
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Faculty Publications 

9-7-2022 

Quantifying DDS-cerberus Network Control Overhead Quantifying DDS-cerberus Network Control Overhead 

Andrew T. Park 

Nathaniel R. Peck 

Richard Dill 
Air Force Institute of Technology 

Douglas D. Hodson 
Air Force Institute of Technology 

Michael R. Grimaila 
Air Force Institute of Technology 

See next page for additional authors 

Follow this and additional works at: https://scholar.afit.edu/facpub 

 Part of the Computer Sciences Commons, and the Digital Communications and Networking 

Commons 

Recommended Citation Recommended Citation 
Park, A. T., Peck, N., Dill, R., Hodson, D. D., Grimaila, M. R., & Henry, W. C. (2022). Quantifying DDS-cerberus 
network control overhead. The Journal of Supercomputing. https://doi.org/10.1007/s11227-022-04770-3 

This Article is brought to you for free and open access by AFIT Scholar. It has been accepted for inclusion in 
Faculty Publications by an authorized administrator of AFIT Scholar. For more information, please contact 
AFIT.ENWL.Repository@us.af.mil. 

https://scholar.afit.edu/
https://scholar.afit.edu/facpub
https://scholar.afit.edu/facpub?utm_source=scholar.afit.edu%2Ffacpub%2F1009&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Ffacpub%2F1009&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=scholar.afit.edu%2Ffacpub%2F1009&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=scholar.afit.edu%2Ffacpub%2F1009&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil


Authors Authors 
Andrew T. Park, Nathaniel R. Peck, Richard Dill, Douglas D. Hodson, Michael R. Grimaila, and Wayne C. 
Henry 

This article is available at AFIT Scholar: https://scholar.afit.edu/facpub/1009 

https://scholar.afit.edu/facpub/1009


Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-022-04770-3

1 3

Quantifying DDS‑cerberus network control overhead

Andrew T. Park1  · Nathaniel Peck1 · Richard Dill1  · Douglas D. Hodson1  · 
Michael R. Grimaila1  · Wayne C. Henry1 

Accepted: 10 August 2022 
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection 
may apply 2022

Abstract
Securing distributed device communication is critical because the private industry 
and the military depend on these resources. One area that adversaries target is the 
middleware, which is the medium that connects different systems. This paper evalu-
ates a novel security layer, DDS-Cerberus (DDS-C), that protects in-transit data and 
improves communication efficiency on data-first distribution systems. This research 
contributes a distributed robotics operating system testbed and designs a multifac-
torial performance-based experiment to evaluate DDS-C efficiency and security 
by assessing total packet traffic generated in a robotics network. The performance 
experiment follows a 2:1 publisher to subscriber node ratio, varying the number of 
subscribers and publisher nodes from three to eighteen. By categorizing the network 
traffic from these nodes into either data message, security, or discovery+ with Qual-
ity of Service (QoS) best effort and reliable, the mean security traffic from DDS-C 
has minimal impact to Data Distribution Service (DDS) operations compared to 
other network traffic. The results reveal that applying DDS-C to a representative dis-
tributed network robotics operating system network does not impact performance.
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1 Introduction

Many technologies rely on real-time and efficient communication capabilities 
across various environments to support consumer, agricultural, and military use 
cases. Thermostats, audio, and video devices increase consumers’ quality of 
life through smart home environments [1]. Industry depends on low-power IoT 
devices to monitor crop yield, improve livestock health, and reduce environmen-
tal threats to agricultural success [2]. The military depends on a dynamic network 
connecting air, land, sea, and space assets [3]. Improving the protection of the 
in-transit data links and the efficient communication between distributed nodes 
meets the objectives outlined in the 2030 Science and Technology Strategy and 
protects industry interests [4]. Choosing the correct middleware and security 
options to support the network of devices in these environments is important.

This paper evaluates DDS-Cerberus (DDS-C) as a viable method to secure 
a distributed network of devices. DDS-C builds upon Data Distribution Ser-
vice (DDS) by integrating strong Kerberos authentication into a robust, flexible, 
open middleware standard (DDS) designed to manage real-time communication 
between various devices. As a popular middleware, DDS is implemented across 
a variety of low-power devices across public and private sectors, military, and 
finance frameworks [5]. DDS offers configurable Qualities of Service (QoS) 
associated with data. Topics are keywords chosen by the user to differentiate and 
categorize messages. Subscribers that specify the same topic can only read that 
type of message. Topics are used in Machine-to-Machine (M2M) communication 
to effectively allow publishers and subscribers to send and read data in a global 
space [6]. DDS-C benefits from the DDS robustness, reliability, and efficiency 
while addressing its main security weakness: impersonation [7–9]. Impersonation 
allows an adversary to gain unauthorized access to reading and sending data by 
posing as a trusted entity and node.

With security lacking as a foundation component in the standard, attackers 
have multiple methods to attack DDS through QoS policies, network participant 
discovery, and node impersonation. Attackers create rogue DDS nodes to send 
disruptive messages to other nodes. A solution is to authenticate publisher and 
subscriber node components before they send messages. DDS-Cerberus adds an 
additional authentication mechanism to DDS that improve security authentication 
to prevent impersonation attacks [10, 11]. DDS-C secures the network by inte-
grating DDS node authentication with Kerberos tickets. The motivation of this 
research to add security stems from the desire to use the real-time communica-
tion properties of DDS with DDS-C authentication. No previous work in DDS 
has used Kerberos tickets to authenticate nodes and measured packet captures for 
experimentation in lieu of latency.

This research’s experiment measures the DDS-C traffic imposed on a network 
compared to regular DDS operations to determine if incorporating DDS-C into 
DDS hinders these operations. The goal of the experiment is to characterize the 
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total network traffic to analyze, categorize, and process the number of packets 
per protocol. The network traffic types of interest include data message, security, 
and discovery+. The data message utilizes the topic for message delivery, secu-
rity refers to the DDS-C authentication messages, and discovery+ corresponds to 
the DDS node discovery messages and additional network packets. When testing, 
the packets are collected for two network configurations. The purpose of the first 
configuration is to transmit messages on the same system, and the purpose of 
the second is to send messages through the network. Different QoS settings are 
selected for each configuration to show that DDS-C authentication traffic does not 
substantially delay sent DDS messages. The QoS of interest is reliability with two 
message behaviors, best effort and reliable.

The results of the experiment use a set p-value of � 0.05 to quantify packet traffic 
statistically. If the results are statistically significant, DDS-C authentication affects 
DDS message traffic. The various packet protocols are categorized into data mes-
sage, security, and discovery+ and compared to determine the DDS-C security 
traffic trends. This paper contributes to existing DDS work in security and perfor-
mance. It presents a security layer that others can explore and add to their DDS 
implementations.

This paper is organized as follows. Section 2 outlines DDS and DDS-C. It also 
lists related research on performance and security for DDS, Kerberos, and ROS 2 
(Robot Operating System). Section 3 details the experimental design, the research 
assumptions and limitations, the methods used to gathering and process network 
captured packets, and analysis of captured data. Section 4 outlines why the research 
is important. Section 5 provides future research recommendations.

2  Background

This section provides background information on the functionality and purpose 
of Data Distribution Service (DDS) and DDS-Cerberus (DDS-C). Understanding 
how middleware services function is essential to improving security in real-world 
applications.

Other researchers have compared DDS to various communication protocols, 
highlighting performance, latency, and throughput differences. What makes DDS-C 
different is its fusing of both DDS’ efficiency and Kerberos’ authentication capabili-
ties. Additionally, it is important to focus on the security and efficiency of Kerberos 
and ROS 2 (Robot Operating System). These past works form the foundation for 
understanding the research methodology and evaluation of DDS-C in this paper.

2.1  Data distribution service (DDS)

DDS, a standardized specification maintained by the Object Management Group 
(OMG), is available from the DDS Foundation website and offers both a Platform 
Independent Model (PIM) and a Platform Specific Model (PSM) [12]. The standard 
guides vendors to produce compliant implementations using five distinct modules: 
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infrastructure, domain, topic-definition, publication, and subscription modules. The 
modules with the Real-Time Publish-Subscribe (RTPS) wire protocol collectively 
define the commonality between vendor implementations that enable interoperabil-
ity as a distributed middleware solution.

DDS supports distributed applications serving a many-to-many communication 
architecture. The standard employs a Data-Centric Publish-Subscribe (DCPS) com-
munication pattern between domain participants using topics. Figure 1 is a partially 
reproduced model of the significant domain entities from the DDS specification, 
version 1.4. All domain participants are either publishers or subscribers to a given 
topic. Communication includes a series of cache change messages accepted into a 
participant’s history cache. Quality of Service (QoS) policies configure the mechan-
ics governing these cache changes and are tied to publishers, subscribers, and top-
ics. Comparison of the QoS offered by publishers to those required by subscribers 
determines whether participants can be matched for communication. The standard 
defines the methods to meet QoS levels between publishers and subscribers.

Developers using DDS have already accepted a degree of network control over-
head to access the rich set of QoS available for tuning communication behavior 
between distributed entities. The overhead is configurable beyond mandatory head-
ers and allows developers to add canned behaviors by allocating network resources 
to the topics that require them. After developers have elected to use DDS as a mid-
dleware, they may add a layer of security to the distributed communication. That 

Fig. 1  Partial DDS entity model [13]



1 3

Quantifying DDS-cerberus network control overhead  

layer is not without its overhead additions and is the subject of the comparisons 
made in this research. While DDS delivers the correct data at the right time, security 
can be viewed as a possible QoS not yet included in the standard list, ensuring the 
right participants receive the data rather than actors.

2.2  DDS‑cerberus (DDS‑C)

DDS-C is a novel security layer incorporating Kerberos ticketing with DDS publish-
ers and subscribers, developed by two previous papers [10, 11]. It provides addi-
tional security by validating nodes and preventing impersonation attacks. The first 
DDS-C paper presented the initial DDS-C design proposal, and the second paper 
was based on latency measurements with ROS 2 [10, 11]. The latency collections 
in the second paper determined that DDS-C does not hinder message sending and 
retrieval. This paper’s experiments focuses on packet captures to determine if the 
amount of packets correlate with the data sent from DDS-C authentication would 
significantly hinder message sending.

Kerberos is an open authentication protocol that uses tickets to control communi-
cation in a network. Each Kerberos setup has a specific realm name. Users who want 
to authenticate using a network need to know the realm’s name and have a registered 
principal, basically a username.

DDS-C utilizes long-term keys, named keytabs that Kerberos provides to create 
tickets. These tickets are the products of the successful authentication of publish-
ers and subscribers. The benefit of using DDS-C is that once a node is registered 
and authenticated, there is no extra need to communicate with the central Ker-
beros server. For example, in a real-time operational network with IoT devices, this 
authentication would happen before a node publishes or subscribes.

Figure 2 presents the process for creating, storing, and using keytabs. In step 
1, the Kerberos server is responsible for the credentials corresponding to each 
or a set of publishers and subscribers. A Kerberos server consists of a Key Dis-
tribution Center (KDC) that includes two main components: the Authentication 

Fig. 2  DDS-C Keytab process [11]
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Server (AS) and Ticket Granting Server (TGS). An admin would create creden-
tials that nodes use to authenticate. When authenticating, the node first messages 
the AS to receive a ticket from the TGS by using a Ticket Granting Ticket (TGT). 
The resulting ticket has a default time-to-live of 24 hours; however, an admin can 
change this to a shorter or longer time.

During step 2, an admin queries and saves the keytabs to the appropriate 
machine where DDS resides before a node can send data. The keytabs do not 
expire, which is essential in operations where time is sometimes not determined.

In step 3, the DDS-C device has a Kerberos server to communicate with the 
central server. Additionally, an admin can host the Kerberos server in the cloud to 
provide authentication for the nodes and support keytab generation.

At step 4, publishers and subscribers use a keytab for authentication. This 
keytab would preferably be created just for a single node to use. The node con-
taining the publishers and subscribers would receive the Kerberos server’s 
response. If a ticket is received, the node is authorized to send and read data. Oth-
erwise, the node is not permitted to send or access any data.

Figure 3 is a sequence diagram outlining the flow of the authentication mes-
sages transmitted when Publisher1 and Subscriber1 publish and read messages. 
This figure outlines the Kerberos authentication process. The leftmost gray area, 
“Node utilizing KDC,” represents the keytabs that were created and stored for 
Publisher1 and Subscriber1. The DDS node leverages the keytabs to request and 
receive tickets from the rightmost gray area, the central Kerberos server “Ker-
beros Server KDC.” Messages flow as follows: 

A. Publisher1 authentication: 

(0) Publisher1 requests to authenticate and starts the process to receive a ticket 
using a keytab. The AS receives Publisher1’s request.

(1) The AS sends a message back that Publisher1 is able to authenticate.
(2) Publisher1 sends its keytab to the AS.
(3) The AS sends a TGT and its shared key for TGS after authenticating Pub-

lisher1. The shared key is used by the node to encrypt messages for the 
TGS.

(4) Publisher1 sends the TGT and message request to the TGS to get a ticket.
(5) The TGS grants a ticket to Publisher1.

B. Publisher1 authenticated: 
(6) Afterward, Publisher1 is successfully authenticated and can send its mes-

sages to the DDS domain.
C. Subscriber1 Authentication: 

 (7) Subscriber1 requests to authenticate and starts the process to receive a 
ticket using a keytab. The AS receives Subscriber1’s request.

 (8) The AS sends a message back that Subscriber1 is able to authenticate.
 (9) Subscriber1 sends its keytab to the AS.
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 (10) The AS sends a TGT and its shared key for TGS after authenticating Sub-
scriber1. The shared key is used by the node to encrypt messages for the 
TGS.

 (11) Subscriber1 sends the TGT and message request to the TGS to get a ticket.
 (12) The TGS grants a ticket to Subscriber1.

D. Subscriber1 Authenticated: 

Fig. 3  DDS-C authentication process [11]
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 (13) Afterward, Subscriber1 is successfully authenticated and can read mes-
sages. In this case, it would be reading data sent from Publisher1.

E. Subsequent Messages: 

 (14) Since Publisher1 and Subscriber1 authenticated, no further authentication 
is needed. Publisher1 sends Message i with Topic.

 (15) Subscriber1 receives the Message i.
 (16) Publisher1 sends Message i + 1 with Topic.
 (17) Subscriber1 receives the Message i + 1.

The Publisher1 and Subscriber1 authentication sequence can be redone as 
many times as needed. The admin has the choice to re-authenticate new tickets at 
any interval of time—for example, a check with the central Kerberos server after 
24 hours for all nodes; however, this research does not go into this use case and is 
considered for future work.

The inability to validate nodes is a security concern for DDS [7–9]. By imple-
menting DDS-C, all nodes need to authenticate with the Kerberos server before 
sending or receiving messages. DDS-C invalidates a node if Kerberos sends back 
an error message resulting in no delivered ticket. Additionally, an attacker want-
ing to send or read data would have to communicate with the Kerberos Server 
to get a ticket. Figure 4 presents DDS-C mitigating an attacker using an imper-
sonation attack. In step 1, an attacker accesses the same network where DDS-C 
resides. In step 2, the attacker creates an impersonated node; however, any node 
on the server needs to get a ticket before performing any operations. In steps 3 
and 4, since the attacker did not provide the correct keytab, it cannot get a valid 
ticket; therefore, DDS-C prevents the unauthenticated node from interacting with 
other nodes. Kerberos stores the keytabs and tickets in ∖ tmp and when the sys-
tem shuts down, those files are deleted.

Fig. 4  DDS-C mitigating impersonation [11]
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DDS-C is a security layer added onto DDS to authenticate DDS nodes with Ker-
beros tickets. The following three subsections explore other pieces of literature that 
aid in understanding DDS-C experiments.

2.3  DDS performance evaluations

Other researchers have measured the performance qualities of DDS, such as latency 
[14–17]. While measuring latency is an essential benchmark for real-time commu-
nication middleware, there are methods to collect the information and many other 
factors that influence end-to-end latency. The cited works all measure latency, but 
they collect slightly different information that provides unique insights into the mid-
dleware’s performance in various environments and configurations.

Relatively early works used wired networks to conduct experiments. In 2012, 
Yang et al. compared DDS communication performance to that obtainable using tra-
ditional sockets [14]. They used the OpenSplice DDS implementation provided by 
Prism Tech to accomplish distributed communication mapped within the IEC 61499 
standard. The authors examined the impact of message size, network load, and QoS 
configurations on latency. They also provide the distribution of latency observed 
over 1 million iterations. The experiment measured latency by placing timestamps in 
a message making a round-trip to and back from a node on an Ethernet network con-
nected via a switch. They defined latency as half the measured round-trip time. The 
test environment used real-time patched Ubuntu operating systems on all nodes. The 
authors performed tests in this environment to gain insight relevant to distributed 
industrial control systems which can be realized using similar environments. The 
results measured roughly 10 times the latency standard deviation of DDS compared 
to sockets (109 microseconds compared to 10) and a smaller message size before 
the rapid growth of latency. The authors concluded that DDS offered more favorable 
simplification for complex network architectures than a traditional socket implemen-
tation. DDS began to incur rapid latency growth after message sizes exceeded 2048 
bytes but were less sensitive to network load than traditional sockets. Finally, the 
results illustrated the successful capability of DDS to tailor communication perfor-
mance according to latency budget and transport priority QoS.

Later, works began to include wireless topology in DDS evaluation experi-
ments. In 2015, Almadani et al. evaluated DDS-based middleware over a wireless 
channel for re-configurable manufacturing systems (RMS) [15]. With Real-Time 
Innovations (RTI) DDS implementation, the authors measured latency, jitter, and 
throughput for payload and headers sent over industrial-grade WiFi and Blue-
tooth wireless channels. Rather than a simple one-to-one communication archi-
tecture, these authors used one-to-many and many-to-many. The experimental 
setup used simulation to mimic the endpoint behavior of an RMS and measured 
traffic over the physical channels. The results illustrated that although DDS over 
WiFi obtained lower latency and tighter jitter, Bluetooth enabled much greater 
throughput because the peer-to-peer communication strategy was not funneled 
through an access point. Notably, the processing speed of the access point was 
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not provided and could be the source of some throughput limitation. Although the 
WiFi throughput was lower, it achieved roughly 7 Mbps and may be sufficient for 
some applications.

Other works used virtual networks to collect performance in deliberately 
degraded environments. In 2016, Chen and Kunz compared the performance of 
DDS to other IoT protocols, including Constrained Application Protocol (CoAP), 
Message Queuing Telemetry Transport (MQTT), and a custom User Datagram 
Protocol (UDP) [16]. The intended environment for evaluation in this work was 
a constrained network used for medical monitoring of multiple sensors. The test 
environment consisted of various sensors connected to an Arduino in series with 
a Raspberry Pi device connected to a Linksys router with a laptop acting as a 
central server. They used virtual networking software to simulate various packet 
loss, bandwidth, and system latency conditions. Testing observed bandwidth con-
sumption, experienced latency, and experienced packet loss over multiple com-
binations of environment settings. The authors selected OpenDDS as the imple-
mentation of DDS. They also compared the protocols by their quantity of control 
overhead as a percentage of the payload size. The research showed that DDS 
experienced the most significant portion of control overhead, but the payload size 
was held constant at a relatively small 409 bytes. Again, latency was measured as 
half the round trip time experienced by a single message.

As recent as 2019, works began comparing DDS performance while examining 
the effects of network and computational loads. Profanter et  al. conducted perfor-
mance comparisons between DDS, Open Platform Communications Unified Archi-
tecture (OPC UA), ROS, and MQTT [17]. These authors selected eProsima’s Fast-
DDS implementation of DDS. They began by examining the traffic required in bytes 
to connect the listed protocols. ROS and DDS required the most traffic to connect 
with 8915 and 8348 bytes, respectively. For DDS, this number resulted from a sum-
mation over discovery traffic before publisher/subscriber matching. The authors con-
tinued to measure the impact of network and CPU loads on Round Trip Time (RTT) 
for the various protocols over increasing message sizes. DDS latency was dependent 
on CPU and network load, but the significance of their impact was not statistically 
evaluated. All latency measurements appeared relatively constant for small message 
sizes but exhibited a rise when message sizes surpassed a fixed point, potentially 
related to the Maximum Transmission Unit (MTU).

Table  1 lays out the four works to highlight the emphasis on latency. These 
works represent the majority of DDS research that measure latency when 

Table 1  Measuring DDS latency

Paper Description

Yang et al. [14] Compared DDS communication performance to using sockets by measuring 
latency

Almandani et al. [15] Measuring latency and jitter for RMS through different wireless channels
Chen and Kunz [16] Comparing DDS to other protocols over different environment settings
Profanter et al. [17] Examined the traffic in bytes to measure the impact of DDS an other protocols
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evaluating DDS performance. This paper’s research focuses on quantifying 
packet captures offering another perspective in determining DDS-C’s impact on 
DDS operations.

2.4  Kerberos evaluations

Al-Masri et al. surveyed various IoT messaging protocols that reside on the applica-
tion layer of the Open System Interconnection (OSI) model [6]. Comparing these 
protocols reinforces the benefits of choosing the proper lightweight communication 
protocol for low-power devices, reliability, network traffic, and latency. No one pro-
tocol is universally used. Zorkadis presented the OSI security architecture guide-
lines [18]. There are five classes of security: authentication, access control, confi-
dentiality, integrity, and non-repudiation. Zorkadis explained performance costs due 
to security by using the queuing theory. The author offered optimization recommen-
dations for securing these communication protocols.

Any added security to DDS should not interrupt real-time communication per-
formance. Also, security features added should not hinder the performance of Ker-
beros. Kirsal et al. coauthored and published three papers that proposed increasing 
Kerberos security by using frequent key renewal for a local area network [19–21]. 
They utilized CASPER for the first paper’s security analysis. Subsequent papers 
used Markov Reward models to illustrate Kerberos states. The papers provide a 
methodology for understanding a novel protocol in Kerberos; however, they do not 
contain substantial information on what applications and setup they used to gather 
such data.

Researchers Harbitter and Menascé evaluate public-key performance in Kerberos 
with Cross-Realm (PKCROSS) and Public Key Utilizing Tickets for Application 
Servers (PKTAPP) with a five-step approach in the server and network [22]. They 
measured both proposals by their messages with the KDC. The first step was to cre-
ate a testbed with code that monitored service times and message sizes. Then, they 
developed a closed queuing network to represent public key extensions. They com-
pared the testbed results with the queuing model to determine the accuracy with 
several realms and servers. Finally, they analyzed the changes in service time and 
network delay to understand dependencies. The results from comparing the two pro-
posals showed that PKCROSS outperformed PKTAPP.

Evaluating existing Kerberos implementations is essential for research, but the 
development of new Kerberos mechanisms is also equally important. Eum and Choi 
proposed a new authentication mechanism in Extensible Authentication Protocol 
(EAP) named EAP-Kerberos II [23]. This protocol mitigated three security con-
cerns of wireless local area networks (WLANs) for an 802.11 network: rogue access 
points (APs), unprotected messages, and message delay. 802.11i has existing secu-
rity measures using Transport Layer Security (TLS) and Authentication and Key 
Agreement (AKA) over EAP. Instead of TLS or AKA, EAP-Kerberos II utilized 
Kerberos’s function as a trusted third party in a mutual authentication by adapting 
it into EAP. The reason to use Kerberos tickets is that Kerberos does not require sig-
nificant computational power or memory space to store a certificate. They measured 
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the number of messages sent between EAP-TLS, EAP-AKA, and EAP-Kerberos 
II. They also compared the message’s round trip times (RTT), processing delay in 
clocks per message, and RTTs when the access point is far from the Authentication 
Server. They concluded that EAP-Kerberos II is more efficient than the other two 
protocols since it requires fewer authentication servers and sends fewer RTTs.

Table 2 presents three papers that introduce different methods in improving Ker-
beros authentication. One of the main highlights of Kerberos research is focusing 
and improving Kerberos security; however, no other Kerberos work aims to combine 
DDS and Kerberos. The experiments take these insights to Kerberos authentication 
to better understand the future work avenues DDS-C can improve Kerberos with.

2.5  ROS 2 evaluations

ROS 2 evolved from ROS 1, and both primarily differ at the communication layer. 
[24] ROS 1 and ROS 2 both support robotics and IoT communication use cases. 
They can be used and set up together, but the main difference is that ROS 2 has the 
capability for real-time communication between devices. This paper uses ROS 2 for 
its real-time capability and recent development.

Kronauer et al. measured latency on ROS 2 middleware to provide guidelines on 
designing ROS 2 architectures and reducing traffic overhead. They utilized three 
DDS implementations, eProsima FastRTPS, Eclipse Cyclone DDS, and RTI Con-
next, using ROS 2 Foxy Fitzroy [25]. Their selected best effort QoS does not require 
re-transmitting lost frames since the majority will go through; this is emulating their 
use case of using sensors. They measured latency via node scalability on localhost 
using a ping-pong scenario with payloads of 128 B and 500 KB sent over UDP. 
Afterward, they provided a list of techniques that affect latency.

In addition to the previously mentioned DDS implementations, Maruyama et al. 
compared ROS 1 and ROS 2 by measuring latency, throughput, number of threads, 
and memory consumption [26] across three different DDS implementations: Con-
next, OpenSplice, and FastRTPS. They choose different QoS policies to get varied 
results for each DDS implementation.

Other research measured latency and throughput in different network settings. 
Park et al. compared ROS 1 and ROS 2 characteristics by measuring the real-time 
performance of the software stack and communication [27]. Utilizing various 

Table 2  Different Kerberos authentication methods

Paper Description

Kirsal et al. [19–21] Frequent key renewal for a local area network
Harbitter and Menascé [22] Evaluating service time and network 

delay for public-key performance with 
PKCROSS and PKTAPP

Eum and Choi [23] Measuring RTT of a proposed new authen-
tication mechanism named EAP-Kerberos 
II and comparing it to EAP-TLS and 
EAP-AKA
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nodes, they collected message loss rates and latency times and represented them 
through statistical mean, maximum, minimum, and standard deviation. The 
authors also utilized a multi-agent service robot to verify the real-time perfor-
mance. Their results showed that ROS 1 did not meet real-time requirements.

In addition to measuring latency, Thulasiraman et  al. set up a small network 
of two and five nodes in ROS 2 to measure performance in a lossy wireless envi-
ronment [28]. They utilized NS-3, an open-source network simulator, to measure 
latency and message drop rate. By varying QoS and security configurations, they 
concluded that enabling more security features leads to a higher messaged drop 
rate with any QoS policies and that scaling with more nodes leads to increased 
message latency.

Researching the impact of other security implementations should be consid-
ered when experimenting DDS-C. Kim et al. concentrate on the performance of 
additional security implementations on top of default ROS 2 and DDS security 
features since the default DDS middleware in ROS 2 does not conform to secu-
rity specifications set by OMG [29]. They have two performance metrics: esti-
mated latency and estimated throughput. Additionally, they configured them into 
both wired and wireless configurations when setting up performance benchmark 
scenarios. The three security situations include using no security, cryptographic 
algorithms, and Secure Sockets Layer (SSL)/TLS through OpenVPN. The authors 
also used Cppcheck, a static analysis error checking tool, to conduct further secu-
rity analysis. They concluded that using a VPN is a secure choice in simple sys-
tem architectures.

Table 3’s six papers play an important role in shaping the ROS 2 evaluation of 
this paper’s experiments. ROS 2 experiments aim to measure latency with differ-
ent DDS implementations, but this experiment focuses on implementing DDS-C 
and capturing packet traffic quantity. These papers offer other implementations 
DDS-C can be integrated into and experimented with.

This section explained DDS and DDS-C architecture and core functions. It 
also presented other pieces of literature to support the motivation for testing DDS 
performance and security. This information helps understand the research experi-
ment setup, execution, and analysis.

Table 3  Measuring ROS 2 latency

Paper Description

Kronauer et al. [25] Using three DDS implementations, they measured ROS 2 latency to find 
techniques to reduce traffic overhead

Maruyama et al. [26] Compared ROS 1 and ROS 2 across three different DDS implementations
Park et al. [27] Measured the real-time performance of ROS 1 and ROS 2 by collecting mes-

sage loss rates and latency times
Thulasiraman et al. [28] Set up a small network of nodes in a lossy environment with different QoS 

policies
Kim et al. [29] Measuring latency and throughput for additional security implementations on 

top of ROS 2
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3  Experiments

Table 4 outlines sequential experimental steps measuring the security packet traf-
fic from DDS-Cerberus (DDS-C). First, the statistical approach for the Design of 
Experiments (DoE) is determined. Next is setting up the experiment testbed with 
the appropriate software which includes Kerberos and ROS 2 (Robot Operating Sys-
tem). Afterward, the assumptions and limitations are listed. The final step is to pro-
cess captured packets using scripts on a Windows machine.

3.1  Statistical approach

Design of Experiment (DoE) methods provide experimenters with an unbiased, 
mathematical framework to evaluate the significance of statistical results [30]. DoE 
offers statistical mechanisms to test on hypotheses concerning response variables of 
different types. Most research measure latency as Round Trip Time (RTT) for Data 
Distribution Service (DDS); however, this approach is not consistent in different net-
work environments. Instead, using a more portable response variable such as packet 
traffic overhead provides standardized results. Sadjadi et al. introduce the need for 
environment agnostic performance measures, particularly in the distributed system 
arena [31]. They introduce a statistical model to estimate the execution time for a 
task at a distributed node. The following two paragraphs expound upon the deficien-
cies of RTT to evaluate the performance of DDS across environments.

Several vendors provide DDS implementations. ROS 2 supports several of these 
vendors. Unless vendors use the same code, their implementations require different 
instructions to execute standard behavior. While a given implementation affects one 
component of the end-to-end latency experienced by a DDS application, the overall 
RTT depends on more factors. Profanter et al. showed that central processing unit 
(CPU) and network loads also impact the RTT experienced by a DDS message [17].

At each stage of the end-to-end process, the RTT experienced is proportional 
to the amount and size of traffic, the computational hardware’s performance, and 
the efficiency of the software controlling the hardware. Further, the actual RTT of 
a message is influenced by the distance it must travel through the communication 
medium. For these reasons, RTT can make a reasonable response variable when 
comparing DDS to other communication solutions in a fixed environment. However, 
this research compares the performance of DDS to itself with a change in security. 
To increase the portability of these results to other environments, RTT is not used. 
Since the standard specifies the behavior of the middleware to be interoperable, the 
message quantity and content are expected to be far less variable between environ-
ments and implementations than RTT. Therefore, the response variable is the total 
network traffic in bytes required to send a fixed quantity of published messages con-
taining a fixed size payload between a set number of participants.

The Student’s t test is one of the tools used in DoE. It is uniquely suited to test 
hypotheses on means where the population variance is unknown. Testing whether 
the population mean traffic in bytes generated by DDS to execute a fixed quantity of 
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published messages without authentication, �
0
 , is significantly different than the popu-

lation mean traffic required to complete the same communication with authentication, 
�
1
 . The inputs for the t test are based on the publisher and subscriber ratio which has 

six runs completed for each total amount of messages where with and without authen-
tication can be measured and extracted. The p-value from the calculated test statistic is 
compared to � to determine whether a null hypothesis, H

0
 , can be rejected. � is com-

monly set to 0.05 and 0.01, an acceptable probability for an incorrect rejection. The 
null hypothesis is that there is no difference between the population means. If the null 
hypothesis is rejected, sufficient evidence suggests a difference in population mean traf-
fic in bytes generated by DDS to execute a fixed quantity of published messages with 
and without authentication.

Table 5  Equipment specifications

Name Foxy1 Foxy2 Kerby

Machine XPS 13 9310 Raspberry Pi 4B Raspberry Pi 4B
OS Ubuntu 20.04.3 LTS Ubuntu 20.04.3 LTS Ubuntu 20.04.3 LTS
CPU 11th Gen i7-1185G7 ARM Cortex-A72 ARM Cortex-A72
Disk space 2 TB 64 GB 256 GB
RAM 31 GB 8 GB 8 GB

Fig. 5  Experiment testbed 
network diagram
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3.2  Experiment apparatus

The experiment testbed for DDS-C utilizes ROS 2 Foxy Fitzroy and Kerberos [32, 
33]. Foxy Fitzroy was selected because of its long-term support and its use of ePro-
sima Fast-RTPS [34]. Four pieces of apparatus are used—a Netgear R6100 router, 
a Dell XPS 13 Laptop personal computer (PC), and two Raspberry Pi 4B devices. 
Table 5 lists the main equipment and its specifications. The names from the table 
distinguish the three main pieces of equipment: Foxy1, Foxy2, and Kerby. All three 
devices need Kerberos installed; however, Kerby’s Kerberos is the main KDC of 
interest for the experiments. Foxy1 and Foxy2 additionally have ROS 2 Foxy Fitzroy 
installed, architectures amd64 and arm64, respectively [35]. Figure 5 is the testbed 
network diagram. The three devices connect wirelessly to the same router and are 
logically on the same network subnet. Foxy1 and Foxy2’s nodes have to request and 
receive tickets from Kerby to authenticate prior to sending messages to each other.

Each ROS 2 node has either one publisher or subscriber. Each publisher to one 
subscriber sends a total of 10 messages at 0.5-second intervals. For scalability, there 
are six sets of publisher and subscriber nodes with a two publisher to one subscriber 

Table 6  Experiment QoS settings

QoS Selected Description

Depth Queue size = 10 Queues messages for a subscriber based on message traffic to it
Reliability Best Effort Some messages may be lost due to the network

Reliable Messages are guaranteed to be sent through retries
Durability Transient Local Publisher persists messages for subscribers that join the network late

Table 7  Configuration-dependent variables

Variables Description

QoS Option to lose some messages with best effort or guarantee all messages are 
sent with reliable

Node count and ratios Increasing number of nodes with each larger ratio increases number of 
messages

With and without DDS-C Run experiments with and without DDS-C to analyze its security traffic 
impact

Fig. 6  Experiment node layout [11]
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ratio: 2:1, 4:2, 6:3, 8:4, 10:5, and 12:6. The total amount of messages for each ratio: 
20, 40, 60, 80, 100, 120. Each subscriber node receives 10 messages from two pub-
lisher nodes for a total of 20 messages, as shown in Figure 6. Every 2:1 node pairing 
has a unique topic. The message payload is a “Hello World: i” string where i is the 
message counter. Other payload sizes are not experimented with because they do not 
impact authentication, starting at the beginning of a node’s life cycle.

All nodes have set Quality of Service (QoS) policies for queue size, reliability, 
and durability as shown in Table 6. These three are set to ensure different node and 
message behaviors. ROS 2 sets all other QoS settings to their default values [36]. 
The experiment modifies reliability, switching between best effort and reliable. 
Queue size is 10 messages, and durability is transient local. Every node has a unique 
credential that is created and managed by Kerby. When authenticating, a node needs 
to know their Kerberos principal and realm and access their respective keytab.

There are two different network configurations. The first configuration uses only 
Foxy1 and Kerby, and the second configuration uses Foxy1, Foxy2, and Kerby. Each 
configuration is tested with the dependent variables listed in Table 7. 

1. Foxy1 with Kerby: Foxy1’s publisher and subscriber nodes are on the same laptop 
PC and authenticate with Kerby. Before each node operation, they authenticate 
through Kerby by receiving a ticket. Afterward, the publishers send messages to 
the subscribers.

2. Foxy1/Foxy2 with Kerby: All publisher nodes are on Foxy1, and all subscribers 
are on Foxy2. Once the nodes authenticate through Kerby, the publishers send 
messages, and the subscribers read them.

3.3  Assumptions and limitations

This subsection outlines the experiment’s assumptions and limitations, by-products 
of the setup, configurations, and processing. The list of assumptions are as follows:

• For ROS 2, nodes do not fail authentication and that an attacker does not com-
promise nodes.

• All publishers send all 10 messages, and all subscribers receive the specified 
messages.

• No Kerberos principals were renewed with new keys or keytabs; the same ones 
were used in all test iterations.

• For data processing, only pertinent captured packet protocols such as Real-Time 
Publish-Subscribe (RTPS) were included in packet analysis. Protocols such as 
NetBIOS Name Service (NBNS), which Wireshark sends out when it starts to 
sniff, and Simple Service Discovery Protocol (SSDP), discovery of plug and play 
devices, are excluded and deemed extraneous due to low packet captures and low 
relevancy to DDS-C security.

• All RTPS packets without the predefined publish payload were categorized as 
discovery+.
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Limitations of the experiment include:

• The experiments occur in a local area network with the same subnet, thereby 
confining the nodes to a controlled network with less outside packet noise. In 
future work, more packet noise could be desired if DDS-C is tested in a more 
lossy environment or different networks.

• Nodes send fixed size payloads with a set time interval of 0.5 seconds for all 
network configurations, which is appropriate since packet quantity was measured 
regardless of latency.

• Selected QoS limits the message’s behavior, and more combinations could be 
implemented. Using the reliability QoS is essential because it allows for message 
retransmissions. Still, the scope could widen to other QoS properties if other 
DDS-C properties were explored.

• Selection of total categorized network traffic as the response variable for statisti-
cal testing provides one component of the overall overhead of using DDS-C. The 
remaining overhead components are environment-dependent.

• Default usage of simple discovery protocols changes the total traffic compared to 
other discovery methods. Other discovery methods may change the sensitivity of 
statistical tests to the mean difference in traffic-induced by authentication.

3.4  Data processing

Data processing is the final step. The data is successfully collected first on Foxy1 
and Foxy2 and then transferred to a separate Windows machine for processing and 
formatting.

The ROS 2 launch command executes a modifiable script that specifies which 
nodes to run simultaneously at the start of each configuration. When the nodes 
run, Wireshark, used on Foxy1, and tcpdump, used on Foxy2, collect the packets 
sent from Kerberos and ROS 2 [37, 38]. The .pcap files are then sent to a Windows 
machine for processing.

The PowerShell Tabluation Script, as shown in Listing 1, filters the packet cap-
ture files into columns of data fields via tshark [39, 40]. Next, it automatically sums 
the total bytes captured for each category, dumping the results to a comma-separated 
value (CSV) files. This example pseudocode does not display all the column fields 
extracted but includes two to show that the command can accept additional fields.
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The PowerShell script extracted message sizes to identify and categorize mes-
sages transmitting the published payload. The published data had a fixed message 
size of 44 bytes in these experiments. This size was unique to data publish messages 
and presented a suitable criterion to categorize a packet as a data message. The pro-
tocols field identified packets belonging to the security category as they were the 
only packets sent using either Domain Name System (DNS) or Kerberos protocol. 
All other packets sent using the Real-Time Publish-Subscribe (RTPS) protocol were 
categorized as discovery+. This category represented the traffic associated with typ-
ical DDS network traffic overhead.

Python was used to apply Student’s T tests to the summed traffic for each con-
figuration’s participant count [41]. The SciPy.Stats module provides the 
stats.t.cdf function to evaluate the p-values given the test statistic and degrees 
of freedom [42]. To better understand the software used, Table 8 presents informa-
tion about the names, locations, versions, and descriptions of all the software.

3.5  Experiment results

This section summarizes the experiment’s results. Plots illustrate the growth 
of three categories of network traffic, data message, security, or discovery+, 

Table 8  Experiment software 
information

Name Version Location

ROS 2 Foxy Fitzroy Foxy1, Foxy2
Kerberos V5 Foxy1, Foxy2, Kerby
Wireshark 3.2.3 Foxy1
tcpdump 4.9.3 Foxy2
tshark 3.4.7 Windows
PowerShell 5.1.19041.1237 Windows
Python 3.9.7 Foxy1, Foxy2, Windows
SciPy 1.7.0 Windows

Table 9  Configuration p-values

a Statistically significant p-values with � 0.05

Participants Best Effort Foxy1 
with Kerby

Reliable Foxy1 
with Kerby

Best Effort Foxy1/
Foxy2 with Kerby

Reliable Foxy1/
Foxy2 with 
Kerby

3 0.022a 0.027a 0.007a 0.007a

6 0.015a 0.134 0.170 0.197
9 0.218 0.249 0.445 0.357
12 0.290 0.614 0.651 0.274
15 0.742 0.603 0.440 0.546
18 0.610 0.482 0.532 0.339
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resulting from increased participants. Each set of data points for a x-value repre-
sents six runs executed. Although nodes sent relatively small data amounts, secu-
rity traffic was indistinguishable due to the dominant discovery+ traffic and its 
associated variance.

To illustrate the magnitude of the differences in means relative to the sample 
variances required to reject the null hypothesis, Fig. 7 plots the observed spread 
of the traffic quantity observed in MB for each participant count with and with-
out security. The relative magnitude of the difference erodes as more participants 
enter the domain. These values are used to calculate the p-values in Table 9.

Fig. 7  Experiment Results. Top row: Best Effort Foxy1 with Kerby Variance 3 and 6. Middle row: Best 
Effort Foxy1 with Kerby Variance 9 and 12. Bottom row: Best Effort Foxy1 with Kerby Variance 15 and 
18
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Table  9 lists the p-values for the two different configurations with the best 
effort and reliable QoS. In all cases with three participants, the addition of secu-
rity imposed a statistically significant change in mean traffic on the network. 
However, in most cases, the difference in mean traffic set by security was not sta-
tistically significant by six participants. For the statistically significant values, the 
discovery traffic growth with each participant dominated the other traffic sources. 
Although one of the configurations with six participants indicated significant traf-
fic due to security, the significance was diminished by nine participants.

Multiple factors could have influenced the delayed insignificance experienced 
by the best effort configuration using Foxy 1 with Kerby. The best effort configu-
rations generally resulted in less traffic, making the conclusion more sensitive to 
minor differences. Additionally, the configuration using only Foxy 1 with Kerby 
was less lossy than the configuration involving Foxy 2. The reduced loss resulted 
in less variance, further sensitizing the test to smaller differences in means. Com-
bining these effects required more participants before the security traffic could be 

Fig. 8  Experiment results. Left column: Best Effort Foxy1 with Kerby. Right column: Reliable Foxy1 
with Kerby
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considered insignificant. The p-values show that adding DDS-C requires statisti-
cally insignificant additional traffic for reasonably sized experiments.

Figures 8 and 9 layout both configurations, Foxy1 with Kerby and Foxy1/Foxy2 
with Kerby, with QoS best effort and reliable. They plot the packet traffic catego-
rized as data message, security, and discovery+:

• Data message: traffic represents the captured packets for messages sent from 
publishers to subscribers.

• Security traffic: represents packets for Kerberos server communication.
• Discovery+ traffic: includes all additional traffic that consists of a majority of but 

is not limited to DDS node discovery messages. Other traffic categorized as dis-
covery+ has meta traffic used by DDS to ensure QoS, such as heartbeat messages 
and acknowledgments.

In both figures, the traffic grows with increased participants. Visually, discov-
ery+ traffic is about two orders of magnitude greater than data message and security 

Fig. 9  Experiment results. Left column: Best Effort Foxy1/Foxy2 with Kerby. Right column: Reliable 
Foxy1/Foxy2 with Kerby.
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traffic. It also has a steeper slope than the other two categories and could fit a higher-
order model. Notably, the plotted discovery+ traffic uses units of MB while the other 
two are in KB. If not considering discovery+ traffic in the statistical calculations, 
the security traffic would be statistically significant for all participant configurations. 
This observation would be accurate if nodes sent messages with User Datagram Pro-
tocol (UDP) rather than RTPS as provided by DDS. However, in this case, due to the 
overwhelming collection of discovery+ messages, the security overhead is shown to 
not be statistically significant for the majority of all participant sets. Due to a lossy 
network configuration and reliability QoS, Fig. 9 best effort data message traffic is 
different from the relative reliable plot. This reliable plot is similar to Fig. 8’s data 
message traffic plots for both best effort and reliable. Reliability QoS does not sig-
nificantly change the amount of traffic in all performed configurations. Nonetheless, 
even with a lossy environment, the overall trend indicates that security traffic does 
not produce enough traffic overhead to significantly deter the use of security mecha-
nisms in both QoS reliabilities.

This section outlines how the statistical model, network and ROS 2 setup, and 
processing software support the experiment results. It illustrates the defined process 
and setup to efficiently acquire, process, and analyze data, and examines the results 
collected by these methods and software. DDS-C is not statistically significant 
enough, as seen with the majority of configurations, to hinder DDS.

4  Discussion

This research, unlike previous research and related works, combines two existing 
technologies to create a more secure product. Many of the Data Distribution Ser-
vice (DDS) and ROS 2 (Robot Operating System) related works, previously men-
tioned, measure DDS and ROS 2 latency times and not on experimenting them with 
other software. Many Kerberos research improved authentication methods, as seen 
in the related works, but not on combining technologies. This research is unique by 
combining DDS and Kerberos to create DDS-Cerberus (DDS-C). DDS-C’s security 
capability leverages Kerberos creating a new security layer to determine its affect on 
DDS. The results concluded that DDS-C traffic does not hinder DDS. This is impor-
tant because it can be implemented in other DDS frameworks and ROS 2 implemen-
tations without hindering performance and improving security through authentica-
tion. In the future, it can be improved through more experimentation with different 
use cases and mission sets. It can also be expanded to other middleware protocols.

5  Conclusion

This research explored the cost of using DDS-Cerberus (DDS-C) to provide secu-
rity. The experiment hosted DDS-C in a local subnet by authenticating publisher and 
subscriber nodes. The results revealed the mean security traffic incurred by DDS-C 
to send a given amount of data between authenticated nodes is indistinguishable 
from traffic quantity observed from comparable experiments without authentication. 
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Analyzing results from both Quality of Service (QoS) best effort and reliable show 
that the difference in mean traffic is insignificant for use cases involving anything 
more than small numbers of participants sharing a few messages of small size. 
These results indicate that DDS-C applied to other Data Distribution Service (DDS) 
implementations adds extra benefit without substantial performance costs. Under-
standing this information is crucial in applying DDS-C to future research.

Future research could improve the existing DDS-C design and integrate it into 
real-time systems. For instance, creating a Kerberos node that facilitates ticket 
retrieval to handle a more significant number of nodes. This idea can also lead to 
experimenting with re-authentication throughout the lifetime of a node to observe 
the authentication traffic impact. Another proposal could integrate DDS-C into 
a QoS policy or experimenting with other QoS policies besides reliability. Also, 
DDS-C can be experimented with integrating authentication with other ROS 2 
(Robot Operating System) components: services and actions. DDS-C is still in 
development and requires more real-world use case experimentation before opera-
tional use.

Concerning analysis, future work could include regression tests to estimate model 
parameters for linear and nonlinear models. As the effect of authentication was 
found to diminish to insignificance for reasonably sized domains, its parameter was 
not estimated. Instead, future work could further investigate the discovery+ category 
of traffic and any factors affecting its component of the response variable. These 
parameters would facilitate the application of these results to predict performance in 
other scenarios. The process of applying the predictive power of this response vari-
able could be refined and validated in the following work, similar to that of Sadjadi 
et al. [31].

Technologies and middleware are constantly evolving. Further research is needed 
to improve DDS security and performance. DDS-C is one option that provides that 
extra security to any DDS implementation, increasing data integrity and node trust.
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