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A Comparison of Correlation-Agnostic Techniques
for Magnetic Navigation

Joshua Hiatt, Clark N. Taylor
Autonomy and Navigation Technology (ANT) Center

Air Force Institute of Technology
{jhiatt32, clark.n.taylor}@gmail.com

Abstract—Navigation using a Global Navigation Satellite Sys-
tem (GNSS) is common for autonomous vehicles (ground or air).
Unfortunately, GNSS-based navigation solutions are often suscep-
tible to jamming, interference, and a limited number of satellites.
A proposed technique to aid in navigation when a GNSS-based
system fails is magnetic navigation - navigation using the Earth’s
magnetic anomaly field. This solution comes with its own set
of problems including the need for quality magnetic maps in
every area in which magnetic navigation will be used. Many
of the currently available magnetic maps are generated from a
combination of dated magnetic surveys, resulting in maps riddled
with spatially correlated errors, the correlation structure of which
is largely unknown. The correlations are further confounded
while navigating because they depend on how fast a vehicle moves
through the map in addition to the original correlated error
structure. Traditionally, this spatial correlation has been handled
by introducing a First Order Gauss-Markov (FOGM) noise
model into the estimation routine, with the FOGM parameters set
somewhat arbitrarily. In this paper, we investigate the possibility
of using correlation agnostic fusion techniques (i.e., Covariance
Intersection and Probabilistically Conservative Fusion) for mag-
netic navigation. These techniques have the advantage of not
requiring any parameter tuning; the same method and tuning
parameters are used regardless of the spatial correlation. We
demonstrate that utilizing probabilistically conservative fusion
leads to navigation results that are better than many tuned
approaches and reasonably close to the best possible tuning
parameters of a FOGM.

I. INTRODUCTION

Navigation techniques are constantly evolving. Throughout
the centuries navigators have moved from simple piloting,
dead reckoning, and celestial navigation to more sophisticated
techniques such as electronic navigation using the Global
Navigation Satellite System (GNSS). Regardless of the nav-
igation technique, accurate pose (position, velocity, attitude)
estimation must be performed for effective path-planning to
take place. There is an ever-widening expanse of applications
for a robust navigation framework in a wide variety of envi-
ronments. GNSS-based navigation is incredibly accurate, but
there are many scenarios for potential failure including but not
limited to the following:

• Inside tunnels or in dense urban areas where satellite
signals will be blocked.

• Frequency jamming and spoofing, which can cause the
navigation solution to no longer receive accurate esti-
mates. [1]

Due to the accuracy of GNSS, current alternative navigation
systems do not attempt to replace GNSS, but to augment it

in these potential failure situations. Current alternative naviga-
tion systems such as radio-based techniques, computer vision
approaches, star-trackers, terrain height matching, and gravity
gradiometry tend to only work in specific environments under
certain conditions[2]. An alternative navigation system that
can match the global availability of GNSS could improve and
replace the plethora of current alternative navigation systems.

A promising navigation system that matches the availability
of GNSS is magnetic navigation (Magnav) [2][3]. The avail-
ability of Magnav gives it an advantage over other alternative
navigation solutions, but there are many challenges associated
with Magnav that must be overcome including but not limited
to the following:

• Availability of magnetic maps
• Quality of magnetic maps including quality of meta-

data (co-variance, bias)
• Spatially correlated errors in the magnetic map lead-

ing to significant over-confidence in magnav-produced
navigation estimates.

This paper focuses on addressing the second and third
point and is organized as follows. In Section II we give
some background for Magnav and explain the problems that
need to be overcome. In Section III, we explain our novel
solution to modeling spatially correlated errors in an Extended
Kalman Filter (EKF). Section IV mathematically defines the
data fusion problem and reviews the Covariance Intersection
and Probabilistically Conservative approaches to correlation
agnostic data fusion. In Section V, we compare these tech-
niques against each other. Section VI concludes the paper.

II. BACKGROUND

Magnav uses the small variations in the Earth’s magnetic
anomaly field in order to navigate [4]. The anomaly field
is available world-wide including over oceans, forests, and
deserts - an attribute that vision-based and terrain height
navigation systems lack. It is also available in all weather
conditions unlike star-trackers. Recent successful flight tests
have demonstrated scalar magnetic anomaly navigation to be
a viable alternative navigation system and magnetic vector
navigation could bring even more accuracy to Magnav [5][6].

A. Map Creation

Magnetic maps are generated through a process called
Kriging, or Gaussian Process Regression (GPR) [7] [8]. Stated
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simply, this process uses data from neighboring cells to
estimate the data in a particular cell. This enables cells that
do not have data to be filled in and improves the accuracy
of cells that already have data. We used scikit-learn’s GPR
implementation for our testing [9]. While this process works
remarkably well in approximating the true magnetic anomaly
field, it (a) is not perfect and (b) introduces significant spatial
correlation between its errors.

As an example, we generated a synthetic magnetic field and
then processed that field, with sensor noise added, using GPR
to create a representation (map) of that magnetic field. We
tested various sampling patterns and different GPR parameters.
We then took the difference between the resulting maps and
the generated magnetic field (truth) to determine the map error.
We then computed the power spectral density (PSD) of the
error to analyze its spatial correlation structure. In Figure 1
we show the PSD of the errors for several different maps. If
the noise was white (ideal for the filtering algorithms used in
navigation), then the PSD would have the same value at all
locations. Instead, as shown in Figure 1 there are significantly
different values across the PSD, implying significant spatial
correlation. Furthermore, the different sub-figures show that
the correlation structure is significantly different depending
on how the GPR is applied (the different kernel length sizes /
subfigure (a) vs (b) and (c) vs (d)) and what data was sampled
to create the map (which points were sampled / subfigure (a) vs
(c) and (b) vs (d)). The presence of this correlation structure,
if not properly handled by the filtering algorithm, leads to
significant over-confidence in the derived pose estimates and
larger errors in the final filter estimates.

(a) Every point sampled - 10 (b) Every point sampled - 25

(c) Every 5th column - 10 (d) Every 5th column - 25

Fig. 1: PSDs of errors generated from various sampling
patterns using a Kernel Length Size (KLS) of 10 and 25

Other map making techniques such as SLAM have also been
used to create maps for Magnav [10] but these techniques are
not explored in this paper because the dominant technique is
the traditional GPR technique described above.

B. Filtering

A simple magnetic navigation filter is an Extended Kalman
Filter (EKF) that uses a magnetic map and its derivative as
part of the measurement processor to update the predicted
pose of the vehicle. The standard EKF equations are used for
prediction:

x− = Fx+Bu (1)

P− = FPFT +Q (2)

where x− is the predicted state, F is the system dynamics
model, B is the control model, u is the control input, P−

is the predicted covariance, and Q is the covariance of the
process noise. The update step is then performed:

y = z − h(x−) (3)

S = HPHT +R (4)

K = PHT /S (5)

x+ = x− +Ky (6)

P+ = (I −KH)P− (7)

where z is the measured magnetometer value, h() is the
magnetic value from the map given a predicted position1, H is
the derivative of the map at that point, and R is the covariance
of the observation noise plus the covariance of noise in the
map.

This filter would perform well if the errors in the maps were
not correlated. However, as discussed, the errors are correlated
in an unpredictable way. This will lead to significant over-
confidence in pose estimates from a filter set up this way.

One way to overcome the sub-optimal performance of the
filtering algorithms would be to accurately characterize the
spatial correlation in the map and store it in meta-data. There
are, however, two significant problems with this approach.
First, many of the currently available magnetic maps are
stitched together from previous surveys with varied quality
[11]. Furthermore, these prior maps do not have any meta-data
on the uncertainty of those maps. Second, even if new maps
could be created, the exact interaction between sampling lines,
the GPR process, and the spatial correlation of the magnetic
field being sampled must all be considered to correctly char-
acterize the spatial correlation at each point in the map. This is
not a well-understood process and the metadata requirements
could be extreme as every point could have a different spatial
correlation structure from every other point.

If we eliminate high-accuracy prior estimation of spatial
correlation in the map, this leaves two options for using
magnetic map data in a navigation solution (1) Attempt to
model the correlation in map errors using a coarse model or
(2) use correlation agnostic fusion. In this paper we explore
these two options. In the following sections, we first describe
our method for modeling spatially correlated error using a
first-order Gauss Markov Model, followed by a discussion of

1We are assuming the state x includes a position estimate that can be given
to the magnetic map.
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applying correlation agnostic fusion techniques to the magnav
problem.

III. MODELING APPROACH

A. Problem Description

To derive a coarse model for spatial correlation, we choose
to use the well-known first-order Gauss Markov model to
model the correlation in the noise. This technique works by
adding another state to the Kalman filter representing the
correlated noise using the dynamics model:

ϵ̇ = −1

τ
ϵ+ ν (8)

where τ is a time constant denoting how temporally correlated
the noise source is ν is a white, Gaussian distributed noise
source.

This technique, while straightforward, cannot be directly
applied when performing estimation in the presence of spatial
correlation. The process model in (8) correlated noise tempo-
rally, while the correlation in the map is spatial. Therefore,
we must modify the process model for the correlated noise
depending on the velocity of the vehicle as it moves through
the spatially correlated map.

As an example, consider the 1-dimensional scenario shown
in Figure 2. In subfigure (b) the error in the map is shown.
Note that this error is not white and has significant spatial
correlation. As the vehicle traverses the map, it has the velocity
shown in subfigure (a). The resulting errors “observed” by
the vehicle are shown in subfigure (c). Note how the errors
in subfigure (c) seem spread out when the velocity is low
and compressed when the velocity is high. More formally,
higher velocity leads to lower temporal correlation while
lower velocity leads to higher temporal correlation. Therefore,
to properly perform estimation in the presence of spatially
correlated noise, a pose estimation filter must account for the
velocity dependent nature of the correlation.

B. Proposed Filter Modification

Consider the traditional prediction step of a Kalman Filter
from equations 1 and 2 with three states (position, velocity,
bias) assuming a First Order Gauss-Markov (FOGM) bias for
the third term gives us:

F =

1 ∆t 0
0 1 0

0 0 e−
∆t
τ

 (9)

Q[2,2] = (1− e
−2∆t

τ )σ2
ss (10)

where ∆t represents the change in time during the propagation
step, σss is the steady state, or total standard deviation of the
bias, Q[2,2] represents the bottom right entry of a 3×3 matrix
(we are using 0-indexing), and the other values of Q will be
set appropriately for the filter.

To modify the Kalman filter to consider spatial correlation,
we assume that the spatial correlation constant (Γ – the spatial
equivalent of τ ) is known. We then modify the traditional
Kalman Filter equations to incorporate d := distance to the

(a) Velocity (b) Spatial Error

Spread Compressed Spread

(c) Temporal Error

Fig. 2: The velocity dependence of correlated errors over time.
The errors are spread out when velocity is low and compressed
when velocity is high.

entry corresponding to the bias state in F and Q so that
equations 9 and 10 change to:

F[2,2] = e
−d
Γ (11)

Q[2,2] = (1− e
−2d
Γ )σ2

ss (12)

Note, however, that d is not know, but must be estimated from
the current velocity (x[1]) using:

d = x[1]∆t (13)

While this modification is fairly straightforward, it has sev-
eral important implications. First, because the process model
is now dependent on the current state, this is now an Extended,
rather than a linear Kalman filter. Second, it assumes that
the correlation structure (σ2

ss and Γ) are known and can be
approximated as a FOGM. Unfortunately, how to determine
the “correct” Γ terms for a map is not immediately obvious.
Also note that as we move beyond a simple 1d case, the Γ
will most likely have a directional component to it, so both
the numerator and denominator of the exponential terms will
become dependent on the state.

Due to these difficulties with the FOGM model, we also
wanted to investigate the possibility of using correlation ag-
nostic fusion techniques to utilize measurements from the map.
In this case, the accuracy or inaccuracy of any noise model for
the map becomes far less important. How to utilize correlation-
agnostic fusion for magnetic anomaly based navigation is the
focus of the next section.

IV. FUSION APPROACH

The fusion problem in this paper is considering sequential
measurements from a scalar magnetometer to determine the
location of the magnetometer. Each update in a sequential
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estimator consists of (1) predicting a measurement using the
current estimated location and a magnetic map and (2) compar-
ing this predicted measurement with a physical measurement
from a magnetometer. The current location is then corrected
using the difference between those two quantities (the pre-
dicted and physical measurements). Due to the use of a map
for computing the predicted measurement, the error sources for
the predicted measurement are not conditionally independent
given the current location (the underlying assumption of
sequential estimators). To overcome this lack of conditional
independence, correlation agnostic fusion techniques can be
used.

To use correlation agnostic fusion for magnetic anomaly
navigation, we must combine two sources of information about
the magnetic field magnitude (a scalar quantity measured in
nanoTeslas); each providing a probability distribution function
(PDF) representing its knowledge (labeled pa and pb). Assum-
ing both distributions are Gaussian, the distributions can be
completely represented by the mean (µ) and covariance matrix
(P ) associated with that distribution. Therefore, we have
(µa, Pa) and (µb, Pb) representing the two input distributions
to be fused. In the remainder of this section, we briefly review
two correlation-agnostic methods for fusing together these
distributions, followed by how this fused result is used by
a sequential estimator.

A. Covariance Intersection Fusion Algorithm

Given two Gaussian input distributions, Covariance Inter-
section (CI) [12] returns for the covariance matrix the convex
combination of the two information (inverse covariance) ma-
trices of the two inputs [13]. Given the input means (µa, µb)
and covariances(Pa, Pb), we can find the fused distribution
based on CI using the following equations.

P−1
fus = ωaP

−1
a + ωbP

−1
b (14)

µfus = Pfus(ωaP
−1
a µa + ωbP

−1
b µb) (15)

ωa + ωb = 1 (16)

where ω represents the weight for each input distribution.
The selection of ω is usually based on an optimization the
minimizes some metric (typically the determinate or trace) of
the output covariance matrix. For example, if the determinate
is used, we find ω as:

ω := argmin
w
|Pfus| (17)

B. Probabilistically Conservative Fusion Algorithm

While methods like CI consider only the input covariances
to determine how to fuse two input distributions, Probabilisti-
cally Conservative Fusion (PC) [14] also uses the mean values
to perform fusion. PC fusion is based on the assumption that
pa and pb can be divided into independent (e.g., pa\c) and
common distributions pc:

pa = pa\cpc

pb = pb\cpc

but each distribution is still a sample distribution of the
true value. When two input distributions are given to PC,
the independent means for pa\c and pb\c should be close
enough together that they can reasonably (probabilistically) be
derived from the same quantity. “Close enough” is defined by
a Mahalanobis distance Ψ(Pc) compared with a chi-squared
statistic as follows:

Ψ(Pc) = (µa\c − µb\c)
⊤(Pa\c + Pb\c)

−1(µa\c − µb\c)
(18)

Ψ(Pc) ≤ χ2
n,.95 (19)

where χ2
n,.95 denotes an chi-squared distribution with n de-

grees of freedom and .95 is the significance value used in this
paper (though different values can be selected.) Note that n is
the number of dimensions in the input distributions. PC then
optimizes for the maximum amount of common information
such that the two independent distributions satisfy the above
constraint.

P−1
c =argmax

P−1
c

|P−1
c | (20)

s.t. Ψ(Pc) ≤ χ2
n,.95

Pc ≤ Pa

Pc ≤ Pb

where Pc ≤ Pa means that Pa − Pc is a positive semi-
definite matrix. PC has the advantage that even if the two
input covariances are the same, if the means are different,
some extra information can be derived from fusing the two
inputs.

C. Fusion Methodology

In this paper, we investigate the use of Kalman-filter based
estimators to estimate position and velocity using spatially
correlated maps. For the prediction step of the Kalman filter,
two approaches are used. If using a FOGM-based model,
an extra state is added to the Kalman filter and the modifi-
cations described in Section III are used. When performing
correlation-agnostic fusion, however, the state vector is not
modified and the propagate step of the Kalman Filter is un-
altered. The update step of the Kalman filter is modified
though as shown in Algorithm 1. The modification performs
correlation-agnostic fusion between the predicted and mea-
sured distributions, then generates a “synthetic” measurement
and covariance. This synthetic measurement is generated such
that the standard Kalman filter update step achieves the same
measurement mean and covariance that would be obtained by
running our chosen fusion method. Note that naı̈ve Bayesian
fusion is equivalent to an unmodified Kalman filter update.

The generic fusion process is described in Algorithm 1.

V. SIMULATION AND ANALYSIS

In order to compare different fusion techniques and the
FOGM-based model, we created a simple 1-dimensional mag-
netic navigation simulation. This problem is based on [15]
where a train is navigating on a track and the (1d) posi-
tion and velocity of the train is estimated comparing scalar
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Algorithm 1: Modified Kalman Filter Update for
Magnetic Map Navigation

Result: x+, P+

Input: x−,P−, z, R
Generate predicted measurement distribution:

µ← h(x−)
Pp ←HP−H⊤

Compute synthetic measurement:
µf , Pf ← fusion(µ, Pp, z, R)

Rs ← (P−1
f − P−1

p )−1

zs ← Rs(P
−1
f µf − P−1

p µ)
Update state based on synthetic measurement
(Standard Kalman filter update)

y ← zs − h(x−)

S ←HPHT +Rs

K ← (PHT )/S

x+ ← x− +Ky

P+ ← (I −KH)P−

magnetometer measurements against a magnetic map. Without
biases, the system state consists of position and velocity,
with an accelerometer being used as an input to modify
the velocity. A Kalman-filter based estimator is tested using
both the FOGM and correlation-agnostic fusion modifications
described in Sections III and IV, respectively.

For the magnetic map, we generated synthetic maps in two
ways: (1) With FOGM noise on the map - when we know the
structure of the correlated map error perfectly - and (2) by
sampling the truth map and creating a reconstructed map with
GPR - when we can only attempt to model the structure of the
correlated map error. While the overall variance of the errors
is the same, the structure can be quite different. Example maps
and errors from these two scenarios are shown in figure 3.

Maps were generated for 100 runs and each technique was
used for navigation with the exact same inputs. Using these
generated maps as well as noisy accelerometer measurements,
we attempted to predict position, velocity, and covariance
for 1000 seconds. In order to compare these techniques two
metrics were used:

1) Root mean squared error (RMSE) of position – evaluates
accuracy of technique. Lower is better.

2) Average Normalized Estimation Error Squared
(ANEES) – evaluates accuracy of covariance outputs.
If ANEES is less than 1, uncertainty is being
overestimated. If it is greater than 1, uncertainty is
being underestimated. While accuracy is the ideal
outcome (ANEES ≈ 1), it is generally better to
overestimate uncertainty (ANEES < 1) than to
underestimate it (ANEES > 1).

(a) Map with FOGM noise (b) FOGM Error

(c) Map with GPR noise (d) GPR error

Fig. 3: Example maps and errors used in 1-dimensional
navigation simulation

These metrics were calculated for each technique as follows:

RMSE =

√√√√ 1

N

N∑
i=0

(xti [0]− xpi
[0])2 (21)

ei = xti − xpi (22)

ANEES =
1

N

N∑
i=0

eTi P
−1
i ei (23)

where N is the number of time steps, xti is the true state at
time i, xpi is the predicted state at time i, Pi is the predicted
covariance at time i, and x[0] is the first element in the state
vector (position). The average of these values over 100 Monte
Carlo simulations for each technique can be seen in Tables I
and II. The rows of the table correspond with the following
techniques:

• Accelerometer Only (Baseline): This technique per-
forms no update steps in the Kalman filter, using only the
process model and noisy accelerometer inputs to estimate
location

• FOGM EKF (Assumed Params): This technique mod-
els a FOGM bias in the map. For FOGM map noise
(columns) the assumed bias parameters are exact while
for GPR map noise they are estimated. For the GPR maps,
the Γ value was set equal to the kernel length used to
generate the map.

• FOGM EKF (Param Grid Search): This technique is
the same as the “FOGM EKF (Assumed Params)” except
for the GPR columns, a grid search was performed to find
the best combination of σss (total standard deviation)
and Γ (spatial correlation) to get optimal navigation
accuracy. This technique is infeasible in the real world,
but serves as a best-case metric against which to compare
the correlation agnostic techniques. Both FOGM models
use the technique described in Section III.



6

• Bayesian (Naive): This technique is Naive Bayes fusion.
It is a traditional Kalman filter update with no bias in
the state. It does not account for correlated errors in any
way.

• Covariance Intersection: This technique is a fusion
technique based on Covariance Intersection described in
Section IV. It uses input covariances to determine how
to fuse two distributions.

• Probablisticly Conservative (α = 0.05): This technique
is a fusion technique described in Section IV. It uses
input covariances as well as input means to fuse two
distributions. α corresponds to a significance value of
0.95, which is used to determine how fusion is performed

The columns of the table represent the following map errors:

• FOGM: First Order Gauss-Markov error with a total
standard deviation of 5 nanoTesla and a τ (spatial corre-
lation) of 1000 meters.

• GPR-250: Synthetic map generated by sampling the true
map every 250 meters then recreating a map using GPR.

• GPR-500: Maps generated by sampling every 500 me-
ters.

• GPR-1000: Maps generated by sampling every 1000
meters.

• GPR-Random: Maps generated by drawing one random
sample within each 500m of the map.

In addition to the RMSE and ANEES error metrics, Figure 4
shows the average covariance bound for each technique. These
bounds give more context to the values in Table I and II

Fig. 4: Average covariance bounds for each technique

There are a few clear takeaways from the simulation:

• FOGM correlation model does exceptionally well when
the structure of the error is FOGM and known perfectly
but loses accuracy and underestimates uncertainty when
applied to a GPR error structure.

• The weaknesses of the FOGM correlation model can be
remedied by a grid search of potential models at the
expense of computation time. This is infeasible for real-

life scenarios2

• Naı̈ve Bayes Fusion gives relatively good estimates re-
gardless of the error structure but fails to predict the
variance of the error accurately. This can be seen by how
low the covariance bound is.

• Covariance Intersection relies heavily on accelerometer
measurements instead of the map. The position estimates
drift quite a bit before being corrected.

• CI has a high average RMSE yet very low ANEES
because the covariance bound is so large.

• Probabilistically Conservative Fusion gives good esti-
mates regardless of the correlated error structure. For
cases where the spatial correlation is not known, it has the
best results of the methods that are practically feasible.
They are also not significantly worse than our “best case”
scenario (FOGM EKF – Param Grid Search option). Its
ANEES values are also reasonable, showing it accurately
estimates the covariance bound for all error structures.

VI. CONCLUSION

A major problem in magnetic navigation is dealing with
unknown correlations in magnetic maps. This paper has out-
lined multiple approaches for dealing with these unknown
correlations. One of these approaches is a novel technique
that incorporates velocity into the bias state of an Extended
Kalman Filter. This technique is very accurate if the error
structure is perfectly known, but struggles if the structure can
only be approximated. Since the error structure of current
maps is completely unknown, we investigated the possibil-
ity of using correlation agnostic fusion. Correlation agnostic
techniques work regardless of the error structure, but tend to
be less accurate than a perfectly tuned coarse model. Using a
simulated train navigation scenario, we showed that PC fusion
obtains good results regardless of the correlation structure,
approaching results achieved by searching for the best possible
FOGM model for a particular map and traversal of the map.
In the future, we plan to test these techniques on real-world
data including 2-dimensional maps and paths.
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