time. This is accomplished using
Isaacs’ method for the solution of differential games, which entails
Dynamic Programming (DP), working backward from the Usable Part
(UP) of the target set, as opposed to obtaining the optimal trajecto-
ries using the necessary conditions provided by Pontryagin’s Maximum
Principle (PMP). Special attention is given to the critical UP of the tar-
get set in the process of obtaining the global solution of the optimal
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control problem at hand. In this paper, Isaacs’ method for the solu-
tion of differential games is applied to the solution of optimal control
problems and the juxtaposition of the PMP and DP is undertaken.

Keywords: Differential Game Theory, Optimal Control Theory, Pontryagin’s
Maximum Principle, Control Theory, Optimization

MSC Classification: 35A01 , 65L10 , 65L12 , 65L20 , 65L70

1 Introduction

In this paper, the Pontryagin Maximum Principle (PMP) and Dynamic Pro-
gramming (DP) methods for the solution of optimal control problems are
juxtaposed. We advocate for Isaacs’ method for the solution of differential
games to be applied to the solution of optimal control problems. The canoni-
cal example from [1, pp. 23-27] concerning the application of the PMP to the
synthesis of optimal controls is the vehicle employed to make the argument.
The objective in [1] was to show that the necessary conditions for optimality
embodied in the PMP yield a closed set of conditions such that the optimal
control time-history can be obtained. The application of the PMP assumes
the existence of an optimal control time-history and requires a Two-Point
Boundary-Value Problem (TBVP) be solved, but with the provision that hard
control constraints are allowed – it is a necessary condition for optimality,
akin to the situation in the calculus of variations. The objective of this work
is to use the canonical example from reference [1] to demonstrate the appli-
cation of differential game theory / Isaacs’ method [2] to optimal control
problems and obtain their global solution. Isaacs’ method is based on the con-
structive method of DP which provides sufficient conditions for optimality. It
entails solving the Hamilton-Jacobi-Bellman-Isaacs (HJBI) Partial Differential
Equation (PDE) using the method of characteristics. The hyperbolic HJBI
PDE is solved using the method of characteristics with the boundary condi-
tions exclusively specified on the Usable Part (UP) of the terminal manifold
/ target set which is of co-dimension 1 and where the pursuer / controller
can enforce termination. The optimal state feedback control law is synthesized
as opposed to obtaining an optimal control time history. The global solution
is thus obtained and, in addition, the part of the state space where optimal
trajectories exist is characterized. In this paper, rather than using the PMP,
Isaacs’ method for the solution of Differential Games is adapted to the solu-
tion of (much simpler) optimal control problems. The importance of the UP of
the terminal manifold, where the boundary conditions are specified, is empha-
sized. Furthermore, we derive time-optimal state feedback control laws which
extend Pontryagin’s canonical example concerning the regulation to a terminal
state/point target to that of a target manifold of co-dimension 1. This is very
much in-line with engineering practice where tolerances are specified - “zero
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tolerance” is expensive. And from a mathematical point of view, this renders
the optimal control problem well-posed. Obviously, the size of the target sets
can be shrunk to become very small.

In this paper Isaacs’ method [2] is employed rather than using the PMP
to synthesize time-optimal controls for reaching a desired terminal manifold.
To emphasize the advantages of using Isaacs’ method rather than the PMP,
we use the vehicle of the iconic example from [1] which entails the dynamics
of a double integrator. Time-optimal state feedback control laws are derived
which globally cover the whole state space rather than constructing an optimal
trajectory which leads from a specified state to a terminal state / the origin.
Furthermore, instead of a specific terminal state / point target, in this paper,
a terminal manifold is considered. This is in tune with the engineering practice
of using a finite tolerance and also renders the optimal control problem well-
posed. We submit, that this is the mathematically correct way to deal with
controlling to a point target in optimal control and differential games.

We consider the problem of reaching a specified target manifold, C , of co-
dim-ension 1 rather than a terminal state from an arbitrary initial state in
the state space in minimum time. Physical systems commonly cope with some
allowable tolerance such as position or velocity error. Thus, it is the objective of
this paper to investigate time-optimal control which drive a double-integrator
plant which models a point mass traveling on a straight line and needs to
be brought to rest at the origin in minimum time, allowing for a small error
in terminal position and velocity. This also applies to the design of the roll
channel autopilot of an aircraft.

Indeed, when using Isaacs’ method, it becomes clear that the proper termi-
nation of optimal control problems (and differential games) in Rn calls for the
specification of terminal manifolds whose dimension is n − 1. In the context
of pursuit-evasion differential games, the proper treatment of “point capture”
requires the consideration of a terminal manifold which is a sphere of radius
0 < � << 1 centered at the origin and point capture means letting � → 0.
This is required from a mathematical point of view and makes sense from and
engineering point of view. And in the context of the herein discussed Pontrya-
gin canonical example, the mathematically correct stipulation of a terminal
manifold of co-dimension 1 brings out critical features of the optimal control
problem which were hidden/obscured when “point capture” was considered.

The paper is organized as follows. In Section 2, the physical control problem
is posed using non-dimensional variables. In Section 3, a circular terminal
manifold centered at the origin with radius l is considered. The control to a
non smooth target manifold with corners, a square, is investigated in Section 4.
Lastly, in Section 5 we draw conclusions.

2 Control Problem

Consider a point-mass with mass, m, which is controlled on a straight line
using a bounded force, F . The maximum applicable force is Fmax. According
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to Newton’s Second Law,

F (t) = ma(t), −Fmax ≤ F (t) ≤ Fmax.

Hence, the dynamics are

ẋ(t) = v(t), x(0) = x0

v̇(t) =
1

m
F (t), v(0) = v0, 0 ≤ t ≤ tf ,

where x is the position on the line of the point mass, and v is its velocity. The
initial position of the point-mass is x0 and its initial velocity is v0. The goal
is to drive in minimum time, tf , the position and the velocity to a bounded
region described as

− L ≤ x(tf ) ≤ L, −V ≤ v(tf ) ≤ V. (1)

It is convenient to use non-dimensional variables. The
non-dimensionalization is performed as follows:

x → x/L, x0 → x0/L, v → v/V, v0 → v0/V,

t → t
V

L
, tf → tf

V

L
, u � F

Fmax
;

where L is a characteristic length and V is a characteristic velocity. As is
best practice in physics, also the time variable is rendered dimensionless. The
dynamics in non-dimensional form are

dx

dt
= v(t), x(0) = x0

dv

dt
= αu(t), v(0) = v0, 0 ≤ t ≤ tf

−1 ≤ u(t) ≤ 1,

where the non-dimensional parameter

α � LFmax

mV 2
.

The very same second-order dynamics/double integrator plant are encoun-
tered when designing the roll channel autopilot for an aircraft or missile; the
dynamics are:

Iϕ̈ =
1

2
ρv2SbClδa

δa, (2)
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where ϕ is the air vehicle bank angle and the control variable, δa, is the
aileron defection. I is the moment of inertia, ρ is the air density, v is the
airspeed, S is the wing area and b is the wing span. The non-dimensional
parameter Clδa

is the aircraft’s lateral control derivative.

|δa| ≤ δamax (3)

The non-dimensional dynamics of the double integrator plant are presented
in (4). Using the theory of optimal control, it is possible to design a fast lateral
autopilot channel.

ŷ

ẑ

ϕ, ϕ̇

Fig. 1: Roll Autopilot Example

3 Circular Target Set

The physical state variables: x1(t) � x(t), x2(t) � v(t) ans the non-dimensional
dynamics are

dx1

dt
= x2(t), x1(0) = x10

dx2

dt
= αu(t), x2(0) = x20

0 ≤ t ≤ tf , −1 ≤ u(t) ≤ 1.

(4)

Consider the terminal manifold l2 = x2(tf ) + β2v2(tf ). The parameter l
is non-dimensional – it is the tolerance parameter and β is a non-dimensional
weight parameter which trades off the importance of the terminal position error
and the terminal velocity error. The optimal control problem is parameterized
by α > 0, l > 0, and β > 0. For the sake of demonstration, the weight
parameter β is assumed to have the value β = 1 so we confine our attention
to the terminal manifold / target set, C , described by a circle with radius l
about the origin of the state space (x1, x2) and the physical parameter α = 1.

The terminal manifold of co-dimension 1 (as required) is the circle:

l2 = x2
1(tf ) + x2

2(tf ).



Springer Nature 2021 LATEX template

6 On the Synthesis of Optimal Control Laws

The terminal manifold of co-dimension 1 is parameterized by 0 ≤ θ ≤ 2π
and therefore

x1(tf ) = l cos θ

x2(tf ) = l sin θ, 0 ≤ θ ≤ 2π.
(5)

The terminal manifold is parameterized by 0 ≤ θ ≤ 2π: C = {(x1, x2)|x1 =
l cos θ, x2 = l sin θ}. The outward pointing unit normal to the terminal mani-
fold at (l cos θ, l sin θ) is �n =

�
cos θ
sin θ

�
. The circular target set and the associated

normals are shown in Figure 2.

�n

Fig. 2: Circular target set with outward pointing normal �n

3.1 Isaacs’ Method

The UP of the terminal manifold is where its penetration can be enforced
by the controller. The UP, Boundary of the Usable Part (BUP) and the Non-
Usable Part (NUP) are

UP � {x|min
u

��n, f(x, u)� < 0}

BUP � {x|min
u

��n, f(x, u)� = 0}

NUP � {x|min
u

��n, f(x, u)� > 0}.
(6)
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For the circular terminal manifold and double-integrator system the UP,
NUP and BUP – see (6) – are as follows

UP = {
�
l cos θ
l sin θ

�
| min
−1≤u≤1

��
cos θ
sin θ

�
, ( x2

αu )
�
< 0}

BUP = {
�
l cos θ
l sin θ

�
| min
−1≤u≤1

��
cos θ
sin θ

�
, ( x2

αu )
�
= 0}

NUP = {
�
l cos θ
l sin θ

�
| min
−1≤u≤1

��
cos θ
sin θ

�
, ( x2

αu )
�
> 0}

(7)

Having assumed, β = 1, the UP will depend on the problem parameters,
α and l. The UP is therefore

UP = {
�
l cos θ
l sin θ

�
| min
−1≤u≤1

(x2 cos θ + αu sin θ) < 0}

.
Therefore

UP = {
�
l cos θ
l sin θ

�
| min
−1≤u≤1

((l cos θ + αu) sin θ) < 0}

.
Therefore θ = 0, θ = π are not in the UP.

1. Consider the θ range 0 < θ < π

UPa =

�
{
�
l cos θ
l sin θ

�
| cos−1 α

l < θ < π} if α
l < 1

{
�
l cos θ
l sin θ

�
|0 < θ < π} if α

l ≥ 1

2. Consider the θ range π < θ < 2π

UPb =

�
{
�
l cos θ
l sin θ

�
|π + cos−1 α

l < θ < 2π} if α
l < 1

{
�
l cos θ
l sin θ

�
|π < θ < 2π} if α

l ≥ 1

The UP = UPa ∪UPb. Hence

UP =

�
{
�
l cos θ
l sin θ

�
|0 < θ < π,π < θ < 2π} if l

α ≤ 1

{
�
l cos θ
l sin θ

�
| cos−1 α

l < θ < π,π + cos−1 α
l < θ < 2π} if l

α > 1
(8)

When l
α > 1, let θ � cos−1(αl ). The UP, BUP, and NUP of the circular

terminal manifold varies depending upon the problem parameters l and α as
described in (8). In Figure 3, the BUP, UP, and NUP for the circular terminal
manifold is shown.

For the rest of this paper, the problem parameter is assumed to be α = 1,
so the terminal manifold varies upon l.

The Hamiltonian,

H = 1 + λ1(t)x2(t) + λ2(t)αu(t). (9)
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(a) The circular terminal manifold
when 0 < l

α ≤ 1
(b) The circular terminal manifold
when l

α > 1

Fig. 3: The UP, BUP, and NUP of the circular terminal manifold varies
depending upon the problem parameters l and α. The NUP presents itself
when l

α > 1

With the understanding that the co-states, λ1 and λ2, are the partial
derivatives of the Value function with respect to the states, DP yields the con-
dition for optimality, minu H , such that u(t)∗ = −sign(λ2(t)). Therefore the
optimal Hamiltonian is

H ∗ = 1 + λ1(t)x2(t)− α|λ2(t)|

H ∗(t) ≡ 0, so
H ∗|t=tf = 0 (10)

The method of characteristics employed to solve the HJBI PDE yields the
Euler-Lagrage equations

ẋ1(t) = x2(t), x1(t = 0) = x10

ẋ2(t) = −αsign(λ2(t)), x2(t = 0) = x20

λ̇1(t) = 0, λ1(t = tf ) = a cos θ

λ̇2(t) = −λ1(t), λ2(t = tf ) = a sin θ, a > 0

The terminal costates are also established courtesy of DP. We consider
trajectories which emanate from the UP in (13), in retrograde time τ > 0, and
therefore we have the retrograde dynamics,

x̊1(τ) = −x2(τ), x1(τ = 0) = l cos θ

x̊2(τ) = αsign(λ2(τ)), x2(τ = 0) = l sin θ

λ̊1(τ) = 0, λ1(τ = 0) = a cos θ

λ̊2(τ) = λ1(τ), λ2(τ = 0) = a sin θ, τ ≥ 0; θ ∈ UP

(11)
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The optimal Hamiltonian is zero, also at final time, and when evaluated at
retrograde time, τ = 0 where the co-states are specified,

H ∗|τ=0 = 0

so evaluating (9) at final time, the coefficient a is found to be:

a =
1

α| sin θ|− l sin θ cos θ
, ∀ θ ∈ UP (12)

From the structure of the UP we deduce that a is positive, as required.
Two cases need to be considered: when 0 < l

α ≤ 1 and when l
α > 1. As will

be demonstrated later the UP, BUP, and NUP as defined in (7) differs in both
cases.

Assuming, 0 < l
α ≤ 1, the Usable Part (UP) and the Boundary of the

Usable Part (BUP) are

UP = {
�
l cos θ
l sin θ

�
| 0 < θ < π,π < θ < 2π}

BUP = {
�
l cos θ
l sin θ

�
| θ = 0, θ = π}.

Recall, θ � cos−1(αl ); assuming, l
α > 1, the UP, BUP, and NUP are

UP = {
�
l cos θ
l sin θ

�
| θ < θ < π, θ + π < θ < 2π}

BUP = {
�
l cos θ
l sin θ

�
| θ = 0, θ = θ, θ = π, θ = π + θ}

NUP = {
�
l cos θ
l sin θ

�
| 0 < θ < θ,π < θ < π + θ}.

Therefore the UP, BUP, and the NUP of the circular terminal manifold /
target set are

UP =

�
{
�
l cos θ
l sin θ

�
| 0 < θ < π,π < θ < 2π} if 0 < l

α ≤ 1

{
�
l cos θ
l sin θ

�
| θ < θ < π, θ + π < θ < 2π} if l

α > 1
(13)

BUP =

�
{
�
l cos θ
l sin θ

�
| θ = 0, θ = π}. if 0 < l

α ≤ 1

{
�
l cos θ
l sin θ

�
| θ = 0, θ = θ, θ = π, θ = π + θ} if l

α > 1
(14)

NUP =

�
∅ if l

α ≤ 1

{
�
l cos θ
l sin θ

�
| 0 < θ < θ,π < θ < π + θ}. if l

α > 1
(15)

Using the evaluation of the coefficient a according to (12) the retrograde
equations in (11) are:
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x̊1(τ) = −x2(τ), x1|τ=0 = l cos θ

x̊2(τ) = αsign(λ2(τ)), x2|τ=0 = l sin θ

λ1 = cos θ
α| sin θ|−l sin θ cos θ

λ̊2(τ) = λ1(τ), λ2|τ=0 = sin θ
α| sin θ|−l sin θ cos θ

τ ≥ 0, θ ∈ (0,π) ∪ (π, 2π)

(16)

Therefore:

λ2(τ) =
sin θ+τ cos θ

α| sin θ|−l sin θ cos θ , τ ≥ 0, θ ∈ (0,π) ∪ (π, 2π)

We first consider the case where the problem parameters satisfy 0 < l
α ≤ 1.

The following abbreviations are used as necessary: cθ ≡ cos θ, sθ ≡ sin θ,
tθ ≡ tan θ. The UP of the circular terminal manifold {(x1, x2)|x2

1 +x2
2 = l2} is

partitioned into four quadrants as follows:

1. Trajectories “emanating” in retrograde fashion from points on the UP of
the terminal manifold which correspond to the parameter 0 < θ < π/2. For
this case, λ2(τ) > 0 ∀ τ ≥ 0, so the optimal control u∗(t) = −1.

x̊2 = 1, τ ≥ 0

Therefore
x2(τ) = l sin θ + τ

x1(τ) = l cos θ − lτ sin θ − 1

2
τ2, τ ≥ 0

Solving for the curve:

x1 =− 1
2x

2
2 + l cos θ + 1

2 l
2 sin2 θ,

x2 > l sin θ, θ ∈ (0,π/2)

2. Trajectories “emanating” from points on the terminal manifold which cor-
respond to π/2 ≤ θ < π. In this case λ2(τ) changes sign from positive to
negative at τ = − tan θ(> 0). For this case:

x̊2 =

�
1, if 0 ≤ τ < −tθ

−1, if − tθ < τ

Therefore

x2(τ) =

�
lsθ + τ, if 0 ≤ τ < −tθ

lsθ − 2tθ − τ, if − tθ < τ
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Therefore

x1(τ) =

�
l(cθ − τsθ)− 1

2τ
2, if 0 ≤ τ < −tθ

l(cθ − τsθ) + t2θ +
1
2τ

2 + 2τ tθ, if − tθ < τ

Therefore when θ ∈ (π, π
2 ),

x1(x2) =

�
lcθ − 1

2x
2
2 +

1
2 l

2s2θ, if lsθ ≤ x2 < lsθ − tθ

lcθ +
1
2x

2
2 + 2l

s2θ
cθ

− 1
2 l

2s2θ − t2θ, if lsθ − tθ > x2

3. Trajectories “emanating” from points on the terminal manifold which
correspond to π < θ < 3π/2. In this case λ2(τ) is negative for all τ ≥ 0.

x̊2 = −1, τ ≥ 0

Therefore
x2(τ) = l sin θ − τ, τ ≥ 0

Therefore
x1(τ) = l cos θ − τ l sin θ + 1

2τ
2, τ ≥ 0

Therefore

x1(x2) =
1
2x

2
2 + l cos θ − 1

2 l
2 sin2 θ, θ ∈ (π, 3π

2 )

4. Trajectories “emanating” from points on the terminal manifold which cor-
respond to 3π/2 ≤ θ < 2π. For this case λ2(τ) changes sign from negative
to positive at τ = − tan θ(> 0).

x̊2 =

�
−1, if 0 ≤ τ < −tθ

1, if − tθ < τ

Therefore

x2(τ) =

�
lsθ − τ, if 0 ≤ τ < −tθ

lsθ + 2tθ + τ, if − tθ < τ

Therefore

x1(τ) =




l(cθ − τsθ) +

1
2τ

2, if 0 ≤ τ < −tθ

lcθ − t2θ − 1
2τ

2 − (lsθ + 2tθ)τ, if − tθ < τ
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Therefore, when θ ∈ ( 3π2 , 2π):

x1(x2) =





lcθ +
1
2x

2
2 − 1

2 l
2s2θ, if lsθ ≥ x2 > lsθ + tθ

lcθ − 1
2x

2
2 + 2l

s2θ
cθ

+ t2θ +
1
2 l

2s2θ, if lsθ + tθ > x2

The optimal trajectories are parabolae of the form x1(x2) = ±x2
2 + c.

When θ ∈ (0, π
2 ) ∪ (π, 3π

2 ) no switching occurs.

When θ ∈ (π2 ,π), τs = − tan θ. We calculate x1(τs) =
l

cos θ − 1
2 tan

2 θ and
x2(τs) = l sin θ − tan θ.

When θ ∈ ( 3π2 , 2π), τs = − tan θ. We calculate x1(τs) =
l

cos θ +
1
2 tan

2 θ and
x2(τs) = l sin θ + tan θ.

Two switching lines exist. In parametric form they are

x1(θ) =
l

cos θ
− 1

2
tan2 θ

x2(θ) = l sin θ − tan θ, θ ∈ (π2 ,π)
(17)

and

x1(θ) =
l

cos θ
+

1

2
tan2 θ

x2(θ) = l sin θ + tan θ, θ ∈ ( 3π2 , 2π)
(18)

The switching line (17) is anchored to the circular terminal manifold on
the BUP point (−l, 0) where θ = π and the switching line (18) is attached to
the circular terminal manifold at the BUP point (l, 0) where θ = 0.

Consider the x1(θ) equation in (17). We obtain

cos θ =
l ±

√
l2 + 1− 2x1

2x1 − 1

Therefore:

sin θ =

�
4x2

1 − 2x1 − 2l2 ∓ 2l
√
l2 − 2x1 + 1

2x1 − 1

Similarly the x1 equation in (18) yields:

cos θ =
l ±

√
l2 + 2x1 − 1

2x1 − 1

Therefore:

sin θ =

�
4x2

1 − 6x1 + 2− 2l2 ∓ 2l
√
l2 + 2x1 − 1

2x1 − 1



Springer Nature 2021 LATEX template

On the Synthesis of Optimal Control Laws 13

Hence, the equation of the switching line from (17) is:

x2 =

�
l − 2x1 − 1

l ±
√
l2 − 2x1 + 1

� �
4x2

1 − 2x1 − 2l2 ∓ 2l
√
l2 − 2x1 + 1

2x1 − 1

and the equation for the switching line from (18) is:

x2 =

�
l +

2x1 − 1

l ±
√
l2 + 2x1 − 1

� �
4x2

1 − 6x1 + 2− 2l2 ∓ 2l
√
l2 + 2x1 − 1

2x1 − 1

The overall picture of the optimal flow field when the tolerance parameter,
0 < l ≤ 1 is shown in Figure 4 or when the tolerance parameter l > 1 is shown
in Figure 5. The parts of the terminal manifold which correspond to the UP,
BUP, and NUP are clearly indicated.

Fig. 4: The circular terminal manifold and family of trajectories in the state
space when the parameters α = 1 and l = 1. The curves (a) and (b) are where
the value function is not continuous. The switching lines, curves (c) and (d),
determine when the optimal control switches from −1 to 1 or from 1 to −1
respectively.

In Figures 4 and 5, curves (c) and (d) are switching lines (SL) which are
momentarily crossed by the optimal trajectories, incurring an infinitesimal loss
of optimality. The SL terminate at the BUP and therefore are not optimal
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Fig. 5: The circular terminal manifold and family of trajectories in the state
space when the parameters α = 1 and l = 2. The curves (a) and (b) are where
the value function is not continuous. The switching lines, curves (c) and (d),
determine when the optimal control switches from −1 to 1 or from 1 to −1
respectively. The yellow points which do not lie on the x1-axis are not part of
the BUP, where the optimal trajectories touch-and-go.

trajectories themselves. Curves (a) and (b) are those where the value func-
tion / time-to-go is not continuous. At the yellow touch-and-go points reached
by curves (a) and (b), the trajectories do not penetrate the terminal mani-
fold; rather, state trajectories continue on to reach the switching lines (d) and
(c), respectively. These two points are not part of the BUP (where optimal
trajectories touch-and-go) – an interesting state of affairs. The value function
increases / jumps from above the curve (a) to below curve (a). The value func-
tion decreases/ jumps from above curve (b) to below curve (b). It is, however,
continuously differentiable away from the curves (a) and (b). For the sake of
comparison, in Figure 6 the canonical optimal flow field where the target set
is the point at the origin is shown. The action in Figures 4 and 5 is lost in the
case of a point target because the curves (a) and (c) coalesce into one curve
and so do curves (b), (d) and the optimal flow field in between. And these two
consolidated curves, contrary to popular belief, are not optimal trajectories.
This demonstrates the need to eschew “point targets” and rephrase the control
problem so that it is mathematically well posed, and is engineering relevant.
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Fig. 6: The “classical” rendition of the optimal flow field. Note that lines
(a) and (b) here represent “optimal” trajectories, but in-fact, line (a) is the
consolidated curve (d) from Figures 4 and 5 and a part of the optimal flow field
trajectories from Figures 4 and 5. Similarly, line (b) here is the consolidated
curve (c) and part of the optimal flow field from Figures 4 and 5.

We see that Figure 6 is quite different from the optimal flow fields shown in
Figures 4 and 5.

It is also interesting to present the isocost surfaces. The isocost “surfaces”
are curves in the two-dimensional state space / plane, (x1, x2). The τ = 0
isocost surface / curve is the UP of the target set. The case where l = 1 is
considered.

UP = {
�
l cos θ
l sin θ

�
| 0 < θ < π,π < θ < 2π} (19)

A τ -isocost surface, Sτ , τ > 0, is parameterized by θ, 0 < θ < π, π < θ <
2π,

Sτ =
��

x1(θ; τ)
x2(θ; τ)

� ��� 0 < θ < π,π < θ < 2π
�

(20)
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The parameter range {θ| 0 < θ < π,π < θ < 2π} is partitioned as follows:

{θ | 0 < θ < π,π < θ < 2π} =

{θ | 0 < θ ≤ π
2 }

∪ {π
2 < θ < π, tan θ < −τ}

∪ {θ|π2 < θ < π, tan θ ≥ −τ}
∪ {θ|π < θ ≤ 3π

2 }
∪ {θ| 3π2 < θ < 2π, tan θ < −τ}
∪ {θ| 3π2 < 2π, tan θ ≥ −τ}

Let
φ � arctan(τ), τ > 0,

then,

{θ|0 < θ < π,π < θ < 2π} =

{θ|0 < θ ≤ π
2 }

∪ {θ|π2 < θ < π − φ}
∪ {θ|π − φ ≤ θ < π} ∪ {θ|π < θ ≤ 3π

2 }
∪ {θ| 3π2 < θ < 2π − φ}
∪ {θ|2π − φ ≤ θ < 2π}.

The Sτ isocost surface contained within the two switching lines, τ > 0, is:

x1(θ|τ) =





l(cos θ − τ sin θ)− 1
2τ

2 0 < θ ≤ π
2

l(cos θ − τ sin θ)− 1
2τ

2 π
2 < θ < π − φ

l(cos θ − τ sin θ) + 1
2τ

2 + tan2 θ + 2τ tan θ π − φ ≤ θ < π

l(cos θ − τ sin θ) + 1
2τ

2 π < θ ≤ 3π
2

l(cos θ − τ sin θ) + 1
2τ

2 3π
2 < θ < 2π − φ

l(cos θ − τ sin θ)− 1
2τ

2 − tan2 θ − 2τ tan θ 2π − φ ≤ θ < 2π

x2(θ|τ) =





l sin θ + τ 0 < θ ≤ π
2

l sin θ + τ π
2 < θ < π − φ

l sin θ − 2 tan θ − τ π − φ ≤ θ < π

l sin θ − τ π < θ ≤ 3π
2

l sin θ − τ 3π
2 < θ < 2π − φ

l sin θ + 2 tan θ + τ 2π − φ ≤ θ < 2π

(21)
A figure showing the isocost curves for τ ∈ {0.25, 0.50, 0.75, 1, 2, 3, 4, 5, 6,

7, 8} are shown in Figure 7. Define the retrograde time to reach the switching
line from the UP as τ1 and the retrograde time from the switching line to a
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point in the state space as τ2. The isocost curves of equal retrograde time τ
are obtained when τ = τ1 + τ2. The τ -isocost curves, in black, are continuous.
Those isocost curves which are contained inside the yellow switching lines are
obtained from (21). At the switching line τ = τ1 and the isocost curves are
non differentiable. Propagating the retrograde equations from (11) backward
in time (τ > τ1 > 0) from the yellow switching lines, the iscost curves which
fill the state space (x1, x2) are obtained.

Fig. 7: The isocost surfaces for τ = {1, 2, . . . , 8} in the state space, (x1, x2);
l=1.

4 Square Target Set

Recall, the tolerance specification from (1) repeated here for convenience.

−L ≤ x(tf ) ≤ L, −V ≤ v(tf ) ≤ V

and also let L be the characteristic length. Using the non-dimensional variables
as defined in Section 2, the terminal manifold is the square

−1 ≤ x(tf ) ≤ 1, −1 ≤ v(tf ) ≤ 1.

The square, non-smooth, terminal manifold ABCD and the associated
normals are shown in Figure 8.

A square target set is used to show how to solve optimal control prob-
lems using Isaacs’ method when the terminal manifold has corners and is not
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(a) Outward pointing normals for the
square target set ABCD in the state
space (x1, x2).

(b) Outward pointing normals from the
UP of the square target set ABCD in the
state space (x1, x2).

Fig. 8: The square target set ABCD with outward pointing normals shown in
the state space (x1, x2). The UP of the target set is emphasized as the normals
from the NUP are neglected in (b).

smooth. This is not apparent when considering a point target rather than a
proper terminal manifold of co-dimension 1.

4.1 Usable Part

In the best tradition of dynamic programs, we again “start” from the end.
We start with identifying the UP of the terminal manifold by analyzing each
of its four sides which make up the square ABCD, AB, BC, CD, and AD.
For each side, the inner-product used to determine the UP, the BUP, and the
nonusable part (NUP) are presented in Table 1.

Table 1: Usable Part of the Square Terminal Manifold

Segment �n ��n · f� Usable Part (UP)

AB
�−1

0

�
−x2 {(x1, x2)|x1 = −1, x2 ∈ (0, 1]} ⊂ UP

BC
�

0
−1

�
−u u = 1 ⇒ BC ⊂ UP

CD
�
1
0

�
x2 {(x1, x2)|x1 = 1, x2 ∈ [−1, 0)} ⊂ UP

AD
�
0
1

�
u u = −1 ⇒ AB ⊂ UP

Note that the vertices {B,D} /∈ UP, so no optimal trajectories terminate
at points B and D. Also, at the square’s vertices / corners A and C, multiple
optimal trajectories terminate because at A and C, the normals to the terminal
manifold are not unique, but form a cone whose vertex angle is π/2. And these
normals are the terminal costates, each of which will give rise to an optimal
trajectory. Such a family of optimal of optimal trajectories will contribute to
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forming the optimal flow field which must cover the entire state space. The
terminal state is

x1(tf ) =





−1 on AB

s1,−1 < s1 ≤ 1 on BC

1 on CD

s2,−1 ≤ s2 < 1 on AD

(22)

x2(tf ) =





s3, 0 < s1 ≤ 1 on AB

−1 on BC

s4,−1 ≤ s4 < 0 on CD

1 on AD

(23)

The terminal co-states are aligned with the outward pointing normals

λ1(tf ) =





−a1 on AB

0 on BC

a2 on CD

0 on AD

a5 cos θ1 at A, where π
2 < θ1 < π

a5 cos θ2 at C, where 3π
2 < θ2 < 2π

a1 > 0, a2 > 0, a5 > 0

(24)

λ2(tf ) =





0 on AB

−a3 on BC

0, on CD

a4 on AD

a6 sin θ1 at A, where π
2 < θ1 < π

a6 sin θ2 at C, where 3π
2 < θ2 < 2π

a3 > 0, a4 > 0, a6 > 0

(25)

Therefore a family of optimal trajectories will terminate at points A and C.
Recall the Hamiltonian, H = 1+λ1x2+λ2u, and since u∗ = −sign(λ2), the

optimal Hamiltonian, H ∗ = 1+λ1x2−sign(λ2)λ2. The optimal Hamiltonian is
zero, including at the final time, just as described in Section 3. The coefficient
a is determined by evaluating the Hamiltonian at the final time, tf where the
co-states are known. This is accomplished by substitution of the values from
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(22) to (25) into (9). The resulting values for a1 through a6 are

a1 =
1

s3
, 0 < s3 ≤ 1

a2 = − 1

s4
, −1 ≤ s4 < 0

a3 = 1

a4 = 1

a5 =
1

sin θ1 − cos θ1
, π

2 ≤ θ1 ≤ π

a6 =
1

cos θ2 − sin θ2
, 3π

2 ≤ θ2 ≤ 2π

(26)

Note that a5 > 0 and a6 > 0 over the domain of θ1 and θ2 as required. More-
over, substitution of the a parameters from (26) into the co-state equations
Eqs. (24) and (25) provides the final co-states.

λ1(tf ) =





− 1
s3
, 0 < s3 ≤ 1 on AB

0 on BC

− 1
s4
, −1 ≤ s4 < 0 on CD

0 on AD
cos θ1

sin θ1−cos θ1
, π

2 ≤ θ1 ≤ π at A
cos θ2

cos θ2−sin θ2
, 3π

2 ≤ θ2 ≤ 2π at C

(27)

λ2(tf ) =





0 on AB

−1 on BC

0, on CD

1 on AD
sin θ1

sin θ1−cos θ1
, π

2 ≤ θ1 ≤ π at A
sin θ2

cos θ2−sin θ2
, 3π

2 ≤ θ2 ≤ 2π at C

(28)

The Euler-Lagrage / characteristic equations are

ẋ1(t) = x2(t), x1(t = 0) = x10

ẋ2(t) = −sign(λ2(t)), x2(t = 0) = x20

λ̇1(t) = 0, λ1(t = tf ) = Eq. (27)

λ̇2(t) = −λ1(t), λ2(t = tf ) = Eq. (28)
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In retrograde time, τ , we consider trajectories which emanate from the UP,
and therefore we have

x̊1(τ) = x2(τ), x1(τ = 0) = Eq. (22)

x̊2(τ) = −sign(λ2(τ)), x2(τ = 0) = Eq. (23)

λ̊1(τ) = 0, λ1(τ = 0) = Eq. (27)

λ̊2(τ) = −λ1(τ), λ2(τ = 0) = Eq. (28)

τ ≥ 0

(29)

Because the derivative for λ1 is zero, λ1(τ) = λ1(τ = 0), τ ≥ 0. Using this

information, we calculate, in retrograde, λ2(τ), τ ≥ 0. Integrating λ̊2(τ)

λ2(τ) =





− 1
s3
τ, 0 < s3 ≤ 1 on AB

−1 on BC

− 1
s4
τ, −1 ≤ s4 < 0 on CD

1 on AD
τ cos θ1+sin θ1
sin θ1−cos θ1

, π
2 ≤ θ1 ≤ π at A

τ cos θ2+sin θ2
cos θ2−sin θ2

, 3π
2 ≤ θ2 ≤ 2π at C

τ ≥ 0

Next, we calculate the optimal trajectories in retrograde fashion.

x2(τ) =





s3 − τ, 0 < s3 ≤ 1 on AB

−1− τ on BC

s4 + τ, −1 ≤ s4 < 0 on CD

1 + τ on AD

1 + τ, 0 ≤ τ ≤ − tan θ1 at A

1− 2 tan θ1 − τ, − tan θ1 ≤ τ at A

−1− τ, 0 ≤ τ ≤ − tan θ2 at C

−1 + 2 tan θ2 + τ, − tan θ2 ≤ τ at C

(30)
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x1(τ) =





−1− s3τ + τ2

2 , 0 < s3 ≤ 1 on AB

s1 + τ + τ2

2 , −1 < s1 ≤ 1 on BC

1− s4τ − τ2

2 , −1 ≤ s4 < 0 on CD

s2 − τ − τ2

2 , −1 ≤ s2 < 1 on AD

−1− τ − τ2

2 , 0 ≤ τ ≤ − tan θ1 at A

−1− τ
+ 2τ tan θ1

+
τ2

2
+ tan2 θ1

, − tan θ1 ≤ τ at A

1 + τ + τ2

2 , 0 ≤ τ ≤ − tan θ2 at C

1 + τ − 2τ tan θ2

−τ2

2
− tan2 θ2

, − tan θ2 ≤ τ at C

π
2 ≤ θ1 ≤ π, 3π

2 ≤ θ2 ≤ 2π

(31)

The optimal trajectories with x1 as a function of x2, are

x1(x2) =





x2
2−s23−2

2 , x2 ≤ s3,xf ∈ AB
x2
2−1+2s1

2 , x2 ≤ −1,xf ∈ BC
s24−x2

2+2
2 , x2 ≥ s4,xf ∈ CD

1−x2
2+2s2
2 , x2 ≥ 1,xf ∈ AD

−x2
2−1
2 ,

1 ≤ x2 ≤ 1− tan θ1,
xf ∈ A

x2
2−3
2

+ 2 tan θ1
− tan2 θ1

,
x2 ≤ 1− tan θ1,
xf ∈ A

x2
2+1
2 ,

tan θ2 − 1 ≤ x2 ≤ −1,
xf ∈ C

−x2
2+3
2

− 2 tan θ2
+ tan2 θ2

,
tan θ2 − 1 ≤ x2,
xf ∈ C

− 1 < s1 ≤ 1, −1 ≤ s2 < 1

0 < s3 ≤ 1, −1 ≤ s4 < 0
π
2 ≤ θ1 ≤ π, 3π

2 ≤ θ2 ≤ 2π

(32)

Notice that the sign of λ2 changes at the time instant τs = − tan θ1 for tra-
jectories emanating from point A, and τs = − tan θ2 for trajectories emanating
from point C. The trajectories specified in (32) provide the optimal trajecto-
ries for x1 and x2, provided a single parameter: s1, s2, s3, s4, θ1, or θ2. These
trajectories potentially fill the two-dimensional state space: (x1, x2).



Springer Nature 2021 LATEX template

On the Synthesis of Optimal Control Laws 23

Two switching curves exist:

1. The switching curve pertaining to the family of optimal trajectories which
terminate at vertex, A of the terminal manifold (an which are parameterized
by π/2 ≤ θ1 ≤ π is:

x1 = −1

2
x2
2 −

1

2
, x2 ≥ 1 (33)

2. The switching curve pertaining to the family of optimal trajectories
which terminate at the vertex C of the terminal manifold (an which are
parameterized by 3π/2 ≤ θ2 ≤ 2π) is:

x1 =
1

2
x2
2 +

1

2
, x2 ≤ −1 (34)

No switching occurs on the four families of optimal trajectories which ter-
minate on the four sides of the terminal manifold. The optimal flow field for
reaching the square target manifold is shown in Figure 9.

(a)

(b)

Fig. 9: The optimal flow-field and two switching curves, (a) and (b), for the
square target manifold.

In Figure 9 the blue lines represent switching lines. The switching line which
is anchored at point A is described by (33); while the switching line which is
anchored at point C is described by (34). The switching lines (a) and (b) are,
themselves, optimal trajectories for reaching the UP since they are anchored
at point A and C respectively. The switching lines (a) and (b) are when the
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optimal control used for reaching the UP of the terminal manifold switches
from 1 to -1 and from -1 to 1, respectively.

The corners B and D are not in the UP and therefore trajectories which
pass thought these points continue and terminate at points A and C respec-
tively. These are “touch-and-go” trajectories. The touch-and-go trajectory
which passes though point B has the equation: x1 = x2

2/2 − 3/2 and the
touch-and-go trajectory which passes through point D has equation x1 =
−x2

2/2+ 3/2. The square target set might be small in extent; yet, all of this is
missed when the target set is a point, as in Pontryagin’s canonical example.

For the sake of visualization, consider the mental exercise whereby a small
circular arc of radius � << 1 is located at the corner of our square termi-
nal manifold, rendering it a smooth terminal manifold. A unique normal is
then associated with each point on this small circular arc, and consequently,
a unique optimal trajectory terminates at this point on the small circular arc.
Consequently, a family of optimal trajectories terminates on this small circular
arc, and by extension, at the corner of the manifold. We have literally smoothed
the rough edges of a terminal manifold. And in the parlance of optimal control
theory, we have put to work the viscosity solution concept.

5 Conclusion

In this paper, the PMP and DP methods for solution of optimal control
problems are juxtaposed. We advocate solving optimal control problems by
leveraging Isaacs’ constructive method for the solution of differential games.
Isaacs’ method is based on the method of DP as opposed to the PMP which is
rooted in the calculus of variations and provides necessary conditions for opti-
mality, which however can afford the construction of an optimal trajectory.
We also emphasize the importance of formulating mathematically well-posed
optimal control problems, that is, the need to move away from “point capture”
and instead consider terminal manifolds of co-dimension 1; point capture is
then the limiting case where the terminal manifold is shrunk to a singleton and
the terminal manifold is a point target. This is also aligned with engineering
practice where finite tolerances are specified.

Most importantly, in the paper we draw attention to the fact that in the
process of correctly solving an optimal control problem, identifying the UP of
the terminal manifold is the critical first step. It comes down to properly spec-
ifying the boundary conditions of the HJBI PDE for the Value function. Thus,
in minimum time optimal control problems the Value function is correctly set
to zero, we emphasize, only on the UP of the terminal manifold. Blindly set-
ting the Value function to zero on the whole terminal manifold just because the
state is in the terminal manifold, and proceeding with the numerical solution
of the HJBI PDE, yields trajectories which are not either feasible or optimal.

Two examples are used to highlight the solution of min-time optimal con-
trol problems for reaching both a smooth and non-smooth terminal manifold,
rather than a point target, where this distinction is obscured. This not only



Springer Nature 2021 LATEX template

On the Synthesis of Optimal Control Laws 25

renders the mathematical optimal control problem well-posed, but from an
engineering point of view, is more realistic, in that it represents an accept-
able terminal tolerance / error. The first case is a circular terminal manifold,
the second is a square terminal manifold with corners. The former highlights
how to pose and solve optimal control problems when the terminal manifold
is smooth, while the latter highlights the solution process when the terminal
manifold has corners. While Isaacs’ method naturally requires the terminal
manifold being of co-dimension 1, it becomes apparent the classical PMP
based approach hides critical aspects of the optimal control problem when a
point target is considered; this is highlighted in this paper. While the PMP
is a necessary condition of optimality, which however allows the construction
of candidate optimal trajectories, Isaacs’ method directly yields the global
optimal flow field and as a byproduct, also the region of controllability.
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