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Interband Transitions and Critical Points of Single-Crystal
Thoria Compared with Urania

Christina Dugan, Lu Wang, Kai Zhang, James Matthew Mann, Martin M. Kimani,
Wai-Ning Mei,* Peter A. Dowben, and James Petrosky

1. Introduction

The electronic properties of actinide dioxides, from UO2 to
AmO2, include the localized 5f electronic states, where

application of a strong on-site Coulomb
repulsion interaction is typically required
in density functional theory (DFT)
calculations.[1–27] As insulators, the 5f-to-f
transitions are less perturbed by band
hybridization in the actinide dioxides, but
band hybridization remains significant.
While an accurate quantitative description
of the optical spectra requires theory beyond
the independent particle picture, qualitative
agreement between theory and experiment
can often be obtained on the level of

DFT,[7,10,11,13–18] although there is wide variability in the predic-
tions available from theory.[10,15] While the optical adsorption
and reflectance spectra of semiconductors have been studied for
several decades, similar work on actinide dioxides has been ham-
pered by the absence of high-quality single crystals[10,28,29] as
defects abound[10] affecting the experimental optical absorption.
This presents challenges to efforts to experimentally verify the best
theoretical approach. While the optical properties for both ThO2

[15]

and UO2
[10,12,15,17,18] have been previously calculated using the

Heyd–Scuseria–Ernzerhof (HSE) functional, even within the
framework of the same functional, the bandgap can vary by as
much as 22–27% for UO2, so experimental verification from crys-
tals free of defects becomes important.

The complex dielectric function ε(ω)¼ ε1(ω)þ iε2(ω) has been
derived experimentally from UO2 single crystals, along with the
roughly 2 eV bandgap, optically.[30–32] More recent efforts to
extract the complex dielectric function have been made by
Siekhaus and J. Crowhurst[24] as well as Mock, Dugan, and
coworkers.[13,14] There are significant shifts in the transitions
observed in the more recent optical ellipsometry measure-
ments[13,14,33] compared with reflectivity measurements
performed by Schoenes.[30–32] Absorption of UO2 thin films,
by optical transmission, has also been measured.[34] Uranium
oxide and thorium oxide single crystals, fabricated using a hydro-
thermal synthesis growth technique,[13,14,35–41] produce bulk
single crystals of near-stoichiometric UO2

[13,14,36,39–41] and
ThO2

[14,33,37,38,41] so that defect contributions to the complex
dielectric function are much suppressed.[14] These improved sin-
gle UO2 crystals allow us here to validate the observed interband
transitions identified in variable-angle ellipsometry (VASE)[13,14]

with cathode luminescence and theory. There is much prior the-
ory on UO2 upon which to draw,[1–27] so here there is a somewhat
increased emphasis on ThO2 to provide an indication that, as in
the case of UO2,

[10,15] the choice of DFT functional leads to wide
variability in quantities like bandgap that are extracted from the
calculated band structure.
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The interband transitions of UO2 are validated independently through cathode
luminescence. A picture emerges consistent with density functional theory. While
theory is generally consistent with experiment, it is evident from the comparison of
UO2 and ThO2 that the choice of functional can significantly alter the bandgap and
some details of the band structure, in particular at the conduction band minimum.
Strictly ab initio predictions of the optical properties of the actinide compounds,
based on density functional theory alone, continue to be somewhat elusive.
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2. Theoretical Methods

All the electronic band structure calculations were performed
within the framework of spin-polarized plane-wave density func-
tional theory (PW-DFT), implemented in the Vienna ab initio
simulation package (VASP).[42,43] The Perdew–Burke–
Ernzerhof (PBE) functional and projector-augmented wave
(PAW) potentials were used.[44–46] An energy cutoff of 600 eV
was adopted for the planewave expansion of the electronic wave
function. Geometrical structures were relaxed until the force on
each atom is less than 0.01 eV Å�1 and the energy convergence
criteria of 10�7 eV were met. Here the UO2 and ThO2 stable
structures are the fluorite structure (cubic space group Fm3m
(225)), as in previous work[13,14] and in most other DFT
calculations.[1–27] This is a UO2 or ThO2 unit cell with four
uranium atoms in face-centered cubic positions and eight oxygen
atoms in the tetrahedral sites. Once the optimized structures
were achieved, the hybrid functional, in the HSE06[47] form,
was used to give more accurate bandgaps. The imaginary part
of the frequency-dependent dielectric matrix was calculated
based on the HSE06 ground states of ThO2 using random phase
approximation (RPA).[48,49] The default U values for the uranium
and thorium oxides are both 4 eV for f-electrons consistent with
many other DFT calculations.[8,10,19–24,26,27] We note that in some
previous ab initio studies of UO2 there is an expansion[50] or
contraction[51] of the c lattice parameter, relative to the a and
b lattice constants, leading to a tetragonal unit cell, and indicative
of a different ground state[50] not seen here.

3. Interband Transitions of ThO2 and UO2

When the DFTþU method was used, with a choice of U¼ 4 eV
for f-states of Th atoms to provide the necessary correction for the
on-site Coulomb interactions, the calculated bandgap is found to
be 5.04 eV. Using the HSE functional to estimate a more accurate
bandgap, as has been very popular with UO2,

[9,10,12,13,15,17,18] our
calculation revealed that the ground states of bulk ThO2 are non-
magnetic, with a bandgap of 6.12 eV, as shown in Figure 1. This
is close to the 6.21 eV value previously calculated.[15] It has also
been shown that the HSE band structure calculations, with spin–
orbit coupling turned on, provides a bandgap of 5.8 eV,[9,12]

which is closer to the experimental value of 5.75 eV[52] and
our value of 5.4 eV measured from VASE. The HSE functional
does, however, differ significantly from the calculated band struc-
ture obtained using PBE, discussed below, and the band struc-
tures previously reported.[9,53]

These bandgaps are not representative nor do they include
surface effects. Density functional theory slab calculations indi-
cate that ThO2(001), with a Th atom termination, is not a spin-
polarized semiconductor, and in this approach, we are left with
the suggestion that the bandgap is small, of order 0.28 eV.
ThO2(100), with an O atom termination, is a ferromagnetic metal
with the magnetic moments of the supercell 4.0 μB. Basically, by
including the surface, the ThO2(001) band structure is character-
istic of a semimetal, an n-type semimetal if the ThO2(100) sur-
face terminates with Th atoms and a p-type semimetal if the
ThO2(001) surface terminates with Th atoms. The semimetal
bandgap has an indirect gap of about 2.7 eV, and in any case,

the predicted semimetal behavior of the surface is not what
has been measured optically.[14,52]

The PBE-calculated ThO2 band structure, with a correlation
U¼ 4 eV, as in Figure 2, is qualitatively similar to the band struc-
ture obtained through the B3LYP functional[9] and the relativistic
linear augmented-planewave (RLAPW) calculation[53] for the
valence band, but differs significantly from the calculated band
structure, using the B3LYP functional or RLAPW, on the conduc-
tion band side. One difference with the calculated band structure
of other studies,[9,53] and the calculations shown here, is that the
calculation of Figure 1 does have the conduction band minimum
at the L point of the Brillouin zone, as shown in the study by
Szpunar et al.,[9] but this is clearly not seen in Figure 2 where
the conduction band minimum is close to the K point. For
the pure ThO2 bulk, the bandgap is 5.04 eV in the PBEþU func-
tional, consistent with most other theory published to
date.[9,12,15,53,54] A similar band gap was obtained with
PBEþU in the density mixing scheme and the ensemble density
functional theory (EDFT) scheme. These are the band structures
within the same PBE functional plus a correlation energy U from
different convergence schemes and should converge to the same
ground states. While the band structure is very similar, one makes
ThO2 more p-type and the other more n-type. A key point that
comes from comparing the band structure from different func-
tionals is that the resulting calculated band structures do differ.

Moving beyond the band structure calculations for ThO2 pro-
vided here and elsewhere,[9,12,14,15,53,54] we have calculated the
bulk dielectric function, as shown in Figure 3 for ThO2.
Absorption and the optical response will occur for any symmetry
and selection rule allowed transition at any place in the Brillouin

Figure 1. The band structure of bulk ThO2 using HSE hybrid functional.
The bandgap is 6.12 eV and the ground state is antiferromagnetic.
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zone, not just Γ, so long the transition itself has little or no
momentum exchange, that is, Δq¼ 0 transition. Basically, the
low-lying critical points seen in the VASE experiments of
ThO2

[14] are qualitative reproduced in theory, though shifted
to higher energies in the HSE theory, as summarized in
Table 1. For PBE, the agreement is more in line with experiment,
but also qualitatively similar to HSE. This means that the stron-
gest contributions to the optical properties for ThO2 are the p–d
transitions in the region of 5–8 eV. This places the low-lying crit-
ical points for ThO2 at 5.5 eV (the Δq¼ 0 [p to d; e symmetry]
transition in the ε2(ω) part of the dielectric function for single-
crystalline ThO2 and the Δq¼ 0 [p to d; a1 symmetry] transition
in the region of the center of the Brillouin zone) and at 6.8 eV (the

combined q¼ 0 transitions [p to d; e symmetry] in the region of
W and K of the Brillouin zone). These transitions are strongly O
2p! Th 6d/5f transitions for the most part, made possible by
Th d–f hybridization (Figure 2) with more Th 6d weight in the
final state for the transitions at lower energies and more and
more Th 5f in the final state for the transitions at energies in
the region of 8–9 eV. This assignment, based on the band struc-
tures of ThO2 of Figure 1 and 2, differs from the O 2p! Th 5f
assignment of Dugan et al.[15] O 2p! Th 6p is an allowed optical
transition, while O 2p! Th 5f is not, although possible because
of d–f hybridization as just noted.

Five critical points are observed in the investigated spectra for
both of the actinide oxides UO2 (Table 2) and ThO2 (Table 1).
The two actinides present with a very similar oscillator pattern
that appears to be compressed and shifted to higher energy
for ThO2, for the features below 10 eV. The imaginary part of

Figure 2. Band structure and density of states of ThO2 by the a) PBEþU functional in the density mixing scheme and by b) PBEþU function in the EDFT
scheme.

Figure 3. The calculated real (blue) and imaginary (red) parts of the ThO2

dielectric function.

Table 1. Critical point energies for ThO2, obtained from VASE compared
with theory. The assignment based on prior theory[15] is given as well as
that based on the band structure provided here [*].

Experiment [eV]a) Theory [eV]b) Assignment

5.4 6.1 O 2p! Th 6d [*]

O 2p! Th 5f [15]

6.3 7.2 O 2p! Th 6d[15]

7.5 7.7 O 2p! Th 6d[15]

8.0 9.0 O 2p! Th 5f [15]

8.8 – –

a)Experimentally determined energy values from VASE, taken from Mock et al.[14];
b)HSE theoretically determined energy values.
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the calculated dielectric response for ThO2 has the first major
feature at 9 eV, as shown in Figure 3. In the dielectric response
calculated from the experimental VASE,[14] the first low-energy
peak appears at a lower energy of 8 eV, consistent with the fact
that the HSE functional estimates a larger bandgap than is
observed experimentally (Table 1).

In the case of UO2, the dielectric response derived from the
experimental VASE[13,14] has two peaks at low energy, at 2.0 and
5.0 eV, respectively. This is consistent with the optical bandgap of
2.0 eV previously reported.[30–32] These low-energy features are
not as well resolved in theory, as seen in Figure 4, but as noted
in the study by Dugan et al.,[13] the bandgaps generally agree with
theory if the HSE functional is used, while the PBE functional
grossly underestimates the bandgap (as discussed in detail in
the study by Dugan et al.[13]). This is, however, highly variable
as the bandgap of 2.71 eV was found using HSE with
U¼ 4.5 eV and J¼ 0.5,[10] and an even larger band of 2.76 eV
was also found with HSE,[17] much larger than the bandgap
2.4[12,18] and 2.19 eV[13] found elsewhere using the HSE func-
tional. The peaks in the calculated imaginary part of the dielectric
response for UO2 (Figure 4) appear only as higher-energy
shoulders in experiment[14] and as weak features in the

cathodoluminescence. This suggests that experiment and theory
do not agree as to the extent of the oscillator strength used to
describe the critical points’ lower energies.

We observe also that the critical points seen in UO2 are
broader than their counterparts in ThO2 in the imaginary part
of the dielectric response extracted from the experimental
VASE,[14] but the reverse is true in theory. These trends are seen
in the calculated real and imaginary parts of the dielectric func-
tion for ThO2 (Figure 3) and UO2 (Figure 4). For the features at
roughly 10, 12, 14, and 15 eV, thoria (ThO2) and urania (UO2)
resemble each other as noted in the study by Dugan et al.[15]

The calculated optical properties of Figure 3 and 4 differ, but
it should be noted that there is now a wealth of information
on UO2, as shown in Table 2, and the transition energies in
VASE previously measured[13,14] agree with the cathodolumines-
cence and theory. This means that the transitions can be
assigned, based on the theory.

4. Cathodoluminescence

Figure 5 displays the cathodoluminescence, taken at 10 keV, for a
single-crystalline UO2 sample grown by hydrothermal synthesis.
The values given in Table 2 generally agree with the optical tran-
sition values extracted from the VASE.[13,14] An experimentally
determined bandgap of 2.37 eV, from cathodoluminescence, is
also consistent with theoretically predicted bandgaps of 2.19,[13]

2.3,[16] and 2.4 eV.[12] This value of 2.37 eV is larger than previ-
ously found by VASE (Table 1) and discussed at length in other
studies.[13,14] As there is no initial state photohole, the lumines-
cence corresponding to the lowest unoccupied state to highest
occupied state transition is expected to be larger, as is the case
with the value determined from VASE. The very low lumines-
cence for the transitions corresponding to the bandgap is the
result of being a selection rule forbidden transition.

Table 2. Critical point energies for UO2, obtained from VASE and cathode
luminescence (CL), compared with theory. The assignments are based on
prior theory.[30]

Experiment [eV]a) VASE Experiment [eV]b) CL Theory [eV]c) Assignment

2.0 2.4 2.2 U 5f!U 5f [30]

2.6 2.6 3.5 U 5f!U 5f

2.9

5.0 3.8 4.6 U 5f!U 6d

6.3 6.1 6.0 O 2p!U 6d/5f [30]

6.9 6.8 6.9 O 2p!U 6d/5f [30]

a)Experimentally determined energy values from VASE, taken from Mock et al.[14];
b)Transitions taken from cathode luminescence; c)HSE theoretically determined
energy values.

Figure 4. The calculated real (blue) and imaginary (red) parts of the UO2

dielectric function, using the HSE functional.

Figure 5. The optical transitions for single-crystal UO2, measured from
cathodoluminescence. The incident electron energy is 10 keV to avoid
surface effects. The weaker transitions are indicated by arrows and that
corresponding to the lowest unoccupied state to highest occupied state
transition is shown in the inset.
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The fact that the cathodoluminescence features are generally
very weak, especially for the luminescence corresponding to the
lowest unoccupied state to highest occupied state transition for
single-crystal UO2, is because this transition is a selection rule
forbidden transition. A U 5f!U 5f transition does not obey
the required Δl¼�1 for an optical transition, as noted in the
discussion of the optical transitions above. The U 6d/5f!O
2p luminescence transitions are also expected to be weak as they
are extra-atomic transitions, as is observed here. As shown in
Figure 5, the strongest luminescence feature is the on-site,
selection rule allowed U 6d ! U 5f transition (the reverse of
the transition in VASE previously measured[14]). This very strong
cathodoluminescence feature at 3.8 eV appears at a lower energy
than predicted by theory or seen in the VASE previously
measured[14] or predicted by theory, indicative of extensive hybrid-
ization in the band structure. These transition assignments are,
nonetheless, generally consistent not only with theory,[30] as noted
earlier, but also combined photoemission and inverse photoemis-
sion studies of UO2.

[55] This, in turn, implies that UO2 and ThO2

are indeed strongly correlated systems with correlation energies
in the region from 0[8] to 6 eV for ThO2

[7,9,25] and from 3.5 to 5 eV
for UO2.

[8,10,19–24,26,27]

5. Conclusion

There is a consistent picture of the electronic structure, from
experiment, that is not shared among the many theoretical band
structure calculations. As noted elsewhere,[7,8,21,23,55] when it
comes theory, the final arbiter of successful theoretical band
structure calculations presently appears to be in agreement with
the experiment results for the actinide oxides. As sample quality
improves, the difference between experiments and theory is
increasingly diminished, although the role of screening does
appear to have a profound effect on the experiment. Surface
effects, not discussed here, are expected to be a persistent
problem and caution is needed in interpreting experimental
results with a strong surface contribution. For example, the
photoelectric work function of the (111) hydrothermally grown
UO2 was measured at 3–4 eV,[39] and 3.19� 0.03 eV.[27] More
recently, the photoelectric determined work function of nearly
stoichiometric hydrothermally grown UO2(111) and (100) was
measured to be 6.28� 0.36 and 5.80� 0.36 eV, respectively.[40]

This range of experimental values reduces confidence in key
parameters associated with these materials. However, as shown
in this article, that confidence builds as theory and experiment
begin to merge.

6. Experimental Section
Single crystals of UO2 were grown by hydrothermal synthesis,[13,14,35–41]

as described in other studies.[13,14,41] Further, hydrothermal growth
information is detailed in the study by Mann et al.[35] The UO2 crystals
grown under these conditions have measured lattice parameters of
5.4703� 0.0006 Å indicating a stoichiometry near UO2.

[25,56–59]

The cathodoluminescence system consists of a Kimball Physics
EMG-12 electron gun powered by an EGPS-12 power supply, a vacuum
system, a sample chamber with suitable optical ports, an optical system,
a spectrometer, and a photomultiplier detector. The liquid nitrogen-cooled
UO2 was placed at the focal point of the electron gun and the resulting

cathodoluminescence signal from the sample was transmitted through the
quartz window of the vacuum chamber, focused onto the entrance slit of
the monochromator and then to the photomultiplier or a solid-state detec-
tor. The electron beam was incident at an angle of �45° with 10 keV
energy.
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