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Abstract: Generalizing our prior work on scalar multi-Gaussian (MG) distributed optical fields, we
introduce the two-dimensional instantaneous electric-field vector whose components are jointly MG
distributed. We then derive the single-point Stokes parameter probability density functions (PDFs) of
MG-distributed light having an arbitrary degree and state of polarization. We show, in particular, that
the intensity contrast of such a field can be tuned to values smaller or larger than unity. We validate
our analysis by generating an example partially polarized MG field with a specified single-point
polarization matrix using two different Monte Carlo simulation methods. We then compute the joint
PDFs of the instantaneous field components and the Stokes parameter PDFs from the simulated MG
fields, while comparing the results of both Monte Carlo methods to the corresponding theory. Lastly,
we discuss the strengths, weaknesses, and applicability of both simulation methods in generating
MG fields.

Keywords: partially polarized light; random light; speckle; statistical optics

1. Introduction

Light speckle is one of the classic areas of study in statistical optics manifesting
itself via spatial intensity randomization and being the consequence of field interference.
Observed shortly after the invention of the laser, speckle has attracted the attention of the
world’s leading optical scientists. Speckle research began in the 1960s and 70s with the
seminal works of Goodman and Dainty [1–4]. Based on physical arguments regarding its
origins, the instantaneous electromagnetic field comprising speckle is traditionally assumed
to be stationary and obey Gaussian statistics. As a result, the probability density functions
(PDFs) of all physically meaningful polarization metrics—Stokes parameters [5–9], degree
of polarization [10], polarization ellipse parameters [11]—have been derived in closed
form. Moreover, with knowledge of the second-order, two-point correlation function
of the source/scatterer, the various statistics of the Gaussian field can be examined on
propagation/scattering [12,13]. In addition, the study of speckle has led to insights in
singular optics on topics such as the nature and behavior of phase, polarization, and
coherence vortices [14–19].

For a long time, speckle was considered to be a deleterious effect in coherent imaging
systems, and multiple methods have been developed for its mitigation, i.e., reducing its
contrast, including wavelength, angle, and polarization diversity (see Chapter 6 of Ref. [18]
and Chapter 10 of Ref. [20]). In the past few years, there has been interest in engineered,
non-Gaussian speckle for use in microscopy and imaging applications [21–23]. With these
potential applications in mind, we recently presented a new random variable [termed
multi-Gaussian (MG)] for modeling stochastic optical fields, whose PDF was an alternating
series of weighted Gaussian PDFs [24]. The shape of the MG PDF could be varied from
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cusped to flat-topped by changing the value of a single parameter M (related to the number
of terms in the series)—M < 1 for cusped PDFs, M = 1 reduces to the Gaussian PDF, and
M > 1 for flat-topped distributions. This feature of the MG PDF, being a suitable sum of
Gaussian PDFs, made it possible and, indeed, very affordable, to derive, in closed form,
the PDF of intensity for scalar MG-distributed fields and consequently, determine speckle
moments such as the contrast. Because of the control over the PDF afforded by M, the
speckle contrast could be varied over a wide range, making stochastic MG fields potentially
useful in engineered speckle applications.

In this paper, we generalize our prior work on scalar MG light to electromagnetic two-
dimensional fields, including all cases of partial polarization. We start with the derivation
of the bivariate complex MG PDF for characterization of the two mutually orthogonal
components of the instantaneous electric field. We then find the moments of partially
polarized MG speckle, including the speckle contrast, before concluding the theoretical
analysis with derivations of the instantaneous Stokes parameter PDFs. To validate our
analysis, we generate, in simulation, realizations of a generic electromagnetic MG speckle
field using two different approaches. We then compute joint PDFs of the electric field
components and the Stokes parameter PDFs and compare them to the corresponding
theory. Lastly, we conclude our paper with a brief summary of the key results.

2. Theory
2.1. Bivariate Complex MG PDF

Let us start with the multivariate complex Gaussian distribution introduced by Wood-
ing and Goodman [25,26]. Here, we specialize its form to describe a zero-mean, circular-
complex-Gaussian (CCG) distributed [18], two-dimensional, stochastic electromagnetic
field:

pEx ,Ey

(
Ex, Ey

)
=

exp
(
−E†J−1E

)
π2 det(J)

, (1)

where † is the Hermitian adjoint (conjugate transpose), J is the polarization matrix (also
known as the coherency matrix) [9,18,27–31], and E =

[
Ex Ey

]T (superscript T is the
transpose).

Following the analysis presented in Ref. [24], let the function f be

f (E) =
1

π2 det(J)

{
1−

[
1− exp

(
−E†J−1E

)]M
}

, (2)

where M > 0 is the shape parameter. Equation (2) can be written as a series by using
Newton’s generalization of the binomial theorem, namely,

f (E) =
1

π2 det(J)

∞

∑
m=1

(M)m
m!

(−1)m−1 exp
(
−mE†J−1E

)
, (3)

where (M)m is the Pochhammer symbol (falling factorial). If M is an integer, the corre-
sponding series is finite with all terms greater than M equal to zero. With some simple
algebra, we can write Equation (3) as a weighted sum of complex Gaussian distribution
functions [see Equation (1)], viz.,

f (E) =
∞

∑
m=1

(M)m
m!

(−1)m−1

m2

exp
[
−E†(J/m)−1E

]
π2 det(J/m)

. (4)

To be a valid PDF, f must integrate to unity and be non-negative for all E. The
latter condition is clearly satisfied [see Equation (2)]; normalizing Equation (4) satisfies the
former:

pMG
Ex ,Ey

(
Ex, Ey

)
=

f (E)∫
C
∫
C f (E)dExdEy

, (5)
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where the integrals with respect to Ex and Ey, in both cases, are taken over the entire
complex plane. The denominator in Equation (5) is

∫
C

∫
C

f (E)dExdEy =
∞

∑
m=1

(M)m
m!

(−1)m−1

m2

∫
C

∫
C

exp
[
−E†(J/m)−1E

]
π2 det(J/m)

dExdEy

=
∞

∑
m=1

(M)m
m!

(−1)m−1

m2

= C3/2(M),

(6)

where the normalization constant C3/2(M) is consistent with the general definition of
Cn(M) used in Ref. [24], viz.,

Cn(M) =
∞

∑
m=1

(M)m
m!

(−1)m−1

mn√m
. (7)

The bivariate complex MG PDF is therefore

pMG
Ex ,Ey

(
Ex, Ey

)
=

1
C3/2(M)

∞

∑
m=1

(M)m
m!

(−1)m−1

m2

exp
[
−E†(J/m)−1E

]
π2 det(J/m)

. (8)

In the case of completely polarized light, J becomes singular and statistics must be com-
puted by taking the limit as det(J)→ 0.

Before proceeding, we note that the bivariate complex MG PDF given in Equation (8)
is not equal to the corresponding multivariate real MG PDF [Equation (30)] in Ref. [24]. In
fact, when the number of random variables is greater than two, Equation (30) in Ref. [24] is
an invalid PDF, as it is negative for certain parameter values. It is important to highlight,
however, that the scalar MG speckle analysis in Ref. [24] used the bivariate real MG PDF,
and is therefore still valid. This observation is of physical importance for possibly modeling
three-dimensional electromagnetic MG speckle fields, i.e., fields having three non-trivial
mutually orthogonal electric field components. Such fields appear in confocal microscopy
within the focal regions of lenses [32], and in scanning microscopy in close proximity to
sources or scatterers [33].

2.2. The MG Polarization Matrix and Speckle Contrast

The bivariate complex MG PDF in Equation (8) is expressed in terms of Gaussian
moments, namely, the polarization matrix J. Here, we derive the MG polarization matrix in
terms of Gaussian J. We then use this result to derive the contrast for electromagnetic MG
speckle.

The polarization matrix J is defined as [9,18,27–31]

J =
[

Jxx Jxy
J∗xy Jyy

]
=

〈|Ex|2
〉 〈

ExE∗y
〉

〈
E∗x Ey

〉 〈∣∣Ey
∣∣2〉
, (9)

where the angular brackets are ensemble averages. We can compute the second-order field
moments in Equation (9) quite easily using Equation (8). Indeed, because Equation (8)
contains the bivariate complex Gaussian PDF, we see at once that the MG polarization
matrix is

JMG = J
1

C3/2(M)

∞

∑
m=1

(M)m
m!

(−1)m−1

m3 = J
C5/2(M)

C3/2(M)
. (10)
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For future analysis, it will be convenient to define a symbol for the ratio of normalization
constants. Let ζn(M) be

ζn(M) =
C3/2+n(M)

C3/2(M)
, (11)

such that, C5/2(M)/C3/2(M) = ζ1(M). Since the (average) Stokes parameters are linear
combinations of the polarization matrix elements [9,18,27–31], the MG Stokes parame-
ters are 〈

SMG
i

〉
=
〈

SG
i

〉
ζ1(M), (12)

where i = 0, 1, 2, 3. Lastly, the degree of polarization P , angle of polarization ψ, and
ellipticity angle χ are

P =

√
1− 4

det(J)
tr2(J)

ψ =
1
2

arctan
( Jxy + J∗xy

Jxx − Jyy

)

χ =
1
2

arcsin

 j
(

Jxy − J∗xy

)
P tr(J)

,

(13)

where tr(J) = Jxx + Jyy is the trace of J [9,29–31,34,35]. Because of the ratios in these
quantities, the MG polarization ellipse parameters are equal to their Gaussian counterparts.
The same is also true for the normalized Stokes parameters 〈si〉 = 〈Si〉/〈S0〉, where
i = 0, 1, 2, 3, that are also frequently used.

Proceeding to the speckle contrast,

C =

√
〈I2〉 − 〈I〉2

〈I〉 , (14)

where I = |Ex|2 +
∣∣Ey
∣∣2 is the instantaneous intensity [18,31]. We have already found the

average intensity 〈I〉, namely,

〈I〉 = tr
(

JMG
)
= tr(J)ζ1(M). (15)

We can find the second-moment of intensity using Equation (8) and the Gaussian moment
theorem [18,31]. First,

〈
I2〉 is〈
I2
〉
=
〈
|Ex|4

〉
+
〈∣∣Ey

∣∣4〉+ 2
〈
|Ex|2

∣∣Ey
∣∣2〉. (16)

For Gaussian Ex and Ey, each one of these fourth-order moments simplifies into the sum of
products of second-order moments. Because its PDF contains the Gaussian distribution
function, a similar thing happens for MG-distributed fields. For example, the joint moment
in Equation (16) becomes:

〈
|Ex|2

∣∣Ey
∣∣2〉 =

1
C3/2(M)

∞

∑
m=1

(M)m
m!

(−1)m−1

m2

∫
C

∫
C
|Ex|2

∣∣Ey
∣∣2 exp

[
−E†(J/m)−1E

]
π2 det(J/m)

dExdEy.

(17)
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We can either evaluate the integrals directly or apply the Gaussian moment theorem
to obtain

〈
|Ex|2

∣∣Ey
∣∣2〉 =

1
C3/2(M)

∞

∑
m=1

(M)m
m!

(−1)m−1

m2

(
Jxx

m
Jyy

m
+

∣∣Jxy
∣∣2

m2

)
=
(

Jxx Jyy +
∣∣Jxy

∣∣2)ζ2(M).

(18)

The other moments in Equation (16) can be derived from this result:〈
I2
〉
= 2ζ2(M)

(
J2
xx + J2

yy + Jxx Jyy +
∣∣Jxy

∣∣2)
= 2ζ2(M)

[
tr2(J)− det(J)

]
.

(19)

Substituting Equations (15) and (19) into Equation (14) and simplifying yields

C =

√
tr2(J)

[
2ζ2(M)− ζ2

1(M)
]
− 2ζ2(M)det(J)

ζ1(M) tr(J)
. (20)

We can simplify this expression further using the definition for P given in Equation (13), i.e.,
det(J) = tr2(J)

(
1−P2)/4. Inserting this into Equation (20) and after some basic algebra,

we obtain

C = 1√
2

√
ζ2(M)(3 + P2)− 2ζ2

1(M)

ζ1(M)
. (21)

It is evident from the above expression that the electromagnetic MG speckle contrast
depends only on the degree of polarization P and is independent of the state of polarization
(characterized by parameters ψ and χ) for any M. Equation (21) can be shown to vary
between √

3
2

ζ2(M)

ζ2
1(M)

− 1 ≤ C ≤
√

2
ζ2(M)

ζ2
1(M)

− 1 (22)

for P = 0 and P = 1, respectively. If M = 1, Equation (21) simplifies to the contrast for
electromagnetic Gaussian speckle given in Ref. [18], viz.,

C =
√

1 + P2

2
, (23)

which is bounded between 1/
√

2 ≤ C ≤ 1—the limits corresponding to unpolarized and
polarized speckle, respectively.

Figure 1 shows plots of the electromagnetic MG speckle contrast versus the shape
parameter M and degree of polarization P . The left surface plot [Figure 1a] displays C
for M ≤ 1, while the right plot [Figure 1b] displays C for M ≥ 1. The speckle contrast for
partially polarized CCG electromagnetic fields is therefore the front-right and back-left
surface edges in (a) and (b), respectively. All values of the contrast in (b) are C ≤ 1; C > 1
can only occur when M < 1.

Figure 1c,d show the MG contrast as M → 0 and M → ∞, numerically computed
(extrapolated), respectively. Furthermore, plotted on (c) and (d), for ease of comparison,
is the Gaussian speckle contrast [see Equation (23)]. We estimated the speckle contrast as
M → 0 by evaluating Equation (21) from M = 0.001 to M = 1 and P = 0 to P = 1 in
5002 equal steps across the two-dimensional space. We then found the coefficients of the
following fourth-order polynomial that resulted in the best fit to the speckle contrast:

C(M,P) ≈
4

∑
i=0

4

∑
j=0

aij MiP j. (24)
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Lastly, we used Equation (24) to predict C at M = 0. We used a similar process to estimate
C as M→ ∞. We first evaluated Equation (21) from M = 50 to M = 1 and P = 0 to P = 1
again in 5002 equal steps. We then found the coefficients of the polynomial in Equation (24)
that yielded the best fit to C when plotted versus 1/M and P. Lastly, we used the resulting
polynomial to predict C when 1/M = 0.

Figure 1. Contrast of partially polarized MG speckle versus shape parameter M and degree of
polarization P : (a) M ≤ 1, (b) M ≥ 1, (c) M→ 0, and (d) M→ ∞.

Summarizing the main results of this section, we state that electromagnetic MG speckle
fields allow for fine control over the speckle contrast. The range of MG C is much larger
than that of Gaussian speckle fields for the same value of P , and the polarization state is
unaffected.

2.3. Instantaneous Stokes Parameter PDFs for MG Speckle

Following the approach used by Brosseau et al. to derive the Stokes parameter PDFs
for CCG electromagnetic fields [6,9], we first find the MG Stokes parameter characteris-
tic functions using Equation (8). Then, we inverse Fourier transform the characteristic
functions to find the PDFs.

2.3.1. S0

Starting with S0, the characteristic function is

〈exp(jωS0)〉 =
∫ ∞

0
exp(jωS0)pS0(S0)dS0

=
∫
C

∫
C

exp
(

jω|Ex|2
)

exp
(

jω
∣∣Ey
∣∣2)pMG

Ex ,Ey

(
Ex, Ey

)
dExdEy.

(25)
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Substituting Equation (8) into Equation (25) and bringing the integrals inside the sum
produces

〈exp(jωS0)〉 =
1

C3/2(M)

∞

∑
m=1

(M)m
m!

(−1)m−1

m2

1
π2 det(J/m)

∫
C

∫
C

exp
{
−E†

[
(J/m)−1 − jωI

]
E
}

dExdEy,

(26)

where I is the identity matrix. The above integrals evaluate to [26,36]∫
C

∫
C

exp
{
−E†

[
(J/m)−1 − jωI

]
E
}

dExdEy = π2 det
{[

(J/m)−1 − jωI
]−1
}

. (27)

Substituting this into Equation (26) and simplifying using det
(
A−1) = 1/ det(A) and

det(A)det(B) = det(AB) yields the characteristic function for S0:

〈exp(jωS0)〉 =
1

C3/2(M)

∞

∑
m=1

(M)m
m!

(−1)m−1

m2
1

det(I− jωJ/m)
. (28)

The PDF for S0 can be found by inverse Fourier transforming Equation (28), namely,

pS0(S0) =
1

2π

∫ ∞

−∞
〈exp(jωS0)〉 exp(−jωS0)dω

=
1

C3/2(M)

∞

∑
m=1

(M)m
m!

(−1)m−1

m2
1

2π

∫ ∞

−∞

exp(−jωS0)

det(I− jωJ/m)
dω.

(29)

The determinant in the denominator of the integrand is easy to compute:

det(I− jωJ/m) = 1− j
ω

m
tr(J)− ω2

m2 det(J), (30)

where tr(J) =
〈
SG

0
〉
. The integrand in Equation (29) has two simple poles located at the

roots of Equation (30):

det(I− jωJ/m) = −det(J/m)

[
ω + j

m
2

〈
SG

0
〉

det(J)
(1 + P)

][
ω + j

m
2

〈
SG

0
〉

det(J)
(1−P)

]
, (31)

where P is the degree of polarization given in Equation (13). Both poles are in the lower-
half complex ω plane. In addition, since S0 is always positive, the integral in Equation (29)
converges when the contour is closed in the lower-half ω plane. Applying Cauchy’s integral
theorem and formula, the integral in Equation (29) evaluates to

1
2π

∫ ∞

−∞

exp(−jωS0)

det(I− jωJ/m)
dω

=
m〈

SG
0
〉
P

{
exp

[
−m

2

〈
SG

0
〉

det(J)
(1−P)S0

]
− exp

[
−m

2

〈
SG

0
〉

det(J)
(1 + P)S0

]}
.

(32)

Substituting det(J) =
〈
SG

0
〉2(1−P2)/4 into the above expression and then inserting

Equation (32) back into Equation (29) yields the final result:

pS0(S0) =
1

C3/2(M)

∞

∑
m=1

(M)m
m!

(−1)m−1

m

1〈
SG

0
〉
P

{
exp

[
− 2mS0〈

SG
0
〉
(1 + P)

]
− exp

[
− 2mS0〈

SG
0
〉
(1−P)

]}
.

(33)
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2.3.2. S1

The characteristic function for S1 is

〈exp(jωS1)〉 =
∫ ∞

−∞
exp(jωS1)pS1(S1)dS1

=
∫
C

∫
C

exp
(

jω|Ex|2
)

exp
(
−jω

∣∣Ey
∣∣2)pMG

Ex ,Ey

(
Ex, Ey

)
dExdEy.

(34)

Substituting Equation (8) into Equation (34) and bringing the integrals inside the sum
produces

〈exp(jωS1)〉 =
1

C3/2(M)

∞

∑
m=1

(M)m
m!

(−1)m−1

m2

1
π2 det(J/m)

∫
C

∫
C

exp
(
−E†

{
(J/m)−1 − jω

[
1 0
0 −1

]}
E
)

dExdEy.

(35)

Referring back to Equation (27), Equation (35) simplifies to

〈exp(jωS1)〉 =
1

C3/2(M)

∞

∑
m=1

(M)m
m!

(−1)m−1

m2

{
det
(

I− jω
1
m

J
[

1 0
0 −1

])}−1

. (36)

The PDF for S1 is found by inverse Fourier transforming Equation (36):

pS1(S1) =
1

2π

∫ ∞

−∞
〈exp(jωS1)〉 exp(−jωS1)dω

=
1

C3/2(M)

∞

∑
m=1

(M)m
m!

(−1)m−1

m2

1
2π

∫ ∞

−∞
exp(−jωS1)

{
det
(

I− jω
1
m

J
[

1 0
0 −1

])}−1

dω,

(37)

where

det
(

I− jω
1
m

J
[

1 0
0 −1

])
= 1− j

ω

m
(

Jxx − Jyy
)
+

ω2

m2 det(J)

=
det(J)

m2

(
ω2 − j

m
〈
SG

1
〉

det(J)
ω +

m2

det(J)

)
.

(38)

Note that Jxx − Jyy =
〈
SG

1
〉
. The integrand in Equation (37) has two simple poles at the

roots of Equation (38), viz.,

det
(

I− jω
1
m

J
[

1 0
0 −1

])
=

det(J)
m2 ∏

+,−

{
ω− j

m
2 det(J)

[〈
SG

1

〉
±
√〈

SG
1
〉2

+ 4 det(J)
]}

.
(39)

Since det(J) ≥ 0 [9,18,27–31], the “plus” root is always in the upper-half ω plane, while
the “minus” root is always in the lower-half plane. If S1 < 0, the integral in Equation (37)
converges when the contour is closed in the upper-half plane and only the “plus” root
contributes—vice versa, if S1 > 0. The two results can be combined to produce
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1
2π

∫ ∞

−∞
exp(−jωS1)

{
det
(

I− jω
1
m

J
[

1 0
0 −1

])}−1

dω

=
m√〈

SG
1
〉2

+ 4 det(J)
exp

{
− m|S1|

2 det(J)

[√〈
SG

1
〉2

+ 4 det(J)− sgn(S1)
〈

SG
1

〉]}
,

(40)

where sgn(x) is the signum function. Substituting this into Equation (37) and using
det(J) =

〈
SG

0
〉2(1−P2)/4 yields the following for pS1 :

pS1(S1) =
1

C3/2(M)

∞

∑
m=1

(M)m
m!

(−1)m−1

m

[〈
SG

0

〉2(
1−P2

)
+
〈

SG
1

〉2
]−1/2

exp

{
− 2m|S1|〈

SG
0
〉2
(1−P2)

[√〈
SG

0
〉2
(1−P2) +

〈
SG

1
〉2 − sgn(S1)

〈
SG

1

〉]}
.

(41)

2.3.3. S2 and S3

The process for finding the PDFs of S2 and S3 is the same as above. Jumping ahead to
the final expressions for the characteristic functions,

〈exp(jωS2)〉 =
1

C3/2(M)

∞

∑
m=1

(M)m
m!

(−1)m−1

m2

{
det
(

I− jω
1
m

J
[

0 1
1 0

])}−1

〈exp(jωS3)〉 =
1

C3/2(M)

∞

∑
m=1

(M)m
m!

(−1)m−1

m2

{
det
(

I + ω
1
m

J
[

0 −1
1 0

])}−1

.

(42)

The determinants evaluate to

det
(

I− jω
1
m

J
[

0 1
1 0

])
= 1− j

ω

m

(
Jxy + J∗xy

)
+

ω2

m2 det(J)

det
(

I + ω
1
m

J
[

0 −1
1 0

])
= 1 +

ω

m

(
Jxy − J∗xy

)
+

ω2

m2 det(J),
(43)

where Jxy + J∗xy =
〈
SG

2
〉

and Jxy − J∗xy = −j
〈
SG

3
〉
. Substituting these into Equation (42),

we see at once that the characteristic functions for S2 and S3 have the same form as
Equation (36). Therefore, the PDFs for S2 and S3 have the same form as Equation (41).
Consequently, we can combine the S1, S2, and S3 PDFs into a single expression:

pSi (Si) =
1

C3/2(M)

∞

∑
m=1

(M)m
m!

(−1)m−1

m

[〈
SG

0

〉2(
1−P2

)
+
〈

SG
i

〉2
]−1/2

exp

{
− 2m|Si|〈

SG
0
〉2
(1−P2)

[√〈
SG

0
〉2
(1−P2) +

〈
SG

i
〉2 − sgn(Si)

〈
SG

i

〉]}
,

(44)

where i = 1, 2, 3. Figures 2 and 3 show the PDFs of S0 [Equation (33)] and Si [Equation (44)]
for various values of M and three values of P . For these plots,

〈
SG

0
〉
= 1, such that〈

SG
i
〉
= P . The M = 1 curves are equal to the Stokes parameter PDFs for CCG electromag-

netic fields in Refs. [5–9,18].
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Figure 2. PDF of S0 pS0 [Equation (33)] for various values of M: (a) P = 0, (b) P = 1/2, and
(c) P = 1.
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Figure 3. PDF of Si pSi [Equation (44)] for various values of M: (a) P = 0, (b) P = 1/2, and (c) P = 1.

3. Simulation

To validate the analysis of the previous section, we performed simulations where we
created partially polarized MG speckle with a specific J. In these simulations, we used
grids that were 256 points per side with a side-length equal to 1 m. We generated 500 MG
speckle fields with shape parameter M = 25 and J

J =
[

1 0.2 exp(jπ/3)
0.2 exp(−jπ/3) 0.6

]
=

[
1.0000 0.1000 + j0.1732

0.1000− j0.1732 0.6000

]
. (45)

The corresponding polarization ellipse parameters were[
P ψ χ

]
=
[
0.3536 0.2318 −0.3295

]
. (46)

From the 500 realizations of 256× 256 MG Ex and Ey, we computed 6 joint field PDFs
(every combination of the real and imaginary parts of Ex and Ey), the 4 Stokes parameter
PDFs, the polarization matrix J, and the speckle contrast.

We generated the MG speckle fields using two approaches having contrasting strengths
and weaknesses. For the first, we used rejection sampling (RS) [37], which produced Ex
and Ey with the correct statistics described by Equation (8). However, using this approach,
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both Ex and Ey were spatially “white,” i.e., delta-correlated, and therefore did not have
realistic speckle sizes. Note that it is theoretically possible to generate MG Ex and Ey, with
physical speckle sizes, using RS. Yet, the computational cost to do so is immense, thereby
making it practically impossible. For example, to generate an MG Ex with realistic speckle
sizes would require rejection sampling a multivariate PDF with 2562 dimensions. For the
second synthesis approach, we used the normal-to-anything (NORTA) method [38–42],
which efficiently generated Ex and Ey with realistic speckle sizes and the proper marginal
(i.e., pEx and pEy ) PDFs. Although NORTA did produce Ex and Ey with the correct average
cross-correlation, the NORTA Ex and Ey did not have the correct joint PDF [Equation (8)],
in contrast to RS. Results from both methods are presented and discussed below.

Figure 4 shows example RS and NORTA Ex realizations. The columns, from left to
right, show the magnitude and phase of Ex; the rows, from top to bottom, show the RS and
NORTA Ex, respectively. As discussed in the previous paragraph, the RS field realization
[(a) and (b)] is essentially “white,” with a speckle size approximately equal to the diameter
of a pixel. In contrast, the NORTA realization [(c) and (d)] has a realistic speckle size, which
can easily be controlled.

Figure 4. Rejection sampling (RS) and normal to anything (NORTA) Ex realizations: (a) RS |Ex|,
(b) RS arg(Ex), (c) NORTA |Ex|, and (d) NORTA arg(Ex).

Figures 5 and 6 show the field and Stokes parameter PDF results, respectively. Figure 5
is organized such that the joint field PDFs are along the rows and the theoretical, RS, and
NORTA PDFs are along the columns. We have labeled the rows and columns to aid the
reader. In addition, the theoretical, RS, and NORTA PDF images in each row are encoded
using the same color scales defined by the color bars at rows’ end. Figure 6 displays, in
four subfigures, the theoretical, RS, and NORTA Stokes parameter PDFs plotted together
for ease of comparison.



Optics 2022, 3 31

Figure 5. Joint PDFs of Ex and Ey: (a–c) theory, RS, NORTA pEr
x ,Ei

x
, (d–f) theory, RS, NORTA pEr

y ,Ei
y
,

(g–i) theory, RS, NORTA pEr
x ,Er

y
, and (j–l) theory, RS, NORTA pEr

x ,Ei
y
.

In all cases, the RS results are in excellent agreement with theory. On the other hand
and as discussed above, NORTA generates Ex and Ey with the correct marginal statistics
[Figure 5c,f], but inaccurate joint statistics [Figure 5i,l]. The inaccurate joint PDFs in (i)
and (l) lead to discrepancies in the Stokes parameter PDFs in Figure 6 and consequently, to
an incorrect speckle contrast—Cthy = 0.5572, CRS = 0.5575, and CNORTA = 0.6173. It should
be mentioned however, that NORTA does generate Ex and Ey with the correct average
cross-correlation. The polarization matrices for both RS and NORTA were

JRS =

[
1.0000 0.1000 + j0.1731

0.1000− j0.1731 0.5999

]
JNORTA =

[
1.0004 0.1020 + j0.1721

0.1020− j0.1721 0.5989

]
,

(47)

which matched the desired J [see Equation (45)] to the third decimal place. The correspond-
ing polarization ellipse parameters were[

PRS ψRS χRS] = [0.3535 0.2318 −0.3294
][

PNORTA ψNORTA χNORTA] = [0.3544 0.2350 −0.3262
]
,

(48)
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which also were a good match to theory (see Equation (46)).

Figure 6. Stokes parameter PDFs: (a) pS0 , (b) pS1 , (c) pS2 , and (d) pS3 .

The results in Figures 4–6 clearly demonstrate the strengths and weaknesses of RS and
NORTA algorithms for generating partially polarized MG fields. Although NORTA will
not produce Ex and Ey with the proper joint PDF, if speckle size is critical to the application
(or polarization is not a concern [24]), then NORTA is probably the best option. On the
other hand, if the application demands accurate joint statistics, RS is likely the best choice.

4. Conclusions

In this paper, we generalized our prior work on stochastic scalar MG fields to the
electromagnetic domain. We began with the derivation of the bivariate complex MG PDF,
followed by the speckle contrast, and concluded the analysis with the instantaneous MG
Stokes parameter PDFs. We found that the electromagnetic MG family admits tractable
analytic formulas for the field moments, the speckle contrast, and the PDFs of the instanta-
neous Stokes parameters. Moreover, the range of the speckle contrast for electromagnetic
MG fields is much larger than that of classic CCG fields, for a fixed state and degree of
polarization.

We generated partially polarized MG speckle fields with a specified polarization
matrix using the RS and NORTA methods to validate our analysis. The RS results matched
the desired (theoretical) PDFs extremely well; however, the RS MG field realizations—
Ex and Ey—were spatially delta-correlated and therefore, not representative of physical
speckle patterns. The NORTA fields, on the other hand, had realistic (and controllable)
speckle sizes, and the polarization matrix and marginal PDFs of Ex and Ey were extremely
accurate. However, the NORTA Ex and Ey joint PDF did not agree with theory, resulting in
discrepancies between the theoretical and simulated Stokes parameter PDFs and speckle
contrasts. Future work on this topic will include trying to develop a hybrid RS-NORTA
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method for generating partially polarized MG fields with controllable speckle sizes and
accurate joint statistics.

Our calculations in this paper were applied to a specific MG PDF model based on
a linear combination of circular Gaussian PDFs. However, by no means is the MG PDF
limited to the circular Gaussian distribution and can be readily applied to other linear
combinations of Gaussian functions, as long as the basic requirements for PDFs are satisfied.
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