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Analysis of the effects of
spatiotemporal demand data

aggregation methods on distance
and volume errors

Zachary Hornberger, Bruce Cox and Raymond R. Hill
Department of Operational Sciences, Air Force Institute of Technology,

Wright-Patterson AFB, Ohio, USA

Abstract
Purpose – Large/stochastic spatiotemporal demand data sets can prove intractable for location optimization
problems, motivating the need for aggregation. However, demand aggregation induces errors. Significant
theoretical research has been performed related to the modifiable areal unit problem and the zone definition
problem. Minimal research has been accomplished related to the specific issues inherent to spatiotemporal
demand data, such as search and rescue (SAR) data. This study provides a quantitative comparison of various
aggregationmethodologies and their relation to distance and volume based aggregation errors.
Design/methodology/approach – This paper introduces and applies a framework for comparing both
deterministic and stochastic aggregation methods using distance- and volume-based aggregation error
metrics. This paper additionally applies weighted versions of these metrics to account for the reality that
demand events are nonhomogeneous. These metrics are applied to a large, highly variable, spatiotemporal
demand data set of SAR events in the Pacific Ocean. Comparisons using these metrics are conducted between
six quadrat aggregations of varying scales and two zonal distribution models using hierarchical clustering.
Findings – As quadrat fidelity increases the distance-based aggregation error decreases, while the two
deliberate zonal approaches further reduce this error while using fewer zones. However, the higher fidelity
aggregations detrimentally affect volume error. Additionally, by splitting the SAR data set into training and
test sets this paper shows the stochastic zonal distribution aggregation method is effective at simulating
actual future demands.
Originality/value – This study indicates no singular best aggregation method exists, by quantifying
trade-offs in aggregation-induced errors practitioners can utilize the method that minimizes errors most
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relevant to their study. Study also quantifies the ability of a stochastic zonal distribution method to effectively
simulate future demand data.

Keywords Modifiable areal unit problem, Zone definition problem, Aggregation error,
Spatiotemporal demand data, Search and rescue, Aggregation error

Paper type Research paper

1. Introduction
Location modeling is a branch of operations research with vast real-world applicability and
thus has been studied for a number of decades. Location modeling typically considers the
location and time of demand signals over a network and optimizes the corresponding
location of a servicing asset, such as a factory or vehicle. The underlying spatiotemporal
demand signal data points are thus instrumental to the quality of the resulting model.

When considering extremely large spatiotemporal data sets, there is frequently a need to
aggregate demand points to make the problem more tractable for the solver, clearer for the
analyst and comprehensible for the end-user. While heuristic solvers can be used to
overcome tractability issues by finding near-optimal solutions on the complete data set, they
do not alleviate all needs for aggregation. Of specific interest, stochastic spatiotemporal
demand data sets, such as search and rescue (SAR), medevac, ambulance or taxi data, may
require the creation of aggregated zones as a first step in either a stochastic location
optimization problem or a demand prediction model.

Aggregation, while of practical use, is not a lossless compression, and introduces
aggregation error into the model. When location data are aggregated, the resulting
grouping’s location is traditionally represented by an aggregated data point. The distances
between the actual demand points and the aggregated data points depend on the size of the
aggregated region and the manner of aggregation. Similarly, the magnitude of uncertainty
in the aggregated demand volumes is influenced by the nature of the aggregation.
Therefore, special consideration must be given to the aggregation technique used when
solving location problems.

The impact of aggregation becomes more pronounced when the geographic region
expands in size and there is high variability in demand density across the region; this
struggle is actualized in studying the United State Coast Guard (USCG) District 14’s SAR
mission. The international community recognizes the need for global cooperation in
responding to emerging crises around the world. Nations have entered into SAR
agreements, dividing the globe into respective search and rescue regions (SSRs). Per the
United States National Search and Rescue Supplement to the International Aeronautical and
Maritime Search and Rescue Manual (US Coast Guard, 2013), the USCG is the federal SAR
coordinator for SAR missions within the United States’maritime SSRs and the aeronautical
SSRs that do not overlay the continental USA or Alaska.

USCG District 14 is headquartered in Honolulu, HI and is responsible for USCG statutory
missions across the Pacific region. In particular, the district’s SSR spans more than 12
million square nautical miles, although the preponderance of SAR emergencies occur in the
vicinity of Guam and the Hawaiian Islands. Additionally, District 14 has among the fewest
assets in the USCG fleet, increasing the necessity to optimally posture those assets across
the Pacific. Given the time-sensitive nature of rescue operations, it is imperative the USCG
be optimally postured to ensure rapid response. Over the past decade, researchers have
partnered with Coast Guard units –USCG and international – to solve these variations of the
traditional facility location problem. These studies typically use historic SAR event data as
the foundation of either a deterministic or simulation-based location model.
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This study makes the following contributions: First, it quantifies trade-offs in both the
distance and volume errors for six quadrat aggregation methods of varying fidelities as well
as two intentional zonal distribution aggregation models using District 14 SAR emergency
data as a practical basis for consideration. Second, it quantifies the ability of the stochastic
zonal distributionmethod (SZDM) to effectively simulate future demand data.

The remainder of the paper proceeds as follows: Section 2 of this paper reviews
previous works related to the aggregation of data for location models in general and
Coast Guard SAR missions in particular. In Section 3, we outline the methodology for
implementing various aggregation techniques, both deterministic and stochastic, using a
training data set. In Section 4, we evaluate the effectiveness of these techniques by
quantifying the aggregation errors between the modeled demand and actual demand over
a two-year period. In Section 5, we review our findings and provide recommendations for
future research.

2. Related works
Researchers have long been cognizant of a relationship between the methods used to
aggregate location data and the resulting solutions generated by location models using this
data. In the fields of geography and ecology, aggregation error of spatial data points is
dubbed the modifiable areal unit problem (MAUP) (Openshaw, 1984; Dark and Bram, 2007)
or the zone definition problem (Fotheringham et al., 1995; Curtis and MacPherson, 1996).
Research into MAUP typically decomposes the problem into two main effects: the scale
effect and the zone effect. The scale effect refers to the impact on the spatial analysis results
that are caused by the fidelity of the aggregation; for example, the impact of aggregating
demand in a city using 200m� 200 m grids versus 1 km� 1 km grids. Conversely, the zone
effect refers to the impact caused by the way in which aggregation zones are bounded; for
example, the impact of aggregating demand in a state using county lines versus city limits
versus a grid overlay (Openshaw, 1984; Dark and Bram, 2007). Jelinski and Wu (1996)
created a seminal contrived demonstration of these effects, which we replicate for
completeness in Figure 1.

Previous research on MAUP has cautioned against arbitrary aggregation of spatial data
and stressed its threat on the reliability of the resulting location analysis. Openshaw (1984)
was foundational in the study of MAUP and called for developing better methods for
aggregating spatial data owing to MAUP’s impact on the reliability of geographic studies.
Curtis and MacPherson (1996) studied data for New York and concluded that researchers
can bias the results of their analysis based on the means of aggregation, even if there
appears to be a logical basis for the used method of aggregation. Fotheringham et al. (1995)
go so far as to question the accuracy of any location-based analysis conducted using
aggregated data because of the effects of MAUP.

In studies of MAUP, and aggregation theory in general, trends have emerged. Increases
in the number of aggregated zones are typically proportional to decreases in distance-based
aggregation error; distance-based aggregation error disappears when each distinct demand
point is assigned to a unique zone (i.e. the number of aggregation zones equals the number of
demand points). As any grouping introduces an associated level of distance-based error, it
follows that reducing the amount of aggregation would subsequently reduce this error.
Francis et al. (2004) note the law of diminishing returns applies in this context, however,
suggesting that iterative reductions in the number of aggregate groups show diminishing
improvements to error reduction. Francis and Lowe (1992) discuss the paradox of
aggregation, noting that solving formulations to minimize error can be more cumbersome
than the original location problem being solved, which is counter-intuitive as aggregation is
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used to simplify the resolution of these original location problems. Dark and Bram (2007)
consider the trends corresponding to both the scale effect and the zone effect. A known
benefit of aggregation is tied to the scale effect; predictions of aggregated demand levels
tend to be more accurate with fewer, larger aggregate zones. This accuracy increase is when
there are more demand points consolidated in each zone, the demand variance between
zones decreases. The impact of zone effect is less understood and tends to differ from
problem-to-problem.

The importance of careful aggregation has been thoroughly studied and is
synthesized in Francis et al. (2009). In their survey of previous literature regarding
aggregation error associated with location problems, Francis et al. note that there is an
inherent trade-off when aggregating data points. Aggregation has the benefit of
decreasing computational requirements and any confidentially concerns. Francis et al.
also note that aggregation tends to decrease the statistical uncertainty of the data by
amassing larger collections of data points, thus increasing the size of the pooled sample
and subsequently reducing the sample standard deviation. Unfortunately, aggregation
also increases the error within the model by introducing aggregation error. Thus, there
does not exist a singular “best” level of aggregation, and the trade-offs inherent in
aggregation must be considered.

In addition to the theoretical work on this problem, there has been applied work
specifically relating to Coast Guard SARmissions, the preponderance of which has emerged
in the past decade. Studies researching the allocation of SAR assets, or facilities, typically
adopt a quadrat modeling technique for aggregating location data (Akbari et al., 2018a,
2018b; Karatas et al., 2017; Afshartous et al., 2009). This technique consists of decomposing
the region in question into square cells using a grid overlay.

Figure 1.
(a–c) Scale effect. As
scale of aggregation
increases, mean does
not change but
variance declines.
(d, e) Aggregation
effect. Keeping scale
equal but changing
method of
aggregation changes
variance. (c, e, f) Even
when the number of
zones is constant (4)
mean and variance
can change
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Armstrong and Cook (1979) constructed a goal-programming model for assigning SAR
aircraft, incorporating probabilistic consideration for the time required by the aircraft to
locate distress events in different areas of the corresponding region, using a grid overlay to
create a collection of square zones. These zones were then assigned deterministic values,
representing the average number of distress events per month. Similarly, Karatas et al.
(2017) used a quadrat model for simulating the location and volume of distress calls for the
Turkish Coast Guard in the Aegean Sea. They first determined the optimal resource
allocation strategy using individual events as separate demand nodes and then evaluated
the effectiveness of this strategy using simulated demand.

Notably, the quadrat method is frequently adopted in crime data analyses, which
typically seek to quantify spatial trends in criminal activity across a city or state (Anselin
et al., 2000; Eck et al., 2005). The incorporation of kernel density estimation with the quadrat
model, popular in crime data analysis (Anselin et al., 2000), has been previously
implemented in SAR location problems. The kernel density estimation method composes the
region into grid cells and assigns a density function to each data point (si). Points that are
within proximity to each other relative to a specified bandwidth (t ) are grouped into a kernel
(k) and their density functions are combined. The resulting image is a smooth heat map with
greater densities illustrated over areas that have the most activity clustered closely together
(Anselin et al., 2000; Eck et al., 2005). Erdemir et al. (2008) used kernel density estimation
when considering the problem of locating aeromedical bases across the state of NewMexico.
Similarly, Akbari et al. (2018b) implemented a kernel density estimation approach to
approximate the intensity of distress calls received by the Canadian Coast Guard. They
varied the size of the grid overlay based upon the proximity to the shoreline. This decision
was based upon the assumption that because most distress events occurred closer to shore,
the analysis would benefit from greater fidelity in aggregation along the coastline.

While most work regarding SAR posturing has incorporated quadrat techniques, Azofra
et al. (2007) introduced an intuitive method that has been applied to maritime SAR. Instead
of defaulting to grids, the Azofra et al. zonal distribution model (ZDM) allows for flexibility
in the definition of emergency zones, such as zones based upon subject matter expertise.
Once the zones are determined, the centroids of distress calls, dubbed superaccidents, are
computed for each zone. The ZDM is a gravitational model, with the determination in
optimal SAR operational response based upon the distance to the superaccidents and their
associated weight. They demonstrate the implementation of this model using a notional
example involving three superaccidents and three ports.

Since the introduction of the ZDM, some researchers have opted to expand upon it by
applying it to real-world problems. Ai et al. (2015) use this model for locating supply bases
and positioning vessels for maritime emergencies for a portion of the coastline of China
along the Yellow Sea. While not adhering to the strict grid cells of previous studies, their
zones remained rectangular in shape and varied in size across the region. Razi and Karatas
(2016) improved upon the ZDM by using a k-means clustering algorithm for defining the
zones and implementing a weighted approach for locating the superaccidents. By adopting
this approach, Razi and Karatas define the aggregated zones and corresponding
representative demand nodes based upon historical trends in distress calls in the Aegean
Sea rather than arbitrary cells. Hornberger et al. (2021) propose an extension to the work of
Razi and Karatas, which they dub the stochastic ZDM. Their model implements hierarchical
k-means clustering algorithm to define the aggregation zones, fits probability distributions
to model the SAR demand for each zone and then uses empirically constructed discrete
distributions to model the corresponding rescue response for each emergency.
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A review of the existing literature regarding SAR asset posturing models, and indeed
emergency asset posturing models, finds a lack of explicit consideration regarding the impact
of aggregation. Additionally, as SAR research expands to larger regions of consideration (e.g.
oceans vs. seas or shorelines), it is necessary to more thoroughly consider the effects of various
aggregation methods. Outside of SAR, and more generally emergency response asset modeling
(Araz et al., 2007), other transportation resource posturing problems which use massive
demand data sets assume or require demand aggregation (e.g. taxi service areas, Li and Szeto,
2019; Rajendran and Zack, 2019) and should also be concerned with how such aggregation
effects the associated location modeling. To provide such consideration, our study uses historic
SAR data from across the Pacific Ocean to compare the effectiveness of a zonal aggregation
technique compared to quadrats of varying fidelity. Additionally, we evaluate these trade-offs
in the aggregation as applied to deterministic and stochastic implementations.

3. Methodology
In this section, we consider two key characteristics that define a zonal aggregation of
demand signals: dividing the region into zones and modeling the demand level. Using these
two characteristics as the framework, we model and compare the following methodologies:
deterministic quadrat approaches of various fidelities, the Razi and Karatas (2016) ZDM and
the Hornberger et al. (2021) stochastic ZDM.

These methodologies are compared using the District 14 SAR region, an interesting test
case owing to its large area and highly variable demand levels; Figure 2 depicts the
Honolulu Maritime Search and Rescue Region (US Coast Guard, 2014). Historic SAR
demand data were obtained from the Marine Information for Safety and Law Enforcement
(MISLE) database to form both a training set and a test set. The training set is comprised of
SAR events from a five-year span (January 2011 to December 2015) and is used to construct
the models of spatiotemporal SAR demand. The accuracy of the aggregated demand
methodologies is then evaluated using the test set which represents the historic SAR data
for the same region from January 2016 to December 2017. A total of 500 emergency events
were drawn from the test set, with replacement, and the actual number and location of
events compared versus predicted. This process was repeated for 10,000 draws.

The training and test data are scoped to only consider events that occurred within the
District 14 area of responsibility (AOR). Additionally, demand points missing global

Figure 2.
HonoluluMaritime
SARRegion
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positioning system coordinates were removed as were data points classified as medical
consultations as these consultations only require a discussion with a medical professional
over the phone and resources are not dispatched. The final training set contains 2,629
demand points, and the test set contains 1,080 demand points.

3.1 Modeling spatiotemporal demand
3.1.1 Quadrat models. The quadrat aggregation approach was implemented with six
different quadrat scales to test the impact of the scale effect. These six grid-based
decompositions of the region are labeled Aggregations A–F. Aggregation A considered the
region of study as a singular zone, consolidating all demand points (Figure 3). Aggregation
B divided the region into two zones along the antimeridiean (Figure 4). Aggregations C–E
are iterative increases in fidelity, decomposing the region into 8, 15 and 43 zones,
respectively (Figures 5–7). Aggregation F adopts the approach used by Akbari et al. (2018b)
and allows for smaller grid cells in sections of higher demand. Specifically, the two zones
from Aggregation E with the greatest proportion of Guam and Hawaiian Island workloads
are further decomposed into 1° � 1° cells; Aggregation F results in 212 zones. Aggregation
F is depicted in Figure 8.

3.1.2 Zonal distribution models. Aggregation ZDM was constructed utilizing the
implementation of the ZDM as established in Razi and Karatas (2016), with one exception
(see below). The AOR was divided using a weighted k-means clustering algorithm
(Figure 9). The one exception is that Razi and Karatas defined the weight of each SAR event

Figure 3.
Aggregation A (one

zone)

Figure 4.
Aggregation B (two

zones)
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using an analytical hierarchy process based upon the level of fatality, material damage,
response arduousness and environmental impact. Their weighting scheme was not viable
for this study based on the available information in MISLE, so this implementation of Razi
and Karatas’s procedure uses total activities as a weighting metric. The metric of total
activities represents the number of resources assigned to a rescue operation, in addition to
the instances when a significant change occurred in the course of the rescue operation; this
metric of total activities serves as a proxy for the complexity of a SAR event. Razi and

Figure 5.
Aggregation C (eight
zones)

Figure 6.
Aggregation D (15
zones)

Figure 7.
Aggregation E (43
zones)
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Karatas determine the number of zones to cluster demand points into based upon a rule of
thumbmethod proposed by Kodinariya andMakwana (2013). This method suggests that the
number of zones Z is based upon the total number of eventsK, such that jZ j �

ffiffiffiffiffiffiffiffiffiffiffi
jKj=2

p
.

In addition to aggregation ZDM as defined above, another ZDM-inspired aggregation
was created using same process as above but with only 15 zones. This aggregation is
referred to as ZDM-15. A figure for ZDM-15 is not included for space considerations, but
resembles that of Figure 9 with 15 versus 36 zones.

Aggregation SZDM was developed by implementing the stochastic ZDM approach
proposed by Hornberger et al. (2021) (Figure 10). Hornberger et al. used a hierarchical k-
means clustering algorithm to aggregate demand points into zones. All demand points are
sorted into mutually exclusive groups based upon the unit that coordinated the response
and the types of assets used in the response. District 14 is divided into Sector Guam and
Sector Honolulu, which split the coverage of the AOR around longitude 160° E. Current
policy dictates that the mission range for USCG boats is 50 nautical miles from the shoreline
of an island on which there exists a USCG boat station; District 14 has boat stations located
on the islands of Guam, O’ahu, Kaua’i and Maui. Hornberger et al. note that a reasonable
approximation of asset utilization would be a combination of boats and helicopter aircraft
responding to SAR events within the 50 nautical mile boundary of these islands while a
combination of cutters and aeroplane aircraft respond to SAR events beyond these

Figure 8.
Aggregation F (212

zones)

Figure 9.
Aggregation ZDM

(36 zones)
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boundaries. Therefore, all demand points were sorted into the following mutually exclusive
groups: Guam boat/helicopter events, Guam cutter/airplane events, HI boat/helicopter
events and Hawaii cutter/airplane events. These groups are further decomposed into
clusters based upon the geographic proximity of the data points by using a k-means
clustering algorithm. The number of zones was determined by considering the relationship
between the number of zones and the corresponding within-cluster variance. A plot of this
relationship forms an elbow curve, whose name is tied to the phenomena that initial
groupings account for a greater reduction in variance compared to subsequent groupings,
i.e. the “elbow” of the curve represents the point of diminishing returns. The “elbow” of the
curve occurs at the suggested number of zones for the data set. Figure 11 shows the elbow
curve for the Hawaiian cutter event cluster. The number of potential clusters is on the x-axis,
whereas the within-cluster variance is on the y-axis. Note that as the number of clusters
increases the within-cluster variance decreases in a convex fashion. This phenomenon
enables the analyst to pick the number of clusters associated with the “crook of the elbow.”
In particular for this zone the authors choose six clusters, as this is the last “joint” before the
curve levels off. This process, while an effective rule of thumb, is subjective.

3.2 Methods of comparative analysis
This study evaluates the effectiveness of various methods of aggregation when conducting
spatiotemporal forecasting. Specifically, we assess the merit of the Razi and Karatas (2016)
deterministic zonal distribution mode, and the Hornberger et al. (2021) stochastic ZDM,
comparing their effectiveness against traditional quadrat methods of varying fidelity’s. To
conduct these comparisons, two metrics are considered: distance-based aggregation error
and volume-based aggregation error.

The distance-based aggregation error (de) represents the total distance [as calculated
using the Haversine formula, equation (2)] between where events were modeled as occurring
(x̂j) and the actual location of their occurrence (xi,j), for each event (i [ I) in the zone (j [ J). The
anticipated event locations for all zones are weighted centroids for each zone. In the quadrat
models, the centroids are computed as an average of the latitudes/longitudes, multiplied by
the events’ corresponding total activities, for all events in the zone. In the zonal and
stochastic ZDM, the clustering algorithm yields a weighted centroid. The distance-based
aggregation error metric is as follows:

Figure 10.
Aggregation SZDM
(15 zones)
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de ¼
X

i2I

X

j2J
jxi;j � x̂jj (1)

where the Haversine formula:

d ¼ 2r arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2

f 2 � f 1

2

� �
þ cos f 1ð Þcos f 2ð Þsin2 u 2 � u 1

2

� �s0
@

1
A (2)

which, given latitudes f , and longitudes u , calculates the great-circle distance between two
points, is used to calculate each individual distance.

The weighted distance-based aggregation error (dwe) is the sum of the differences in
distance between where individual assets are modeled as being deployed to (x̂j ) and the
actual location assets are dispatched to. The weighting (wi) is the number of assets assigned
to the rescue operation. The difference between de and dwe is that the former treats
individual SAR events as being equal in magnitude, whereas the latter incorporates the
number of deployed assets. As with de the individual distances in dwe are calculated using
the Haversine formula:

dwe ¼
X

i2I

X

j2J
wijxi;j � x̂jj (3)

The distance-based aggregation error (de) and the weighted distance-based aggregation
error (dwe) are both computed for all aggregations A–F, as well as for the ZDM and the
SZDM.

The volume-based aggregation error (ve) represents the total difference between the
predicted level of monthly demand (̂l j;k) and the actual level of monthly demand (lj), for each
month in the considered time frame (k [K). Themetric is computed as follows:

ve ¼
X

j2J

X

k2K
ĵl j;k � ljj (4)

Figure 11.
Sample “elbow” curve
for the Hawaii cutter

events cluster
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Given that a primary difference between ZDM and SZDM is the integration of stochastic
elements in the modeling of the demand, both deterministic and stochastic demand
comparisons for volume-based aggregation error are conducted. For purposes of
consistency, all frequency considerations are made on a per month basis.

Mean distance error and mean weighted distance error were calculated for all 10,000
bootstrapped samples of 500 emergency events for aggregations A–F, ZDM, ZDM-15 and
SZDM. This process enables the creation of a distribution of the mean errors, and leveraging
the central limit theorem 95% confidence interval distributions were created around the
mean errors for all distributions. This enables both visual and statistical comparison of the
aggregations.

4. Analysis
4.1 Distance-based aggregation error
The mean distances, in nautical miles, between the aggregated demand point and the
subsequent demand nodes for the 10,000 samples are shown in Table 1. This table also
provides upper and lower bounds for a 95% confidence interval around the mean distance
error. The mean distance errors are also plotted and the resulting distributions presented in
Figure 12.

The resulting distance-based aggregation error for the quadrat models (de) reflects the
law of diminishing returns, as described by Francis et al. (2004). Aggregations ZDM and
SZDM perform very well compared to the quadrat models. The ZDM has a lower associated
location error than Aggregation E, despite only having 36 zones compared to Aggregation
E’s 43 zones. This runs counter to the general claim that more zones always improve the
accuracy of the location model, suggesting instead that deliberate steps can be implemented
to aggregate spatial demand points in fewer clusters while still achieving competitively low
levels of location error. The stochastic ZDM’s results support this observation, achieving a
41.7% reduction in distance-based aggregation error compared to Aggregation D despite
using the same number of zones.

Similar trends are observed when the attention is shifted from the error in SAR event
distances to the error in resource dispatch distances (as seen by the weighted distance error
dwe), as seen in Table 2 and Figure 13. There is a steady improvement in accuracy as the
number of zones is increased, with the exception of aggregations ZDM and SZDM.
Additionally, the differences between de and dwe are notably larger for the quadrat models
compared to aggregations ZDM and SZDM; the stochastic ZDM had the smallest increase in
location error when weighting by the number of resources dispatched. These observations
suggest that deliberate zoning of demand point can enhance the robustness of aggregate
zones to weighted events, particularly when the zones are developed with consideration to

Table 1.
Mean distance-based
aggregation error for
10,000 samples of
size 500. Lower and
upper bounds for
95% confidence
interval and mean
are provided

Aggregation No. of zones Lower bound Mean Upper bound

A 1 1,347.8 1,386.9 1,426.0
B 2 224.9 244.6 264.4
C 8 158.5 170.5 182.6
D 15 137.7 148.2 158.7
E 43 72.4 77.1 81.9
F 212 49.8 54.6 59.3
ZDM 36 49.8 54.8 59.6
ZDM-15 15 86.7 93.6 100.5
SZDM 15 80.9 90.0 99.1
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both geographic proximity and the operational characteristics that are tied to the event
weights.

4.2 Deterministic volume-based aggregation error
A comparison of deterministic demand models was conducted using both the mean and
median monthly demand volumes for each zone in Aggregations A–F and ZDM. The
average monthly error in volume based upon mean and median monthly demand for each
zone compared to the actual demand volumes is depicted in Table 3. The phenomena
described by Francis et al. (2009) and Dark and Bram (2007) is observed; there is a general
increase in total volume-based aggregation error as the number of zones increases.

Consistent across all aggregation methods is the lower demand error when defining the
anticipated volume of cases using the median instead of the mean. This trend becomes more
pronounced as the demand error increases, suggesting that greater improvements to
deterministic demand modeling can be achieved using the median when the number of
zones within an aggregation models are higher versus aggregation models with fewer
divisions. The advantage of using the median zonal demand versus the mean zonal demand
appears to derive from the resistance of the median to extreme events. Whereas the mean
demand level is impacted by exceptionally busy or slowmonths of SAR activity, the median
provides a more stable metric.

Figure 12.
Distribution of mean

errors for all
aggregations

Table 2.
Weighted distance-
based aggregation

error for 10,000
samples of size 500.

Lower and upper
bounds for 95%

confidence interval
and mean are

provided

Aggregation No. of zones Lower bound Mean Upper bound

A 1 3,416.4 3,709.3 4,002.3
B 2 515.0 577.0 639.0
C 8 377.5 422.7 468.0
D 15 326.9 370.7 414.5
E 43 177.2 197.1 217.0
F 212 119.3 138.3 157.3
ZDM 36 111.9 125.3 138.7
ZDM-15 15 198.3 217.1 235.9
SZDM 15 177.3 200.3 223.4
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Interestingly, implementing the ZDM corresponds to a larger than expected volume-based
aggregation error. With only 36 zones ZDM has a volume-based error higher than
Aggregation E which has 44 zones. This suggests deliberate clustering based on geographic
proximity does not correspond to improvements in deterministic demand volume modeling.
Combined with the results in Section 1 it is clear there is no “one size fits all” aggregation
which provides both a low distance-based error and a low volume-based error. Aggregation
methods that performwell in one error metric perform correspondingly worse in the other.

4.3 Stochastic volume-based aggregation error
A comparison of stochastic demand models was conducted using probability distributions
fit to each zone in Aggregations A–F and SZDM. Afshartous et al. (2009) noted that USCG
SAR operations could be represented as Poisson processes, and Hornberger et al. (2021)
continued this approach by constructing a stochastic model using Poisson and Gamma-
Poisson distributions. To provide an even comparison, stochastic demand models were
constructed for all the quadrat aggregation methods and SZDM based upon the training
data set. For each zone, a Gamma-Poisson distribution was used to represent the monthly
SAR demand except for instances when the associated parameters made such a fit
infeasible; the model defaulted to representing workload with a Poisson distribution when a
Gamma-Poisson was deemed inappropriate.

Figure 13.
Distribution of mean
weighted distance
errors for all
aggregations

Table 3.
Volume-based
aggregation error for
deterministic
demand modeling
(training set mean
and median demands
versus test set
demands per zone)

Aggregation No. of zones
Average monthly error
(mean zonal demand)

Average monthly error
(median zonal demand)

A 1 5.4 5.3
B 2 7.4 7.3
C 8 11.9 11.3
D 15 14.3 12.8
E 44 19.4 15.5
F 212 25.5 20.9
ZDM 36 23.5 19.1
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The analysis sought to identify the effectiveness of each stochastic demand model by
comparing their abilities to accurately model the demand levels observed in the test data set.
Demandmodels would be considered to be more effective at modeling demand if most of the
observed demand levels within the test set fell within anticipated volumes, thereby having
fewer months of SAR demand considered outliers. To this end, the analysis adopted the
Tukey method (Tukey, 1977) for outlier detection, whereby Tukey fences are established at
1.5 times the interquartile range below the 25th percentile and above the 75th percentile of
each zone’s distribution. Monte Carlo simulations of 1,000months were constructed for each
zone, and the Tukey fences were computed based upon the simulation results.

Table 4 shows the results of this comparison. The general trend observed in these results
is consistent with the finding from the literature; predictions of demand volume tend to lose
accuracy as the number of zones increase. As the region is decomposed into more zones, the
number of represented cases within each zone decreases. This phenomenon leads to more
zones whose distributions have smaller within-zone variances. As a result, SAR cases
occurring in new locations or at a moderately heightened volume can be registered as outlier
events in demand models where the number of zones is higher but not in demand models
where the variability of the region is aggregated into only a few zones.

Regarding the stochastic ZDM’s effectiveness compared to quadrat models, Table 4
indicates the intentional aggregation of events based on locational clusters offers greater
stochastic demand modeling accuracy than an agnostic grid decomposition. The stochastic
ZDM’s performance adhered to the overall trend, having more identified outliers than
Aggregation C and fewer than Aggregation E, but it was able to outperform Aggregation D
despite containing the same number of zones. These findings suggest that, in relation to
stochastic demand modeling, the method of aggregation combined with the degree of
aggregation influences the accuracy of the resultingmodel.

5. Conclusion
The method used to aggregate spatiotemporal demands affects the outcome of location
models built using the aggregated data, thus an understanding of the impacts of
aggregation methods is fundamental. While numerous location optimization models require,
for tractability, aggregation of spatiotemporal data the creation of aggregation zones is also
vital for projection of future demands as the basis of stochastic location analyses. We have
presented a framework comparing both static and stochastic spatiotemporal aggregation
models, using both a distance-based aggregation error metric, an event magnitude weighted
distance-based aggregation error metric and a volume-based aggregation error metric. We
further applied this framework to test six quadrat aggregation models of varying fidelities,
and two zonal based models, using historical SAR data from a massive scale region
possessing highly variable demands. As expected aggregations with greater fidelity tend to

Table 4.
Number of outlier
months, as defined

by demands
exceeding Tukey
fences, over 1,000
simulated months

Aggregation No. of zones No. of outlier months

A 1 3
B 2 5
C 8 17
D 15 68
E 44 251
F 212 368
SZDM 15 48
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reduce the distance-based aggregation error but increase volume-based aggregation error.
These results effectively point out that there is no single silver bullet aggregation
methodology, rather the researcher must understand the trade-offs in volume- versus
distance-based accuracy betweenmethods.

Comparing the quadrat and zonal aggregation methodologies, we find that while the
zonal methods observed similar trends in aggregation effects they tended to diminish the
impact of those effects. Both ZDM and SZDM approaches exhibited considerably less
distance-based error compared to quadrat models with similar numbers of zones. This
indicates that location error owing to aggregation can be reduced by constructing
aggregation zones based on the inherent clustering of data points through methods such as
k-means clustering. Although the ZDM was outperformed by nearly all the quadrat models
relative to deterministic demand error, the SZDM displayed less volume-based error
compared to quadrat models with similar number of zones. Notably, throughout the
duration of this analysis, SZDM consistently outperformed Aggregation D despite both
containing 15 zones. This insight offers stochastic zonal aggregation methods such as
SZDM as an enticing alternative when aggregation is desired.

Based on the results of our aggregation analysis, we propose the following as potential
exploratory efforts. Zonal techniques based on hierarchies and clustering techniques seem
very promising, additional research on the impacts of clustering techniques could be fruitful.
Additionally combining these zonal techniques, with their associated reduced location
errors, with a lower fidelity aggregation model to project region level demands may be
useful. Finally, a study examining possible nonlinear dynamic effects on the resulting
output of locationmodels as a result of changes in aggregation methodmay be informative.

References
Afshartous, D., Guan, Y. and Mehrotra, A. (2009), “Us Coast guard air station location with respect to

distress calls: a spatial statistics and optimization based methodology”, European Journal of
Operational Research, Vol. 196 No. 3, pp. 1086-1096.

Ai, Y.-F., Lu, J. and Zhang, L.-L. (2015), “The optimization model for the location of maritime emergency
supplies reserve bases and the configuration of salvage vessels”, Transportation Research Part
E: Logistics and Transportation Review, Vol. 83, pp. 170-188.

Akbari, A., Eiselt, H.A. and Pelot, R. (2018a), “A maritime search and rescue location analysis
considering multiple criteria, with simulated demand”, INFOR: Information Systems and
Operational Research, Vol. 56 No. 1, pp. 92-114.

Akbari, A., Pelot, R. and Eiselt, H.A. (2018b), “Amodular capacitated multi-objective model for locating
Maritime search and rescue vessels”,Annals of Operations Research, Vol. 267 Nos 1/2, pp. 3-28.

Anselin, L., Cohen, J., Cook, D., Gorr, W. and Tita, G. (2000), “Spatial analyses of crime”, Criminal
Justice, Vol. 4 No. 2, pp. 213-262.

Araz, C., Selim, H. and Ozkarahan, I. (2007), “A fuzzy multi-objective covering-based vehicle location
model for emergency services”, Computers and Operations Research, Vol. 34 No. 3, pp. 705-726.

Armstrong, R.D. and Cook, W.D. (1979), “Goal programming models for assigning search and rescue
aircraft to bases”, Journal of the Operational Research Society, Vol. 30 No. 6, pp. 555-561.

Azofra, M., Pérez-Labajos, C., Blanco, B. and Achutegui, J. (2007), “Optimum placement of sea rescue
resources”, Safety Science, Vol. 45 No. 9, pp. 941-951.

Curtis, A. and MacPherson, A. (1996), “The zone definition problem in survey research: an empirical
example fromNewYork state”,The Professional Geographer, Vol. 48 No. 3, pp. 310-323.

Dark, S.J. and Bram, D. (2007), “The modifiable areal unit problem (MAUP) in physical geography”,
Progress in Physical Geography: Earth and Environment, Vol. 31 No. 5, pp. 471-479.

JDAL
5,1

44



Eck, J., Chainey, S., Cameron, J. and Wilson, R. (2005), Mapping Crime: Understanding Hotspots,
National Institute of Justice.

Erdemir, E.T., Batta, R., Spielman, S., Rogerson, P.A., Blatt, A. and Flanigan, M. (2008), “Optimization
of aeromedical base locations in New Mexico using a model that considers crash nodes and
paths”,Accident Analysis and Prevention, Vol. 40 No. 3, pp. 1105-1114.

Fotheringham, A.S., Densham, P.J. and Curtis, A. (1995), “The zone definition problem in location-
allocation modeling”,Geographical Analysis, Vol. 27 No. 1, pp. 60-77.

Francis, R.L. and Lowe, T.J. (1992), “On worst-case aggregation analysis for network location
problems”,Annals of Operations Research, Vol. 40 No. 1, pp. 229-246.

Francis, R.L., Lowe, T.J., Rayco, M.B. and Tamir, A. (2009), “Aggregation error for location models:
survey and analysis”,Annals of Operations Research, Vol. 167 No. 1, pp. 171-208.

Francis, R.L., Lowe, T.J., Tamir, A. and Emir-Farinas, H. (2004), “Aggregation decomposition and
aggregation guidelines for a class of minimax and covering location models”, Geographical
Analysis, Vol. 36 No. 4, pp. 332-349.

Hornberger, Z.T., Cox, B.A. and Lunday, B.J. (2021), “Optimal heterogeneous search and rescue asset
location modeling for expected spatiotemporal demands using historic event data”, Journal of
the Operational Research Society, pp. 1-19.

Jelinski, D.E. and Wu, J. (1996), “The modifiable areal unit problem and implications for landscape
ecology”, Landscape Ecology, Vol. 11 No. 3, pp. 129-140.

Karatas, M., Razi, N. and Gunal, M.M. (2017), “An ILP and simulation model to optimize search and
rescue helicopter operations”, Journal of the Operational Research Society, Vol. 68 No. 11,
pp. 1335-1351.

Kodinariya, T.M. and Makwana, P.R. (2013), “Review on determining number of cluster in k-means
clustering”, International Journal, Vol. 1 No. 6, pp. 90-95.

Li, B. and Szeto, W. (2019), “Taxi service area design: formulation and analysis”, Transportation
Research Part E: Logistics and Transportation Review, Vol. 125, pp. 308-333.

Openshaw, S. (1984),TheModifiable Areal Unit Problem, Geo Books, Norwich.
Rajendran, S. and Zack, J. (2019), “Insights on strategic air taxi network infrastructure locations using

an iterative constrained clustering approach”, Transportation Research Part E: Logistics and
Transportation Review, Vol. 128, pp. 470-505.

Razi, N. and Karatas, M. (2016), “A multi-objective model for locating search and rescue boats”,
European Journal of Operational Research, Vol. 254 No. 1, pp. 279-293.

Tukey, J.W. (1977), Exploratory Data Analysis, Vol. 2, Reading, MA.
US Coast Guard (2013), The US coast guard addendum to the United States National Search and Rescue

supplement to the International Aeronautical And Maritime Search and Rescue Manual.
COMDTINSTM16130.2F.

US Coast Guard (2014), Fourteenth coast guard district search and rescue plan. CGD14INST
M16130.1A.

Corresponding author
Bruce Cox can be contacted at: bruceacox1@gmail.com

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Spatiotemporal
demand data

45


	Analysis of the Effects of Spatiotemporal Demand Data Aggregation Methods on Distance and Volume Errors
	Recommended Citation

	tmp.1670959282.pdf.EeDi7

