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Oxygen vacancies in LiB3O5 crystals and their
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Abstract: LiB3O5 (LBO) crystals are used to generate the second, third, and fourth harmonics
of near-infrared solid-state lasers. At high power levels, the material’s performance is adversely
affected by nonlinear absorption. We show that as-grown crystals contain oxygen and lithium
vacancies. Transient absorption bands are formed when these intrinsic defects serve as traps for
“free” electrons and holes created by x rays or by three- and four-photon absorption processes.
Trapped electrons introduce a band near 300 nm and trapped holes produce bands in the 500-600
nm region. Electron paramagnetic resonance (EPR) is used to identify and characterize the
electrons trapped at oxygen vacancies (the unpaired electron is localized on one neighboring
boron). Self-trapped holes and lithium vacancies with the hole trapped on an adjacent oxygen are
also observed with EPR. At room temperature, we predict that most of the unwanted defect-related
ultraviolet absorption created by a short laser pulse will decay with a half-life of 29 µs.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

In many nonlinear optical materials, the maximum power that can be generated in the higher
harmonics is often limited by nonlinear absorption. As stated by Röcker et al. [1], “Nonlinear
absorption describes the phenomenon that two or more photons are absorbed at the same time
which leads to an intensity-dependent absorption coefficient. This effect can occur when the
sum of the photon energies is sufficient to overcome the energy gap between the valence and
the conduction band of a material which otherwise would be transparent at the wavelength of
interest.” An increase in unwanted linear absorption is an important, and frequent, consequence
of nonlinear absorption. Multiphoton processes (i.e., nonlinear absorption) can create discrete
absorption bands within the energy gap by temporarily populating optically active charge states
of point defects that are unintentionally present. When this happens, single-photon (i.e., linear)
absorption may significantly increase at one or more of the wavelengths propagating through the
crystal.

As expected, the formation of unwanted transient absorption bands associated with intrinsic
point defects is recognized as a fundamental problem when lithium triborate (LiB3O5) crystals
are used to generate the second, third, and fourth harmonics of near-infrared solid-state lasers
[1–6]. The high pump powers used in these applications allow combinations of the harmonics
to bridge the 7.7 eV bandgap of the crystals [7] and produce large numbers of free electrons
and holes. In their recent study of LiB3O5 crystals, Röcker et al. [1] verified that four-photon
absorption is the primary nonlinear absorption mechanism during second-harmonic generation
and three-photon absorption is the dominant process during third-harmonic generation. Oxygen
and lithium vacancies inadvertently present in the crystals serve as temporary traps for the free
electrons and holes generated by the nonlinear absorption processes [8–13]. Self-trapped holes
formed in the oxygen sublattice are also important participants [9].
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The oxygen and lithium vacancies are in nonparamagnetic charge states (V2+
O and V−

Li) in
as-grown LiB3O5 crystals. To maintain charge neutrality, a crystal cannot have just one type of
vacancy. Both types must be present, as they provide compensation for each other (two lithium
vacancies compensate one oxygen vacancy). Exposing a crystal to ionizing radiation (x rays,
in our case) allows free electrons and holes to be trapped and form localized defects having an
unpaired spin. Electrons are trapped by oxygen vacancies and holes are either self-trapped on
oxygen ions or are trapped at oxygen ions adjacent to a lithium vacancy. In the present study,
electron paramagnetic resonance (EPR) is used to monitor these defects. Each charge state
produced by the ionizing radiation has a distinct EPR spectrum [8–13] and is accompanied by an
optical absorption band [8,11,14]. The trapped electrons are responsible for an absorption band
peaking near 300 nm and the trapped holes have absorption bands in the 500-600 nm region.
These defect-related transient absorption bands overlap the second and third harmonics of the
infrared pump lasers. Activation energies obtained from the thermal decays of the trapped holes
are used to predict lifetimes (at room temperature) of the unwanted transient absorption bands
produced by the ionizing radiation, either intense laser beams or x rays. [Note: In this paper,
we use “ionizing radiation” to mean any photons or combination of photons that bridge the
energy gap of the crystal and produce electrons and holes in the conduction and valence bands,
respectively. The x rays that we use and the third and fourth harmonics of high-powered infrared
lasers are equivalent sources of ionizing radiation.]

A primary focus of our study is oxygen vacancies. In the earlier reports of defects in LiB3O5
crystals [8–13], little attention was directed toward these ubiquitous vacancies. Our present
investigation identifies and characterizes optically active singly ionized oxygen vacancies and
describes their central role in nonlinear absorption. Unintended effects of nonlinear absorption
are often attributed to point defects [1–6], but it has proven difficult in the past to identify the
specific defects involved. For example, are they intrinsic defects or impurities? We answer this
question in the LiB3O5 crystals and anticipate that our results, and the methods we use, will be
relevant for other nonlinear oxide crystals such as β-BaB2O4, where oxygen vacancies are known
to be present [15].

2. Experimental details

The LiB3O5 crystals used in this study were grown at IPG Photonics (Oxford, MA) by the
top-seeded solution growth method [16–18]. They represent currently available high quality
commercial material, structurally perfect with very low impurity levels and low absorption.
Figures 2, 3, 5, 6, and 7 in the present paper contain spectral data taken from these recently
grown crystals. As expected, they show that the same defects observed many years earlier in
Refs. [8–13] are still present in today’s crystals.

Samples with dimensions of 2.3× 2.6× 3.0 mm3 were cut from larger boules. The crystals
were irradiated with x rays from a Varian OEG-76H-Rh tube operating at 60 kV and 30 mA
(irradiation times were two min). For low-temperature irradiations, the crystals were immersed
in liquid nitrogen in a styrofoam cup. These x rays do not produce new vacancies: they only
change the charge states of vacancies that had formed during growth. Using x rays, instead of
the harmonics of lasers, allowed us to expose the entire volume of a crystal to intense ionizing
radiation and thus maximize the concentrations of those charge states of the intrinsic defects that
are responsible for unwanted absorption bands.

EPR spectra were taken with a Bruker EMX spectrometer operating near 9.4 GHz and an
Oxford Instrument ESR-900 helium-gas flow system. Concentrations of EPR-active defects
were obtained by making comparisons with a Bruker weak-pitch standard sample. The infrared
absorption spectra of the OH− ions were acquired with a ThermoScientific Nicolet 8700 FTIR
spectrometer and a fused-silica wire-grid polarizer from Thorlabs (Model WP25M-UB). A Cryo
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Industries optical cryostat with sapphire windows (Model 110-637-DND) was used to maintain
the sample temperature near 80 K during the infrared absorption measurements.

The LiB3O5 crystals are orthorhombic (space group Pna21) with two glide planes and one
screw axis as symmetry elements [19–21]. Lattice constants at 20°C are a= 8.444 Å, b= 7.378
Å, and c= 5.146 Å. There are three inequivalent boron sites and five inequivalent oxygen sites in
the crystal. All the lithium sites are equivalent. The LiB3O5 lattice contains both BO3 and BO4
units. As shown in Fig. 1, these units combine to form B3O7 anionic groups in the crystal (the
labeling scheme in Ref. [19] is used). Two of the boron ions (B1 and B3) in the B3O7 group are
threefold bonded and one boron ion (B2) is fourfold bonded. Five of the oxygen ions (O1, O2, O3,
O4, and O5) lie close to the plane formed by the B1, B2, and B3 ions. Each lithium ion has four
oxygen neighbors, and each oxygen ion has two boron neighbors. Four of the five oxygen ions
also have a lithium neighbor (O1 is the only oxygen ion that does not have a close lithium ion).
The Li-O separation distances vary from 1.986 to 2.172 Å, the B1-O and B3-O bond lengths
range from 1.348 to 1.397 Å, and the B2-O bond lengths range from 1.461 to 1.487 Å.

O5

O3

O2
O1

B3

B1

B2

O4

O2'

O5'

Fig. 1. Ball-and-stick illustration of the (B3O7)5− portion of the orthorhombic LiB3O5
crystal (arbitrarily oriented). The boron ions are green and the oxygen ions are red. The O2′
and O5′ ions are below and above the plane formed by the three boron ions.

3. Oxygen vacancies

Figure 2 shows the EPR spectrum produced in LiB3O5 by ionizing radiation. The crystal was
initially exposed to x rays while being held at 77 K. Immediately after the irradiation, the crystal
was quickly transferred from the liquid nitrogen to the cold helium gas flowing through the
microwave resonator (there was minimal warming during the transfer). The spectrum in Fig. 2
was then taken at 55 K, with the magnetic field along the b axis and a microwave frequency
of 9.395 GHz. This temperature is optimum for viewing the spectrum, as saturation effects
due to long spin-lattice relaxation times decrease the intensity of the oxygen-vacancy lines at
lower temperatures. Two paramagnetic defects are present in Fig. 2. The upper stick diagrams
identify the strong 11B lines and the weaker 10B lines from the singly ionized oxygen vacancies
(V +

O ). A lower stick diagram, with four closely spaced lines, identifies the self-trapped holes.
The concentration of oxygen vacancies contributing to the spectrum is approximately 2.0× 1017

cm−3. Self-trapped holes appearing in the spectrum have a similar concentration. It is important
to note that the EPR spectrum we are assigning to an oxygen vacancy [8–10] was attributed to
interstitial B2+ ions in a series of early reports [11,13,22,23]. Our vacancy model is supported by
an analysis of the spectrum’s spin-Hamiltonian parameters (described later in this section) and
by analogy with singly ionized oxygen vacancies in SiO2 and TiO2 crystals [24–26].
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Magnetic Field (mT)
315 325 335 345 355

oxygen vacancy

self-trapped hole

11B
10B

Fig. 2. EPR spectrum taken at 55 K after the LiB3O5 crystal was irradiated at 77 K with x
rays. Lines from the singly ionized oxygen vacancy (V +

O ) are identified by the upper stick
diagrams. Self-trapped holes are responsible for the four more intense, closely spaced lines
in the center of the spectrum.

Oxygen vacancies in LiB3O5 crystals have two boron neighbors. An electron trapped by the
vacancy is primarily localized on one of these two boron ions. This results in a large hyperfine
interaction with one boron nucleus and a much weaker hyperfine interaction with the second
boron nucleus (on the opposite side of the vacancy). The large interaction is responsible for the
two sets of well separated EPR lines in Fig. 2 (from the 10B and 11B nuclei, respectively). The
10B isotope is 19.9% abundant with I= 3 and the 11B isotope is 80.1% abundant with I= 3/2.
As the stick diagrams above the spectrum show, the large boron interaction gives four sets of
11B lines with 12.08 mT separations and seven sets of 10B lines with 4.05 mT separations. The
number of sets of lines depends on the nuclear spin, with the ∆MS =±1, ∆mI = 0 selection rules
predicting 2I+ 1 sets of lines for an isotope. Our experimental value of 2.983 for the ratio of
10B and 11B separations in the V +

O spectrum in Fig. 2 agrees with the value of 2.986 predicted
using the known spins and magnetic moments of the two boron isotopes. The weaker hyperfine
interaction with the opposite (i.e., second) boron ion is responsible for the additional structure
present on the sets of four and seven lines from the primary boron ion. These groups of four
closely spaced lines with 0.53 mT separations represent a 11B interaction (10B lines are not
resolved for this weaker interaction).

Figure 3 shows the angular dependence of the EPR spectrum from the V +
O centers. Only

the primary 11B interaction is plotted. Secondary splittings from the weak interaction with the
second participating boron neighbor are not included. The direction of the magnetic field is
rotated in three planes, from a to b, b to c, and c to a. For each plane, data were obtained for
the outer lines (those at the highest and lowest magnetic fields). Significant overlap prevented
accurate measurements of the positions of the inner sets of lines in each plane. The following
spin-Hamiltonian, with electron Zeeman, hyperfine, and nuclear Zeeman terms, describes the
angular dependence of the singly ionized oxygen vacancy.

H = βS · g · B + I · A · S − gNβNI · B (1)

There are four crystallographically equivalent orientations (often referred to as sites) for the
V +

O center in the orthorhombic LiB3O5 lattice. Each of these four crystallographically equivalent



Research Article Vol. 12, No. 10 / 1 Oct 2022 / Optical Materials Express 4159

0 30 60 900 30 60 90

M
ag

ne
tic

 F
ie

ld
 (m

T)

300

310

320

330

340

350

360

370

Angle (degrees)
0 30 60 90  a    c    b    a 

Fig. 3. Angular dependence of the EPR spectrum of singly ionized oxygen vacancies (V +
O )

in the a-b, b-c, and c-a planes. Discrete points are experimental, and the solid curves are
calculated using the parameters in Table 1. Red curves identify the angular dependence of
one of the four orientations of the V +

O defect.

orientations is a physically different orientation of the same defect. They are related to each other
by the symmetry elements of the crystal. Each orientation of the defect has the same principal
values for the g and A matrices. The principal-axis directions of these matrices, however, are
different for each orientation. All four orientations are magnetically inequivalent for an arbitrary
direction of the external magnetic field. They are pairwise degenerate when the magnetic field
direction is in an a-b, b-c, or c-a plane and they are fourfold degenerate when the magnetic field
direction is along a, b, or c. As expected, the angular dependence in Fig. 3 shows the pairwise
degeneracy by splitting into two branches in each plane of rotation.

The g and A matrices in Eq. (1) each have, in general, six independent parameters. These are
the three principal values and the three Euler angles that specify the directions of the principal
axes. Rewriting the spin-Hamiltonian in matrix form provided an 8× 8 matrix (S= 1/2 and
I= 3/2 for the 11B nuclei) that could be diagonalized to obtain the energy eigenvalues and
the allowed transition energies. Values for the parameters were determined by performing
these diagonalizations within a least-squares fitting program. Input data were the experimental
magnetic-field positions in Fig. 3 and their corresponding microwave frequencies. Parameters
were systematically varied until the predicted line positions agreed with the measured positions.
Because of an arbitrary choice in site assignments, two sets of parameters gave equally good fits
to the data taken in the three planes. This problem was resolved by comparing predicted spectra
to experimental spectra obtained in a fourth plane, from c to the midpoint between a and b. The
final correct set of parameters, for one orientation of the defect, are listed in Table 1. Red curves
in Fig. 3 identify the EPR lines associated with this orientation. The fitting showed that the g and
A matrices are both axial with only one principal axis direction (corresponding to the unique
principal value) needed for each matrix. This reduced the number of independent parameters for
each matrix from six to four. Polar and azimuthal angles (θ and ϕ) describe the directions for g | |

and A | | , where θ is defined relative to c and ϕ is defined relative to a with positive rotation being
from a toward b. In Table 1, estimates of the uncertainties are ±0.0003 for the g values, ±2.0
MHz for the A values, and ±3° for the angles.
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Table 1. Spin-Hamiltonian
parameters for the singly ionized

oxygen vacancy.

g matrix 11B hyperfine matrix

g⊥ = 2.0016 A⊥ = 316.0 MHz

g| | = 2.0007 A| | = 415.8 MHz

θ= 56.7° θ= 60.1°

ϕ= 191.0° ϕ= 147.8°

The experimentally determined principal values of the 11B hyperfine matrix provide detailed
information about the electronic structure of the singly ionized oxygen vacancy (V +

O ). This
matrix can be written in the following form, where the parameters have physical meanings [27].

A =
⎛⎜⎜⎜⎜⎝

A⊥ 0 0

0 A⊥ 0

0 0 A | |

⎞⎟⎟⎟⎟⎠
=
⎛⎜⎜⎜⎜⎝

a − b 0 0

0 a − b 0

0 0 a + 2b

⎞⎟⎟⎟⎟⎠
(2)

In Eq. (2), a is the isotropic Fermi contact parameter and b is the anisotropic dipole-dipole
parameter. Values for A⊥ and A | | in Table 1 give a= 349.3 MHz and b= 33.3 MHz. According
to Fitzpatrick et al. [28], an electron occupying a boron 2p orbital has a value for b of 53.24 MHz
(this is 2/5 of 133.10 MHz where 2/5 is the angular factor for p orbitals [29]). A comparison of
the experimental and calculated values for b indicates that approximately 62.5% of the unpaired
spin density for the V +

O center is in a 2p orbital on the primary boron neighbor. Also, according
to Fitzpatrick et al. [28], an electron in a boron 2s orbital has a value of 2312.23 MHz for the
Fermi contact parameter a. A comparison of our experimental value for a with this calculated
value suggests that 15.1% of the unpaired spin density is in a 2s orbital on the neighboring boron.
Together, our experimental results for a and b place 77.6% of the trapped electron in 2s and 2p
orbitals on one boron ion neighboring the oxygen vacancy. The remaining 22.4% of the spin
density is on the boron ion on the opposite side of the vacancy and on the oxygen ions that
are neighbors to the primary boron ion. These results from the analysis of the EPR angular
dependence are not consistent with the model of an interstitial B2+ ion [22]. In the as-grown
crystal, a B3+ ion at an interstitial site would have a 1s2 configuration and, after trapping an
electron, would become a B2+ ion with the 1s22s configuration. This places the unpaired spin
primarily in the 2s orbital of the interstitial boron ion, whereas our experimental results indicate
that only 15.1% of the unpaired spin is in the 2s orbital on the central boron ion.

Based on our EPR results, we propose a defect model for the singly ionized oxygen vacancy
(V +

O ) in LiB3O5 that has the unpaired spin localized in an sp2 or sp3 hybrid orbital extending
out from a boron ion into the vacancy (which type of orbital depends on whether a threefold or
fourfold bonded ion serves as the primary boron). Our model is analogous to the well-known
singly ionized oxygen vacancy (referred to as the E1

′ center) in α-quartz [24,25]. Feigl et al. [30]
and others [31,32] have shown that highly asymmetric relaxations of the two cation neighbors
cause the E1

′ to have the unpaired spin localized on only one Si neighbor. In LiB3O5, we expect
that a similar asymmetric relaxation of the two boron ions either side of the vacancy will occur.
Other examples of Group VI vacancies (oxygen and selenium) having an electron localized on
only one neighboring cation are found in TiO2, Li2B4O7, and BaGa4Se7 [26,33,34]. In contrast,
singly ionized oxygen vacancies in cubic alkaline-earth oxides such as MgO have the unpaired
electron symmetrically distributed over the six nearest-neighbor cations [35].

In addition to an EPR spectrum, the singly ionized oxygen vacancies (V +
O ) in LiB3O5 have

a broad optical absorption band peaking near 300 nm. Figure 4 is taken from Ref. [8] and
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shows this absorption band. The spectrum in Fig. 4 was obtained at 90 K after irradiating the
crystal at 90 K with x rays (there was no intervening warming). A 300 nm absorption band has
also been observed immediately after an electron irradiation near 77 K [11,14]. The data in
Fig. 4 were obtained under the same conditions as our EPR spectrum shown in Fig. 2. This EPR
spectrum was briefly reported in Ref. [8], but the defect causing the electronlike signal was not
identified at that time and, thus, the 300 nm band was not attributed to a specific defect. In the
present investigation, our analysis of the angular dependence of the electronlike EPR spectrum
demonstrates that oxygen vacancies are responsible. This, in turn, allows us to assign the 300
nm optical absorption band in LiB3O5 to singly ionized oxygen vacancies. Oxygen vacancies
in many wide-bandgap materials have broad absorption bands peaking in the ultraviolet [35].
These include SiO2 (212 nm), MgO (250 nm), LiAlO2 (238 nm), and Al2O3 (255 nm) [36–39].

trapped holes

trapped electrons 
at oxygen vacancies

Fig. 4. Optical absorption spectra from a LiB3O5 crystal obtained at 90 K (a) before and
(b) after an irradiation at 90 K with x rays. The large band peaking near 300 nm is assigned
to singly ionized oxygen vacancies (V +

O ). A smaller unresolved band in the 500-600 nm
region is due to trapped holes. Reproduced from M. P. Scripsick et al., J. Appl. Phys. 73,
1114 (1993), with the permission of AIP Publishing.

4. Trapped holes

Self-trapped holes are an important defect in many oxide crystals [40–47]. They are typically
stable only below 100 K and they require a distortion of the surrounding lattice to form the
shallow potential well that serves as the trapping entity. As shown in Fig. 2, an EPR spectrum
from self-trapped holes is produced in the LiB3O5 crystals by an irradiation at 77 K with x
rays. Figure 5(a) is an expanded view of the middle portion of Fig. 2. The four lines with 1.20
mT spacings are the result of a hyperfine interaction with one 11B nucleus. Spin-Hamiltonian
parameters for this spectrum have been reported by Hong et al. [9]. In our present study, we
extend the earlier work and obtain an activation energy describing the thermal decay of these
defects. A model for the self-trapped hole, supported by unrestricted Hartree-Fock electronic
structure calculations, was proposed in Ref. [9]. Referring to Fig. 1, this model has the hole
localized in a nonbonding p orbital on the O4 oxygen ion with a large relaxation of the fourfold
B2 ion back into the plane formed by the O1, O2′, and O5′ ions. The significant shift in position
of the B2 ion produces the shallow potential well that allows self-trapping to occur.

Once formed by ionizing radiation (either the harmonics of lasers or x rays), the self-trapped
holes in LiB3O5 are stable if the crystal remains below 90 K. Above this temperature, these
holes become mobile (i.e., they are no longer self-trapped) and can migrate through the lattice.
They either encounter a singly ionized oxygen vacancy and recombine with the trapped electron
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Magnetic Field (mT)
330 332 334 336 338

holes trapped by Li vacancies

self-trapped holes 

(a)

(b)

Fig. 5. (a) EPR spectrum from self-trapped holes, taken at 55 K after an irradiation at
77 K with x rays. (b) EPR spectrum from holes trapped by lithium vacancies, taken at 55 K
after the irradiated crystal was warmed briefly to 100 K. The magnetic field is along the b
direction and the microwave frequency is 9.395 GHz. Hyperfine with one 11B nucleus is
responsible for the four lines in each spectrum.

or they encounter a lithium vacancy (with an effective negative charge) and become trapped
on an adjacent oxygen. This latter defect, the V0

Li center, is electrically neutral. The EPR
spectrum in Fig. 5(b) was taken at 55 K after holding the irradiated crystal at 100 K for several
minutes. It shows the holes trapped by lithium vacancies. Hong et al. [9] also reported a set of
spin-Hamiltonian parameters for this second trapped-hole defect. The spectra in Fig. 5 are similar,
only distinguished by a small shift to higher field for the holes trapped by lithium vacancies.
The concentration of self-trapped holes in Fig. 5(a) is 2.0× 1017 cm−3, and the concentration of
holes trapped by lithium vacancies in Fig. 5(b) is 7.2× 1016 cm−3. Nearly two-thirds of the initial
self-trapped holes recombined with trapped electrons during the 100 K warming step. A further
warming step to 160 K destroyed the holes trapped by lithium vacancies. An EPR spectrum taken
at 55 K after holding the crystal at 160 K for several minutes showed that all the trapped holes
had thermally decayed.

At the temperatures where the self-trapped holes and the holes trapped by lithium vacancies
become thermally unstable (100 and 160 K), there are corresponding decreases in the number
of electrons trapped at oxygen vacancies. Estimates of the activation energies describing the
thermal release of these holes, and thus the removal of the optical absorption bands associated
with the trapped electrons and holes, are obtained by using the approximation E ≈ 25kTm from
the thermoluminescence community [48–51]. Here, Tm represents the decay temperature of a
defect. Values of 100 and 160 K for Tm give activation energies of 0.22 and 0.34 eV for the
self-trapped holes and the holes trapped by lithium vacancies. Uncertainties are ±0.01 eV. The
singly ionized oxygen vacancies with a deep (2+/+) level are expected to decay at temperatures
higher than the trapped hole centers. They do not survive to the higher temperatures, however,
because they are destroyed when the released holes recombine with the trapped electrons.

The trapped holes in LiB3O5 are part of the large family of acceptor-bound small polarons.
Unlike the trapped electrons with an optical absorption band in the ultraviolet, the trapped holes
have absorption bands in the visible region of the spectrum. Schirmer [52], in a comprehensive
review of holelike small polarons in oxides, has shown that these defects typically have broad
absorption bands peaking near 550 nm. With this guidance, we assign the small unresolved band
in the 500-600 nm region in Fig. 4 to the trapped holes produced by the x rays. Differences in
the intensities of the bands at 300 nm and in the 500-600 nm region in this figure are due to
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different oscillator strengths, since the trapped electrons and trapped holes responsible for the two
bands have similar concentrations. Absorption bands from singly ionized oxygen vacancies have
oscillator strengths near 0.8 [35], whereas absorption bands from trapped hole centers typically
have oscillator strengths near or less than 0.1 [52].

5. Additional defects involving lithium vacancies

We have encountered two additional defects that provide evidence for lithium vacancies in
as-grown LiB3O5 crystals. The first of these is an OH− ion adjacent to a lithium vacancy and the
second is a Cu2+ ion substituting for a Li+ ion with a nearby lithium vacancy. In each case, the
resulting complex is electrically neutral. Hydrogen and copper are present at trace levels in some
LiB3O5 crystals and are not detectable in other crystals.

Figure 6 shows the infrared absorption peak from OH− ions in an as-grown LiB3O5 crystal.
This absorption band was initially reported in 1997 by Kovács et al. [53] and is now seen in
recently grown crystals. At 80 K, the band peaks at 3460.7 cm−1 and the width measured at the
half-maximum points is 1 cm−1. This band can be seen at room temperature, but with greatly
reduced intensity because of an increase of the width to 10 cm−1. In Fig. 6, we show that the
absorption band is strongly polarized with the greatest intensity with E | | b and a much smaller
intensity with E | | a. The band was not seen in spectra taken with E | | c. Because the oscillator
strength of OH− ions has not been established in LiB3O5 [54,55], an estimate is not made of the
OH− concentration in Fig. 6. We assign the 3460.7 cm−1 infrared absorption peak in LiB3O5 to
an OH− ion occupying one of the four oxygen sites next to a lithium vacancy. Wöhlecke and
Kovács [55], in their review article, have shown that OH− ions in oxides are often adjacent to an
intrinsic charge-compensating acceptor defect (e.g., a cation vacancy).

Wavenumber (cm-1)
3455 3460 3465

Ab
so

rb
an

ce
 (O

.D
.)

0.0

0.1

0.2

0.3

0.4

0.5
E ll b

E ll a

no polarizer

Fig. 6. Infrared absorption spectrum from OH− molecular ions in a LiB3O5 crystal,
taken at 80 K with light propagating along the c direction. This polarized band peaking at
3460.7 cm−1 is assigned to OH− ions adjacent to lithium vacancies.

Figure 7 shows the EPR spectrum from Cu2+ (3d9) ions that occupy a lithium site and have
a nearby lithium vacancy. These data were taken at 55 K from a LiB3O5 crystal that had been
irradiated at room temperature with x rays. The magnetic field is along the c direction and the
microwave frequency is 9.394 GHz. Allowed lines from the 63Cu and 65Cu isotopes are identified
by the stick diagrams above the spectrum. Less intense forbidden transitions appear between the
lower two lines and between the upper two lines. The concentration of Cu2+ ions in Fig. 7 is
1.3× 1016 cm−3. These impurities very likely entered the crystal from the starting materials used
in the growth.



Research Article Vol. 12, No. 10 / 1 Oct 2022 / Optical Materials Express 4164

Magnetic Field (mT)
275 280 285 290 295 300

63Cu
65Cu

* * * *

Fig. 7. EPR spectrum from Cu2+ ions in LiB3O5, taken at 55 K after an irradiation at room
temperature with x rays. Stick diagrams identify the primary “allowed” 63Cu and 65Cu lines.
Smaller lines marked by asterisks (*) are forbidden transitions.

Ryadun et al. [56] initially reported this Cu2+ EPR spectrum. Soon after, Kananen et al. [57]
observed the same spectrum in a Cu-diffused LiB3O5 crystal and suggested that the model was
Cu2+ ions perturbed by a nearby lithium vacancy. In the as-grown LiB3O5 crystal used in Fig. 7,
nonparamagnetic Cu+ (3d10) ions are near lithium vacancies. Then, during an irradiation at
room temperature, they trap holes and become paramagnetic Cu2+ ions. For the crystal to remain
electrically neutral, a corresponding number of electrons are trapped at oxygen vacancies and
form V +

O centers with the unwanted 300 nm absorption band. This mechanism, where ionizing
radiation (lasers or x rays) results in holes trapped at transition-metal impurities and electrons
trapped at oxygen vacancies, will produce linear absorption that is stable at room temperature.
In as-grown crystals, transition-metal impurities may also directly contribute to visible and
near-ultraviolet absorption via their d-d transitions. It is, however, difficult to incorporate many
of the transition-metal ions in LiB3O5 crystals because of size and/or charge misfits with Li+ and
B3+ ions.

6. Lifetimes of optical absorption bands

In an informative study of LiB3O5 crystals, Ogorodnikov et al. [14] used 7 ns pulses of 150 keV
electrons to produce the same ionizing effects as intense laser beams. They found that stable
optical absorption bands with peaks near 300 nm and 550 nm were produced at 77 K by the
high-energy electrons. The same optical absorption bands were produced at room temperature
by a single pulse of electrons, and quickly decayed after the pulse. At 295 K, there are two decay
steps in the time response of the transient optical absorption (see Fig. 3 in Ref. [14]), one near 33
µs which accounts for approximately 83% of the initial absorption and the other near 2 ms which
accounts for the remaining 17% of the initial absorption. Based on our results in the present
study, we attribute these two steps to the thermal decay of the self-trapped holes and the holes
trapped by lithium vacancies, respectively. Thermal release of these holes will destroy the 300
nm absorption as holes move to singly ionized oxygen vacancies (V +

O ) and recombine with the
trapped electrons. In Section 4, values for the thermal activation energies describing the release
of the holes from the two trapping sites were estimated to be 0.22 and 0.34 eV. These values allow
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us to predict decay times that can be compared to the pulsed electron results of Ogorodnikov et
al. [14].

We use second-order kinetics, represented by Eq. (3), to describe the thermal decay of the
self-trapped holes [58,59]. A second-order kinetics approach is appropriate when retrapping is
likely to occur. It is used here because, after a self-trapped hole is released, it has a significant
probability of being retrapped, maybe more than once, before reaching an oxygen vacancy.

dn
dt
= −s′n2 exp

(︃
−

E
kT

)︃
. (3)

In Eq. (3), n is the concentration of self-trapped holes with units of cm−3, s′ is a pre-exponential
factor with units of cm3s−1, and E is the activation energy. With n0 being the concentration when
t= 0, the solution to Eq. (3) is the hyperbolic decay function

n =
n0

1 + at
, (4)

where
a = n0s′ exp

(︃
−

E
kT

)︃
. (5)

The half-life of the decay is a−1. This is the time required for half of the self-trapped holes to be
thermally destroyed after a pulse of ionizing radiation. At 295 K, E= 0.22 eV and n0s′ = 2× 108

s−1 gives a value of 29 µs for the half-life. This predicted value obtained directly from the
thermal stability of the self-trapped holes agrees with the experimental value of 33 µs reported by
Ogorodnikov et al. [14] for the first, and largest, decay step of their induced ultraviolet absorption
following a pulse of high-energy electrons. Repeating the calculation for the room-temperature
half-life of the holes trapped by lithium vacancies, where E= 0.34 eV, gives 3.2 ms. This result is
close to the value of 2 ms found by Ogorodnikov et al. [14] for the second decay step. Retrapping
will play less of a role in the decay of the holes trapped by the lithium vacancies, and the use of
Eq. (3) is expected to provide a lifetime that is too long. The general agreement of the predicted
and experimental values for the two half-lives demonstrates a consistency with other studies [14]
and strongly supports our explanations of the physical mechanisms responsible for defect-related
effects of nonlinear absorption in LiB3O5 crystals.

7. Summary

Lithium triborate (LiB3O5) crystals contain oxygen and lithium vacancies, with concentrations
approaching 1 ppm. In the as-grown crystals, these vacancies are in nonparamagnetic charge
states and do not have associated optical absorption bands. When a LiB3O5 crystal is exposed at
77 K to ionizing radiation (we use x rays instead of the harmonics from lasers), singly ionized
oxygen vacancies and self-trapped holes are formed. These defects are thermally stable at 77
K and are easily seen with electron paramagnetic resonance (EPR). The electrons trapped at
the oxygen vacancies are responsible for a broad absorption band peaking near 300 nm and the
trapped holes contribute to absorption in the 500-600 nm region. In the present paper, these V +

O
oxygen vacancies are fully characterized. Their production conditions and decay mechanisms are
determined, and a complete set of spin-Hamiltonian parameters are obtained from the angular
dependence of the EPR spectrum. Using these parameters, we establish the electronic structure
of the V +

O centers and construct a model.
When the temperature of the crystal is increased after the irradiation, the self-trapped holes

become thermally unstable near 100 K and either recombine with an electron at an oxygen
vacancy or become trapped at an oxygen ion adjacent to a lithium vacancy (thus forming V0

Li
centers). The holes trapped by the lithium vacancies are slightly more stable and decay when
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the crystal is warmed to 160 K. At each decay step, electrons trapped at oxygen vacancies are
annihilated by mobile holes and the unwanted V +

O optical absorption band at 300 nm decreases.
From these decay temperatures, 100 and 160 K, activation energies of 0.22 eV and 0.34 eV,
respectively, are obtained for the thermal release of holes from the trapping sites.

The ultraviolet and visible absorption bands associated with these trapped electrons and holes
are short-lived at room temperature. Using the 0.22 eV activation energy obtained from the
thermal decay of the self-trapped holes, we predict that most of the unwanted optical absorption
produced by the higher harmonics of infrared lasers will decay at room temperature with a
half-life of 29 µs. The remaining much smaller amount of unwanted absorption, present because
of the holes trapped at lithium vacancies, will decay at room temperature with a half-life of 2 to 3
ms.

8. Future directions

Our present study describes a mechanism by which intrinsic defects (vacancies), and not impurities,
are the main contributor to nonlinear absorption in commercially available LiB3O5 crystals.
These results suggest that efforts by crystal growers to minimize nonlinear absorption should
concentrate on maintaining stoichiometry, either during growth or with post-growth treatments
that add lithium and/or oxygen ions. Also, we recognize that a more complete understanding
of nonlinear absorption will emerge from studies using pulsed lasers to induce ultraviolet
absorptions and measure decay times. Our predicted absorption lifetimes can be tested in these
experiments. Finally, our results are expected to stimulate advanced density-functional-theory
(DFT) computational studies that explore the electronic structure of oxygen vacancies and free
and bound small polarons in LiB3O5 crystals (i.e., their charge states, lattice relaxations, thermal
stabilities, hyperfine parameters, and the strengths and positions of optical absorption bands).
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