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Zernike integrated partial phase error reduction algorithm

Stephen C. Cain
Department of Electrical and Computer Engineering, Air Force Institute of Technology, 2950 Hobson Way, WPAFB, OH 45433, USA

A R T I C L E I N F O
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A B S T R A C T

A modification to the error reduction algorithm is reported in this paper for determining the prescription of an
imaging system in terms of Zernike polynomials. The technique estimates the Zernike coefficients of the optical
prescription as part of a modified Gerchberg‐Saxton iteration combined with a new gradient‐based phase
unwrapping algorithm. Zernike coefficients are updated gradually as the error reduction algorithm converges
by recovering the partial pupil phase that differed from the last known pupil phase estimate. In this way the
wrapped phase emerging during each iteration of the error reduction algorithm does not represent the entire
wrapped phase of the pupil electric field and can be unwrapped with greater ease.
The algorithm is tested in conjunction with a blind deconvolution algorithm using measured laboratory data

with a known optical prescription and is compared to a baseline approach utilizing a combination of the error
reduction algorithm and a least‐squares phase unwrapper previously reported in the literature. The combina-
tion of the modified error reduction algorithm and the new least‐squares Zernike phase unwrapper is shown to
produce superior performance for an application where it is desirable that Zernike coefficients be estimated
during each iteration of the blind deconvolution procedure.

1. Introduction

Phase retrieval techniques have, historically, been used with some
success for determining the optical prescription of an imaging system
(Fienup, 2013). The phase retrieval algorithm described in his paper is
designed to determine the prescription of an optical system from a bea-
con. This is accomplished by unwrapping the phase of an estimated
electric field in the pupil plane into a function described by the Zernike
polynomials as it is estimated incrementally by an error reduction
algorithm (Gerchberg and Saxton, 1972). This is accomplished by
the Zernike Integrated Partial Phase Error Reduction (ZIPPER)
approach, which is designed to constrain the shape of the estimated
Point Spread Function (PSF) on each iteration as it is estimated from
the images. This has the potential advantage for blind deconvolution
algorithms where the shape of the object is being determined on an
iterative basis and it is advantageous to constrain the shape of the
PSF so as to avoid solutions of the image that could be arrived at
through the use of estimated PSF shapes that are inconsistent with
likely physical models.

Dealing with extended sources is important for problems where it is
desirable to recover the optical aberrations of a system when present-
ing it with an optical source that is not sufficiently small to be consid-
ered a points source. This is potentially valuable when viewing laser
guide star beacons, which often are spatially too large to be considered

point sources. The proposed technique will be shown to be useful for
recovering the optical prescription of the system from the full aperture
but could theoretically be applied to wave front sensor observations to
recover the phase over individual sub‐apertures.

Other phase retrieval methods for fitting a Zernike polynomial
basis to the aberrations of an optical system include curvature sensing,
the Gerchberg‐Saxton (GS) algorithm combined with phase unwrap-
ping algorithms and intensity based least squares fitting (Roddier,
1988; Krist and Burrows, 1995). Attempts continue to be made to pro-
duce reliable 2‐D phase unwrapping algorithms, but their performance
continues to be limited by branch cuts and noise as will be demon-
strated in this paper (Ghiglia and Pritt, 1998; Xia et al., 2016). Krist
et al successfully used a Levenberg‐Marquardt (LM) least‐squares
method to determine the Zernike coefficients for the aberrations in
the Hubble Space Telescope (Krist and Burrows, 1995). One limitation
of this technique is that it required them to decouple the aberrations
by defocusing the telescope. Their strategy involved determining the
lower order aberrations first, which allowed the remaining phase error
to be retrieved using GS phase retrieval with a small enough amplitude
that it did not require to be unwrapped (Krist and Burrows, 1995).

Roddier’s curvature sensing technique also determines low‐order
aberrations by defocusing the image of a point source that can be used
to estimate to Zernike polynomials coefficients (Roddier, 1988). Phase
diversity is a multi‐image strategy that most commonly incorporates
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defocused images combined with in focus images to facilitate phase
retrieval (Paxman et al., 1992). A single plane out of focus method
for curvature sensing was also developed by Hickson and was used
in the alignment process for a large telescope (Woods, 2012;
Hickson, 1994; Tokovinin and Heathcote, 2006). In contrast to these
some other methods, ZIPPER does not require gradient searches
through multi‐dimensional Zernike coefficient space as in (Krist and
Burrows, 1995; Zingarelli and Cain, 2013) and can utilize the speed
advantages of the Gerchburg‐Saxton phase retrieval algorithm while
still allowing for unwrapped phase estimates to be obtained.

This paper is organized as follows: Section 2 will describe the
experimental setup used to generate an optical system with known
aberrations. Section 3 will introduce the optical system model and
serve to show how the known aberration coefficients are computed.
Section 4 will cover the algorithm used to process the image data
obtained from the experimental setup. Section 5 will contain results
obtained from the new algorithm and a baseline approach on the
experimental datasets and Section 6 will present conclusions and dis-
cuss future research.

2. Experimental setup

In this section, an experiment that measures the PSF of an optical
system possessing an astigmatism aberration that is the result of a
plane wave entering from a point that is 7.2 degrees from the optic axis
is described (Zingarelli and Cain, 2013). The optical arrangement is
chosen to be simple enough to realize with widely available optical
components, yet the configuration is chosen to produce an aberration
that is commonly modeled using geometric optics (Hecht, 1990). This
aberration is of general interest since it can serve to limit the useful
field of view of an optical telescope and would interact with atmo-
spheric aberrations in ways difficult to predict with ray tracing tech-
niques. Fig. 1 shows the optical arrangement in which the lens has a
1 cm diameter and has a focal length of 50 cm.

Fig. 1 shows the optical arrangement with the light emitting diode
22.3 cm off the optic axis and 1.78 m in front of the lens, which is
labeled as S1. The image point for the light emitting diode is 68 cm
behind the center of the lens and is labeled as the distance S2. The pos-
itive, negative and in focused images are collected with the camera
2.85 cm ahead, 3.25 cm behind the image point respectively. The cam-
era is a 512 X 512 Princeton Instruments Cascade model possessing
with a 16 μm pixel pitch. Figs. 2 and 3 show a sample image taken
from a 100 frame sequence of image data gathered at the positive
and negative focus image positions (200 frames in all). Fig. 4 shows
the 100 frame average of the in focus image for reference.

3. Optical system model

The PSF of an optical system can be modeled via the Rayleigh‐
Sommerfeld diffraction formula as shown below (Goodman, 1968).

Uðξ; η; zÞ ¼ z
jλ

Z
x

Z
y
Uðx; y;0Þ ej2πRðx;y;ξ;ηÞ=λ

R2ðx; y; ξ; ηÞ dxdy ð1Þ

The Rayleigh‐Sommerfeld diffraction equation relates the source
field, U(x,y,)0)in the pupil to the receiver field U(ξ,η,z) in the focal
plane. In Eq. (1), z is the perpendicular distance between the source
and receiver planes while R is the distance between a point in the
pupil, (x,y), and a point on the receiver plane, (ξ,η). The source is
assumed to be monochromatic with wavelength λ.

The distance R is computed using the discrete form found in Eq.
(2),

Rðn;m; k; lÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnΔr � kΔsÞ2 þ ðmΔr � lΔsÞ2 þ z2

q
ð2Þ

where Δr is the sample size in the receiver plane, Δs is the sample size in
the pupil plane, (n,m) are pixel coordinates in the receiver plane and (k,
l) are discrete coordinates in the pupil plane. Eq. (1) can be simplified
without loss of fidelity by approximating R with z (Goodman, 1968).
With these substitutions, Eq. (1) becomes:

Urðn;mÞ≈Δ2
s

jλ
∑
k;l
Usðk; lÞ e

j2πRðn;m;k;lÞ=λ

z
ð3Þ

The source field presented to the lens, Us, is computed using a sim-
ple spherical wave model with a lens transformation for a simple
spherical lens added to the phase of the field (Goodman, 1968). Since
the PSF is being computed, the source is modeled as producing an
expanding spherical wave as shown in Eq. (4).

Usðk; lÞ ¼ S1e
j2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkΔs�xs Þ2þðlΔs�ys Þ2þS2

1

p
λ tlðk; lÞ

ðkΔs � xsÞ2 þ ðlΔs � ysÞ2 þ S21
ð4Þ

In this equation xs is 22.3 cm, and ys is zero representing the posi-
tion of the light source in front of the lens a distance of S1 shown in
Fig. 1 in front of the lens. The pupil is circular with a 1 cm in diameter.
The lens transformation tl(k,l) is a place holder for both the phase
transformation of the lens or mirrors and can accommodate additional
terms that might be related to atmospheric turbulence. In this experi-
ment it is modeled as a simple spherical lens with a focal length of
50 cm (Goodman, 1968).

The phase in the pupil computed to the center pixel of the PSF can
be computed as the phase imparted by the incoming spherical wave
plus the lens transformation phase and the phase term generated by
the Rayleigh‐Sommerfeld propagation from the pupil to the center
pixel at (n,m) = (0,0). The sum of all three phases is shown in Eq. (5).

θtotðk; lÞ¼
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkΔs�xsÞ2þðlΔs�ysÞ2þS21

q
λ

þθlensðk; lÞþ2πRð0;0;k; lÞ=λ;
ð5Þ

where θlens is the phase of the lens transformation. The number of points
chosen to model the pupil is 1558 making the sample size in the pupil
6.42 μm.

Fig. 1. Optical arrangement used to produce an astigmatism aberration (elliptical spots shown before and after the focal point). The wavelength of the light is
0.648 μmeters.
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The PSF of the system is shown in Figs. 5–7 for the positive,
negaitve and in focus cases respectively. All the PSF images are rotated
by 7.2 degrees to match measured images. Table 1 shows the aberra-
tion coefficients for the in focus and out of focus cases obtained by
decomposing the phase computed in Eq. (5) into Zernike coefficients.
This simulated phase is not wrapped and is therefore simple to convert
into aberration coefficients shown in Table 1 using a method found in
(Zingarelli and Cain, 2013).

4. Image processing algorithms

The algorithms utilized in this paper for processing the image data
described previously fall into three different categories which will be
described in order of their utilization. The first is a blind deconvolu-
tion algorithm, which is used to recover estimates of the point spread
functions (PSFs) from the image data. The second is a phase retrieval
algorithm that is integrated as a step in the blind deconvolution proce-

Fig. 2. Image of a 75 µm pinhole back illuminated by a red LED for the positive defocus case.

Fig. 3. Image of a 75 µm pinhole back illuminated by a red LED for the negative defocus case.
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dure. This paper introduces a new approach for phase retrieval that
contains a modified version of the error reduction algorithm. The mod-
ification described in this chapter will show how the differential phase
between the last estimate of the Zernike coefficients and the new one
is obtained. This differential phase is prone to contain less wrapping
than the entire phase and so is then fed into the third type of algorithm
discussed in this paper, which is a phase unwrapping algorithm. In this
paper, a new phase unwrapping algorithm is introduced that is part of
the ZIPPER approach. This new phase unwrapping algorithm is com-
pared to that of a baseline approach previously reported in the litera-
ture (Xia et al., 2016).

The modified error reduction algorithm, together with the new
phase unwrapping approach, constitute the ZIPPER algorithm, which
will be compared to a the standard Gerchberg‐Saxton phase retrieval
algorithm combined with a phase unwrapping step using the CPULSI
phase unwrapper. Each of these approachs will work to constrain the
phase estimates to a set of Zernike coefficients on each iteration of
the blind deconvolution algorithm. Entirely different results may be
obtained by running the full blind deconvolution algorithm without
phase unwrapping and unwrapping the phase at the end, but the phase
will not be constrained on each iteration, so any method not recover-
ing Zernike coefficients on each iteration cannot claim to estimate Zer-

Fig. 4. Image of a 75 µm pinhole back illuminated by a red LED for the in-focus case.

Fig. 5. Image of the PSF simulated using the Rayleigh-Sommerfeld diffraction formula for the positive defocus case.
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nike coefficients iteratively and therefore will not be considered as a
candidate for comparison in this study since the goal of this research
is to create a image recovery algorithm that constrains the phase error
to be parameterized over a set of Zernike polynomials while estimating
the shape of the object.

4.1. Blind deconvolution algorithm

The model for the photo detector array assumes the response of the
detectors is uniform from pixel to pixel as is the bias. In practice non‐
uniform factors should be calibrated out of the measured data to pro-

Fig. 6. Image of the PSF simulated using the Rayleigh-Sommerfeld diffraction formula in the negative defocus case.

Fig. 7. Image of the PSF simulated using the Rayleigh-Sommerfeld diffraction formula for the in-focus case.

Table 1
Aberration coefficients obtained by analyzing the phase error computed from Eq. (5) for the out of focus cases of negative and positive focus images.

Focus Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11

Negative −2.41 −0.01 −0.74 −0.02 −0.03 0.00 0.00 −0.03
Positive 2.09 −0.01 −0.78 −0.02 −0.03 0.00 0.00 −0.03
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vide estimates of the number of photons collected by each element in
the array (Stephen, 2020). The number of photoelectrons measured at
each detector in the array is assumed to be a Poisson random variable
with a mean equal to the sum of the mean number of photons from the
objects in the field of view and the background

The data from these sources is modeled as separate Poisson random
variables such that the data from the objects, dk(z, w,x,y), has the mean
show in Eq. (6).

E½dkðz;w; x; yÞ� ¼ γkoðx; yÞhkðz � x;w� yÞ ð6Þ
In this Equation, (x,y) are coordinates in the object plane, (z,w) are

coordinates in the detector plane, o is the image containing the objects
in the scene, γk is the number of photo‐electrons from optical sources
in the k’th frame of image data out of a total of J frames and hk is the
PSF in the k’th frame. The second set of data. dB(z, w,k) has a mean
equal to the background level as shown in Eq. (7).

E½dBðz;w; kÞ� ¼ Bk ð7Þ
In this equation, Bk is the background level in the k’th frame of

data, which is assumed to be uniform in the field of view on average

and is computed using a median filter. The measured data, d
∼

kðz;wÞ
is also Poisson and is equal to the sum of all both data sets as shown
in Eq. (8).

d
∼

kðz;wÞ ¼ ∑
M

x¼1
∑
M

y¼1
dkðz;w; x; yÞ þ dBðz;w; kÞ ð8Þ

An Expectation‐Maximization approach is adopted for computing
the image of an unknown object and the associated point spread func-
tions from multiple frames of camera data (Schulz, 1993; Dempster
et al., 1977; Shepp and Vardi, 1982). This procedure begins by identi-
fying the joint log‐likelihood of the two data sets, dk(z, w,x,y) and dB(z,
w,k). Since these data are assumed to be Poisson and both statistically
independent from one another as well as statistically independent
from pixel to pixel, the joint log‐likelihood, L(o,h,γkk), can be
expressed using the following equation, which assumes that both the
object and the PSF’s each sum to one and the data in each pixel in
every frame are statistically independent from one another:

Lðo; hk; γkÞ ¼ ∑
J

k¼1
∑
M

z¼1
∑
M

w¼1
∑
M

x¼1
∑
M

y¼1
dkðz;w; x; yÞlnðγkoðx; yÞhkðz � x;w� yÞÞ½ �

� ∑
L

k¼1
∑
M

z¼1
∑
M

w¼1
∑
M

x¼1
∑
M

y¼1
lnðdkðz;w; x; yÞ!Þ Þ½ � � ∑

N

k¼1
γk ð9Þ

In order to simplify the solution process, the log‐likelihood will be
maximized with respect to the image o(x,y), the photon‐count value in
each frame, k and the PSF in each frame hk, then the conditional
expected value of the result will be computed given the measured data

d
∼

kðz;wÞ in a way similar to other blind deconvolution algorithms
(Schulz, 1993; Dempster et al., 1977).

The derivative of L(o,hk,γk), with respect to γk is computed as
shown in Eq. (10) assuming that both the object, o and PSFs, hk sum
to one.

dLðo; hk; gkÞ
dγk

¼ ∑
M

z¼1
∑
M

w¼1
∑
M

x¼1
∑
M

y¼1

dkðz;w; x; yÞ
γk

� 1 ð10Þ

A second derivative yields a strictly negative result, implying that a
solution for Eq. (10) when the derivative is set equal to zero will
produce a maximum of the log‐likelihood function. The solution for
γk that maximizes L(o,hk,γk) is shown in Eq. (11). The conditional
mean of the estimate given the measured data is computed to show
the form of the estimate obtained from the Expectation‐
Maximization process.

γk ¼ ∑
M

z¼1
∑
M

w¼1
∑
M

x¼1
∑
M

y¼1
E½dkðz;w; x; yÞj d

∼

kðz;wÞ� ð11Þ

The expectation step shown in Eq. (11) is necessary since the data
described in Eq. (6) is not directly observable but is contained within

the observed data, d
∼

kðz;wÞ as shown in Eq. (8). The conditional expec-
tation has been solved by Shepp and Vardi and is substituted into Eq.
(11) to yield the following result (Shepp and Vardi, 1982).

γnewk ¼ γoldk ∑
M

z¼1
∑
M

w¼1

∑M
x¼1∑

M
y¼1o

oldðx; yÞholdk ðz � x;w� yÞd
∼

kðz;wÞ
∑M

x¼1∑
M
y¼1ooldðx; yÞholdk ðz � x;w� yÞ þ Bk

ð12Þ

In this equation a variable with the old superscript denotes a quan-
tity computed with estimates obtained from the previous iteration of
the EM algorithm. γknew denotes the new estimate obtained from the
EM algorithm for the number of photons present in the k’th data frame.
In this way the algorithm is implemented by the user providing a start-
ing estimate which is updated from iteration to iteration via Eq. (12).
One obvious way to initialize the estimate for γk is to subtract the med-

ian value, Bk, from the image, d
∼

kðz;wÞ, and sum the result over all
pixels.

In order to solve for the object function, o(x,y), The derivative of L
(o,hk,γk), with respect to a specific point in the image o(xo,yo) is com-
puted as shown in Eq. (13) assuming that the PSF, hk sums to one. The
method of Lagrange is implemented in order to force the object to sum
to one. The derivative of the constraint function, θ∑M

x¼1∑
M
y¼1oðx; yÞ is

subtracted from the derivative of the log‐likelihood function, where
θ is the Lagrange multiplier (Schulz, 1993).

@Lðo; hk; gkÞ
@oðxo; yoÞ

� @θ∑M
x¼1∑

M
y¼1oðx; yÞ

@oðxo; yoÞ
¼ ∑

M

z¼1
∑
M

w¼1

dkðz;w; xo; yoÞ
oðxo; yoÞ

� θ ð13Þ

The solution for o(xo,yo) that maximizes L(o,hk,γk) subject to the
constraint that o(x,y) sums to one is shown in Eq. (14) by setting Eq.
(13) equal to zero and solving for o(xo,yo) . The conditional mean of
the estimate given the measured data is computed to show the final
form of the estimate obtained from the Expectation‐Maximization
process.

oðx0; yoÞnew ¼ ooldðxo; yoÞ ∑
L

k¼1
∑
M

z¼1
∑
M

w¼1

� holdk ðz � xo;w� yoÞd
∼

kðz;wÞ
θ∑M

x¼1∑
M
y¼1ooldðx; yÞholdk ðz � x;w� yÞ þ Bk

ð14Þ

In this paper the image o(x,y) is initialized as being equal to one
within a circular region corresponding to the size of the aperture used
to generate the source for the images. The Lagrange multiplier serves
to provide a factor that can be adjusted to force the image to sum to
one. It is utilized this way in the algorithm, being applied as the appro-
priate scale factor to force this condition on each iteration of the
algorithm.

Finally, the solution for the PSF is obtained by computing the
derivative of L(o,hk,γk), with respect to a specific point in the PSF hk(-
xo,yo) as shown in Eq. (15) assuming that the object, o(x,y) sums to
one. The method of Lagrange is implemented once again in order to
force the PSF to sum to one. The derivative of the constraint function,
θk∑

M
x¼1∑

M
y¼1hkðx; yÞ is subtracted from the derivative of the log‐

likelihood function, where θk is the Lagrange multiplier.

@Lðo; hk; gkÞ
@hkðxo; yoÞ

� @θk∑
M
x¼1∑

M
y¼1hkðx; yÞ

@hkðxo; yoÞ

¼ ∑
M

z¼1
∑
M

w¼1

dkðz;w; z � xo; z � yoÞ
hkðxo; yoÞ

� θk ð15Þ

The solution for hk(xo,yo) that maximizes L(o,hk,γk) subject to the
constraint that hk(x,y) sums to one is shown in Eq. (16) by setting
Eq. (15) equal to zero and solving for hk(xo,yo). The conditional mean
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of the estimate given the measured data is computed to show the final
form of the estimate obtained from the Expectation‐Maximization
process.

hnewk ðx0; yoÞ ¼ holdk ðxo; yoÞ ∑
M

z¼1
∑
M

w¼1

� ooldk ðz � xo;w� yoÞd
∼

kðz;wÞ
θk∑

M
x¼1∑

M
y¼1ooldðx; yÞholdk ðz � x;w� yÞ þ Bk

ð16Þ

In this paper the PSFs hk(x,y) are initialized as being equal to a PSF
generated with a single defocus aberration of Z4 equal to 1 or −1,
depending on whether the image in the k’th frame is collected within
the positive or negative focus position. The frame taken at the in‐focus
position is initialized with a positive focus aberration Z4 = 1.

At each iteration γknew,hknew, and onew are computed from old esti-
mates. Before going into the next iteration, the phase retrieval step
described in the next subsection is executed.

4.2. Phase retrieval algorithm

The ZIPPER approach used to recover the pupil field from hknew is a
modification of the Gerchberg‐Saxton phase retrieval algorithm. Enter-
ing each iteration, not only is hkold known, but also the Zernike coeffi-
cients [αk4old, αk,5old, αk,6old,…., αk,Nold] associated with the k’th PSF. In this
paper, N is chosen to be 11, to allow for reconstruction of the phase,
but to provide ample constraints to prevent the PSFs from matching
the noise features (Zingarelli and Cain, 2013). The phase ϕk(u,v) is
computed from (N‐3) Zernike coefficients via the formula,

ϕold
k ðu; vÞ ¼ ∑

N

i¼4
αold
k;i Ziðu; vÞ ð17Þ

The first three Zernike terms are not considered as they don’t affect
the PSF shape (Goodman, 1968). This pupil phase is combined with
the known clear aperture function A(u,v) to form an estimate of the
sampled detector field, f kvia the Eq. (18) (Gerchberg and Saxton,
1972);

f kðx; yÞ ¼ ∑
M

u¼1
∑
M

v¼1
Aðu; vÞejϕkðu;vÞej2πðuxþvyÞ=M ð18Þ

The amplitude of this field is replaced with the square root of hknew

to produce a new detector field, f
∼

k, via Eq. (19) (Gerchberg and
Saxton, 1972);

f
∼

kðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hnewk ðx; yÞ

q
ejargðf kðx;yÞÞ ð19Þ

In this Equation arg() stands for the angle of the complex number
that is its argument. After this replacement, a new pupil field, gk(u,
v) is computed from Eq. (20) (Gerchberg and Saxton, 1972);

gkðu; vÞ ¼ ∑
M

x¼1
∑
M

y¼1
f
∼

kðx; yÞe�j2πðuxþvyÞ=M ð20Þ

Now, gk(u,v) is the field in the pupil and we wish to replace its mag-
nitude with the known clear aperture function, A(u,v). To do this we
must recover the angle of the complex field at every point (u,v) in
the pupil plane in much the same was as we did with the field in
the detector f k(x,y) by using the arg() function (Gerchberg and
Saxton, 1972).

The modification proposed to the Gerchberg‐Saxton algorithm is to
take the argument of the field gk(u,v) times the conjugate of phasor
constructed from the old Zernike coefficients as shown in Eq. (21).

ϕ
∼

kðu; vÞ ¼ argðgkðu; vÞe�jϕold
k ðu;vÞÞ ð21Þ

In this Equation, ϕ
∼

kðu; vÞ represents the phase difference between
the new phase recovered by the Gerchberg‐Saxton error reduction
algorithm in the pupil plane and the original phase in the pupil plane

from the previous iteration of the Gerchberg‐Saxton algorithm. It has
the benefit of only representing the phase change accomplished by
the Gerchberg‐Saxton algorithm since the last iteration, thus poten-
tially making it easier to unwrap, since the changes are most likely
smaller than the total phase of the pupil field.

There are two phase unwrapping algorithms explored in this paper.
The first is the CPULSI (Calibrated Phase Unwrapping based on Least‐
Squares and Iterations) phase unwrapper which is used together with
the Gerchberg‐Saxton algorithm in the baseline approach (Xia et al.,

2016). It produces an unwrapped phase, ϕ
∼ 0
kðu; vÞ from the phase

ϕ
∼

kðu; vÞ and the known clear pupil function A(u,v). The new approach
used as part of the ZIPPER method, uses a gradient descent algorithm
for computing Zernike coefficients and accomplishing the phase wrap-
ping (Bartelt, 2020). The model for the phase is,

ϕ
∼ 0
kðu; vÞ ¼ ϕ

∼

kðu; vÞ þ 2πKðu; vÞ
In this Equation, K is the wrapping function that relates the

unwrapped phase to the wrapped phase. In order to estimate K, a mean
squared error cost function is constructed.

ɛk ¼ ∑
M

u¼1
∑
M

v¼1
ðϕ
∼ 0
kðu; vÞ � ϕ

∼

kðu; vÞ � 2πKðu; vÞÞ
2

ð22Þ

The first step in unwrapping the phase is to compute the Zernike
coefficients [α0

k,4, α0
k,5, α0

k,6,…., α0
k,N] from the potentially wrapped

phase, ϕ
∼

kðu; vÞ −2πK(u,v), using the method found in (Zingarelli and
Cain, 2013). These Zernike coefficients are used to compute the cur-

rent estimate of the unwrapped phase, ϕ
∼ 0
kðu; vÞ. In the first iteration,

K is assumed to be zero everywhere. This unwrapped phase estimate
is then substituted into Eq. (22) and the derivative of the error, εk, with
respect to a single point in the pupil plane, K(uo,vo), is computed,

@ɛk
@Kðuo; voÞ ¼ �4π ∑

M

u¼1
∑
M

v¼1
ðϕ
∼ 0
kðu; vÞ � ϕ

∼

kðu; vÞ � 2πKðu; vÞÞ ð23Þ

If the absolute value of the gradient at each pixel in the pupil
exceed π/2, then K is incremented by 1 or −1 depending on the sign
of the derivative. With the new estimate of K, the process is repeated as
shown in Fig. 8. It continues till the new K is equal to the old K. At that
point the unwrapped phase is computed.

The unwrapped phase, ϕ
∼ 0
kðu; vÞ, is then decomposed into Zernike

coefficients to recover [βk,4, βk,5, βk,6,…., βk,N], which are the Zernike

coefficients associated with the differential phase ϕ
∼

kðu; vÞ: The new
Zernike coefficients [αk,4new = αk,4old + βk,4, αk,5new = αk,5old + βk,5, αk,6new = α-
k,6

old + βk,6,…., αkk,Nnew = αk,Nnew + βk,N] are then carried into the next iter-
ation as the old Zernike coefficient estimates and the process repeats
itself.

In this paper, the phase retrieval process was repeated 10 times for
every iteration of the blind deconvolution algorithm. Once the Zernike
coefficients are updated 10 times, they are used to compute the final
version of the PSF, h’knew (x,y), that is used in the next iteration via
Eq. (24) (Goodman, 1968).

hnewk ðx; yÞ ¼ ∑
M

u¼1
∑
M

v¼1
Aðu; vÞej∑N

i¼1α
new
k;i Ziðu;vÞe�j2πðuxþvyÞ=M

����
����
2

ð24Þ

This new PSF is used to enter the next iteration and becomes the
old PSF as the new Zernike coefficients become the old ones as illus-
trated in Fig. 8. The iterations proceed until the root mean squared dif-
ference between the new Zernike coefficients and the old ones over all
frames, as shown in Eq. (25), is less than a threshold, which was set at
5e‐4 in this paper. This threshold was chosen to be an order of magni-
tude lower than the number of significant figures reported in the
results for the Zernike coefficients so as to be small enough to be
inconsequential. If an algorithm failed to meet the convergence crite-
rion, then it would terminate after 1000 iterations.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
K

k¼1
∑
N

i¼4
αnew
k;i � αold

k;i

� �2
=ðK N � 3ð ÞÞ

s
ð25Þ

5. Results

This section reports results obtained from processing image data
described in Section 2 of this paper. First, 100 negative and positive

defocus images, of which samples are shown in Figs. 2 and 3, were
input into the algorithm and processed two different ways. One
way was to use the ZIPPER algorithm with the new phase unwrap-
per, unwrapping the differential phase on every iteration of the Mod-
ified Gerchberg Saxton algorithm. The second method was to use
traditional Gerchberg‐Saxton phase retrieval and unwrap the phase
after every iteration using the CPUlSI phase unwrapper (Xia et al.,
2016).

Fig. 8. Figure showing the flow of the combined blind deconvolution and phase retrieval algorithm.

Table 2
Average aberration coefficients obtained by analyzing the phase error computed using the two algorithmic approaches for the negative defocus image. The true
Zernike coefficients were obtained from Table 1. The RMS error of the ZIPPER method is 0.16 waves. The GS-CPULSI method has an RMS coefficient error of 1.78
waves, almost 10 times higher than the ZIPPER method.

Focus Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11

True −2.41 −0.01 −0.74 −0.02 −0.03 0.00 0.00 −0.03
ZIPPER −2.14 −0.01 −0.69 −0.06 0.07 0.03 0.02 0.29
GS + CPULSI −1.05 0.01 −0.15 −0.28 0.54 −0.35 0.04 2.27

Table 3
Average aberration coefficients obtained by analyzing the phase error computed using the two algorithmic approaches for the nositive defocus images. The true
Zernike coefficients were obtained from Table 1. The RMS error of the ZIPPER method is 0.1 waves. The GS-CPULSI method has an RMS coefficient error of 0.96
waves, almost 10 times higher than the ZIPPER method.

Focus Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11

True 2.09 −0.01 −0.78 −0.02 −0.03 0.00 0.00 −0.03
ZIPPER 2.11 −0.02 −0.70 −0.09 0.07 0.01 0.01 −0.31
GS + CPULSI 1.04 −0.61 −0.25 0.83 0.13 0.14 −0.09 −2.26

Table 4
Aberration coefficient standard deviation obtained by analyzing the phase error computed using the two algorithmic approaches for all 200 images used to create the
average images shown in Fig. 2 and 3. The ZIPPER algorithm possesses an average of nearly 1/10 the standard deviation of the GS-CPULSI method.

Focus Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11

ZIPPER 0.05 0.02 0.06 0.01 0.02 0.01 0.01 0.16
GS + CPULSI 0.30 0.47 0.28 0.47 0.50 0.26 0.16 0.43
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Tables 2 and 3 show the average result obtained by the algorithms
for each Zernike coefficient.

Table 4 reports the aberration coefficient variance when processing
the 200 frames of image data. The frames were processed 2 at a time,
J = 2, with one positive defocus image and one negative defocus
image. 100 sets of 2 frames were processed to produce coefficients
for each set.

Figs. 9 and 10 show the recovered unwrapped phase across the
pupil for the negative and positive focus positions side by side with
their wrapped phase counterparts using the ZIPPER algorithm. These
images demonstrate the significant phase wrapping present in the
pupils of the imaging systems.

The ZIPPER algorithm provides the most precise and accurate
phase retrieval approach of the two approaches studied in this paper.
Fig. 11 shows the image of the pinhole reconstructed from the algo-
rithm as well.

6. Conclusions

The ZIPPER algorithm achieved superior performance over tradi-
tional GS phase retrieval combined with a state‐of‐the‐art phase
unwrapping algorithm when utilized in a blind deconvolution algo-

Fig. 9. Images of the unwrapped and wrapped phase recovered from the averaged positive defocus image. The color bar on the side is in units of radians
demonstrating significant potential for phase wrapping.

Fig. 11. Image of the reconstructed image of the pinhole.

Fig. 10. Images of the unwrapped and wrapped phase recovered from the averaged negative defocus image. The color bar on the side is in units of radians
demonstrating significant potential for phase wrapping.

S.C. Cain Results in Optics 4 (2021) 100085

9



rithm and attempting to unwrap the phase at every iteration. This was
achieved by producing differential phase estimates from each iteration
of the GS algorithm combined with the incremental progression of the
blind deconvolution algorithm. This allowed the new Zernike‐based
phase unwrapper to “keep up” with the changes, all the while accumu-
lating phase changes that would, if taken all together, cause wrapping
around the unit circle.

The new Zernike‐based phase retrieval algorithm also out‐
performed the CPULSI phase unwrapper during the incremental phase
retrieval steps. This is most likely due to the new unwrapper’s design
for computing continuous phase functions being based on the Zernike
polynomials themselves as opposed to satisfying other continuity
constraints.

Future research will apply the new algorithm for recovering images
in single‐frame blind deconvolution scenarios, since the phase is care-
fully constrained in the pupil, the hope is that the trivial solution to the
blind deconvolution problem can be avoided through this
parameterization.
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