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Abstract

Penetration Testing (pentesting) is the process, tactics and
techniques to penetrate computer systems and networks to
expose cybersecurity issues. It is currently a manual process
requiring significant experience and time that are in limited
supply. One way to reduce time is through automation. This
paper presents the Automated Network Discovery and Ex-
ploitation System (ANDES) which demonstrates the feasibil-
ity to automate the pentesting process. Uniqueness to AN-
DES is the use and updating of Bayesian decision networks
to represent the pentesting domain and subject matter expert
knowledge and processes. Each iteration begins by modeling
the current belief state for each system using a Bayesian deci-
sion networks. ANDES uses these networks to select and ex-
ecute an expected best action. This process simulates the iter-
ative thinking process of human attackers as they access and
move through an enterprise network. Testing used a virtual
network environment designed to mimic a small businesss
internal network. ANDES successfully performed a series of
information gathering and remote exploit actions, across mul-
tiple network hosts, to gain access to the objective target.

Introduction

Penetration testing (pentesting) has become an increasingly
important part of an organization’s security toolbox. Pentest-
ing provides companies a way to determine their exposure to
threat actors, in a proactive manner, that can ultimately al-
low the company to save time, money and reputation (RSI
Security 2020b). A formal recognition of this importance
is the adoption of frequent pentesting as a requirement in
the Healthcare Insurance Portability and Accountability Act
(HIPPA) as well as in many industry security standards such
as the Payment Card Industry Data Security Standard (PCI
DSS).(RSI Security 2020a) A major factor limiting broad
adoption of pentesting by companies is the lack of available
security professionals capable of conducting high-quality
pentesting events. Combining automation with skilled pro-
fessionals is a great way to increase capacity and alleviate
talent shortages (Craig 2019).

*The views expressed in this document are those of the au-
thors and do not reflect the official policy or position of the United
States Air Force, the United States Department of Defense or the
United States Government. The authors would like to thank Dr.
Chad Heitzenrater AFRL/RIG for sponsoring this research.
Copyright (©) 2021by the authors. All rights reserved.

Researchers have explored automated pentesting over the
past two decades, however it has never transitioned towards
mainstream adoption (McKinnel et al. 2019). One factor
contributing to the lack of adoption is the complexity of the
decision space and dynamic nature of pentesting scenarios.
Previous automation attempts have relied upon modeling en-
tire networks and completely solving an attack plan prior
to execution (McKinnel et al. 2019). This approach is not
representative of the iterative approach employed by human
penetration testers, and is only capable of showing static re-
sults. Pentesters leverage tools and techniques to gain valu-
able information throughout their test, which informs future
decision making. The development of the Automated Net-
work Discovery and Exploitation System (ANDES) is an at-
tempt to create an automated pentesting system that aligns
with the human pentester process.

The Automated Network Discovery and Exploitation Sys-
tem (ANDES) is a proof of concept system that demon-
strates how Bayesian decision networks can be employed to
enable automated live-execution pentesting. The Bayesian
decision networks capture the pentesting environment,
as well as a human decision making process. Utilizing
Bayesian decision networks allows the system to account for
domain uncertainty and probabilistic actions.

Additionally, ANDES utilizes an iterative execution ap-
proach. Each execution cycle ANDES undertakes is an iso-
lated event whose observed outcome is utilized to inform
future decisions. In this way, ANDES is able to react to an
uncertain environment and mimic the human decision mak-
ing process of first gathering information, deciding what is
the best course of action, and finally taking that action and
observing the outcome.

Background

The vulnerability assessment and pentesting (VA-PT) pro-
cesses (PTES 2014) can be resource intensive as it requires
highly trained and experienced personnel (Craig 2019).
These requirements led researchers to explore the idea of
automating VA-PT actions, using computer based systems
to either augment or replace trained security professionals.
A major challenge facing automated VA-PT systems is their
ability to capture the Subject Matter Expert (SME) knowl-
edge of security professionals, as well as their ability to syn-
thesize observed information into optimal decision policies.



The capability to adapt to the observed state of the domain
proves particularly difficult and is a major focus addressed
by this work.

Penetration Testing Automation

Previously explored solutions can be divided into the cate-
gories of: classical planning (constraint satisfaction), prob-
abilistic planning, adversarial planning (min-max), live-
execution, and adaptive planning (learning-models). McK-
innel et al. (McKinnel et al. 2019) present an overview of
existing research and advocate for research to focus on test-
ing via live network interactions.

One attempt at incorporating planning under uncertainty
concepts into a usable product was in (Obes, Sarraute, and
Richarte 2010). The authors integrate the Metric-FFplanning
system with the Core Impact pentesting tool. The accom-
plishments include the ability to convert the internal state of
Core Impact into PDDL and convert the attack plan output
into a Core Impact format. One drawback is that this system
is provided full knowledge of the entire network and gener-
ates an attack plan designed to traverse the network assum-
ing deterministic outcomes. Realizing a weakness of the sys-
tem came from the inability to account for uncertainty, led
the authors to pursue using POMDPs in place of the planner
(Sarraute, Buffet, and Hoffmann 2012; 2011). Unfortunately
the authors never integrated the POMDPs into a system that
interacts with a live network.

In the commercial sector, the current version of Core Im-
pact offers RPTs which automate portions of the VA-PT pro-
cess (Core Security ). An RPT is given a computer system
as a target and it automatically conduct information gather-
ing actions, develop an attack profile, conduct those attack
steps and ultimately report the results. The system does not
use gathered information or access to pursue additional net-
work targets and simply provides a summary of the results as
the output. The system does not attempt to identify a ‘best’
point of access to the system, but merely attempt all exploits
meeting a threshold included with the rule-set (level of risk,
type of exploit, etc.).

A difficulty of creating systems that operate in real-world
environments is the creation of the system’s domain rep-
resentation. The starting state of the network, required for
most of the systems, is externally produced and provided to
the automated systems (McKinnel et al. 2019). (Ghazo et al.
2019) addressed this by leveraging commercial network vul-
nerability scanning products. However, these products rely
on having administrative credentials and knowing the layout
of the target network. The results of the commercial scan-
ning products were then imported into a model building sys-
tem to create a pentest plan. This solution is not applicable
to unknown environments or non-cooperative VA-PT sce-
narios.

Bayesian Decision Networks

Bayesian decision networks are probabilistic directed
acyclic graph representations of elements in a domain
and decision actions with their conditional dependencies
(Matzkevich and Abramson 1995). Bayesian decision net-
works contain three types of variables: chance variables V¢,

decision variables V p, and utility variables V. Chance
variables are those that represent domain states the deci-
sion maker has no direct control over. Decision variables
are those which represent actions directly controlled by the
decision maker. Lastly utility variables represent the deci-
sion maker’s preferences. Since variables are represented as
nodes within the graphical representation, the terms variable
and node are used interchangeably (Lacave, Luque, and Dez
2007). Useful definitions include a finding (f), which corre-
sponds to a value a chance variable can take on (Vo = f).

The graph structure of a Bayesian decision networks con-
sists of nodes connected via directional arcs. Every node
must be connected to at least one other node and no cycles
may exist. An incoming arc’s meaning is determined by the
type of connected node:

e Arcs into a decision node represent information known at
the time of the decision

e Arcs into a chance node represent probabilistic depen-
dence

e Arcs into a utility node represent functional dependence,
i.e., which node values are used to calculate utility

Bayesian decision networks are often employed to help
produce consistent and mathematically sound decision mak-
ing. For example, Elvira(Lacave, Luque, and Dez 2007)
leverages a Bayesian decision network to help teach med-
ical decision makers probabilistic and repeatable decision
making skills (Lacave, Luque, and Dez 2007).

ANDES

ANDES consists of three major components. The first com-
ponent is the Control Component which guides execution
and coordinates information flow between the other two
components. Second is the Decision Component which re-
ceives the Control Component’s current belief state of the
target domain and decides the next action for execution. The
final component, the Execution Component interacts with an
enterprise network to perform actions and sensing.

Control Component

The Control Component maintains and updates the system’s
internal belief state and domain knowledge. It uses these to
guide system execution and coordinate information flow.

ANDES represents computer hosts and their connections
as Host Objects. Host Objects are a custom data structure
that capture relevant host details that include: current control
state (control, proxy, scanned, active session) and host state
(operating system, hostname, IP address, services, domain,
neighbors, and scan results). There is one Host Object per
host encountered in a network.

The execution cycle consists of seven steps shown in Fig-
ure 1.

Step 1 begins when the Decision Component receives the
system state from the Control Component. The Decision
Component creates a Bayesian decision network for each
Host Object and calculates the MEU as well as the associ-
ated decision(s). Step 2 utilizes selection logic to determine
which target and action combination is expected to yield
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Figure 1: The Control Logic flow of execution.

the greatest utility. These results are returned to the Control
Component. In Step 3, the Control Component determines
what targeting information is required and passes it to the
appropriate Execution Component subsystem.

The Execution Component consists of two subsystems.
The Scanning Subsystem conducts network scans and the
Exploitation Subsystem conducts local information gather-
ing actions on compromised targets (post initial compro-
mise). Once the action is prepared the Execution Component
launches the action and prepares to observe the results. Step
5 consists of observing and processing the results to deter-
mine the actual action outcome and passing them back to the
Control Component.

Results Analysis updates any applicable Host Objects or
the overall system state. This step also performs internal sta-
tus checks and updates. An example is ‘pinging’ all target
hosts. If the connection responds appropriately no action is
required, however if the hosts do not respond appropriately
ANDES assumes the connection has somehow been inter-
rupted and updates the target’s Host Object accordingly.

Step 7 uses the updated system state to determine whether
ANDES has reached the user defined objective. If the objec-
tive has not been reached, Step 7b restarts the cycle. If the
objective has been reached, Step 7a will terminate execution,
alert the user to objective completion and conduct required
shutdown actions.

Execution Cycle Advantages The iterative process en-
ables ANDES to take advantage of information gained dur-
ing execution, as well as to account for unexpected results,
much like an expert. An added benefit of this method is the
decision space (and corresponding solution space) is kept
small allowing for efficient solving. The size of any specific
Bayesian decision network never grows, only the number of
networks generated grows. This means the decision making
time grows linearly as the target network grows.

Decision Component

The Decision Component performs reasoning and utilizes
Bayesian decision networks to model each individual deci-

sion. This is in contrast to previous solutions which represent
the entire decision space and solve for an entire attack chain,
starting from target information and terminating at objective
completion (McKinnel et al. 2019). ANDES selects a sin-
gle action at each decision point, which it then executes,
observes the outcome, updates the belief state and repeats.
This method allows for easy handling of non-deterministic
actions as well as accounting for domain uncertainty and un-
knowns.

The Decision Component (Figure 2) begins when the
Control Component provides the Decision Component with
all currently existing Host Objects. The Decision Compo-
nents generates a unique Bayesian Decision Network for
each Host Object. Next, each network is solved and the max-
imum expected utility (MEU) found. The Decision Compo-
nent selects the action/target pair associated with the highest
MEU and return the best next action for ANDES to take.
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Figure 2: The Decision Component process.

Decision Networks

ANDES represents each host as its own Bayesian decision
network (shown in Figure 3), populating each network with
observed evidence from ANDES’s current belief state of that
target. The network was developed by a VA-PT expert and
refined from feedback from two additional expert practition-
ers.

Chance nodes (V ¢)(ovals): Capture the probability of a
variable and are present in two distinct types:

e Observed Chance Nodes: Directly capture observable at-
tributes of the host and are populated during network ini-
tiation.

e Contingent Chance Nodes: Capture SME domain knowl-
edge regarding expected outcomes, given observed evi-
dence and potential decisions.

The ‘compatible exploit’ chance node is an example of a
contingent chance node as it combines the observed evi-
dence for the operating system and vulnerabilities to calcu-
late the probability of whether ANDES contains a compati-
ble exploit given observed evidence. In this way it introduces
outside knowledge regarding exploit and operating system
compatibility, as well as potential chances of success given
various operating systems and vulnerability combinations.



The network contains 13 chance variables:
Ve ={08,Vull,Vul2,Vul3, Scan, Neighbor,
Access, TN,SR,AR,CE1,CE2,CE3}.

Of these 13 variables, 8 are observable during execution:

e 0OS = {Win7,Win2k19, Linuz, Unknown} : Ob-
served Operating System

e Vull/2/3 = {T, F} : Does the corresponding vulnera-
bility potentially exist?

e Scan = {None,Unfiltered, Filtered} : Has the tar-

get been scanned and were any results likely to have been
filtered?

e Neighbor = {T, F} : Does the target have a neighbor
within the network ANDES has access to?

o Access = {T, F'} : Does ANDES have access to the host
via a Metasploit session?

e TN = {T,F} : Is the target within ANDES’s target’s
subnet?

The remaining five chance variables, represent contingent

chance variables.

e SR = {None,Unfiltered, Filtered} : If the target
is scanned, what is the likelihood additional information
will be gained?

e AR = {T,F} : Given the chosen actions and current
state, what is the likelihood ANDES will have access to
the host post execution?

e CFE1/2/3 ={T, F} : Given observed Operating System
and potential vulnerability, what is the likelihood ANDES
has a compatible exploit?

Decision nodes (V p)(rectangles): Represent potential
decisions ANDES could make. Networks contain two de-
cision nodes corresponding to whether ANDES should ac-
quire information (scan) or acquire new access (exploit).
The two decision variables are:

Vp ={AD,ED}
. Within ANDES these represent:

e AD = {Exploit,Scan} : Should ANDES conduct an
information gathering action or attempt to exploit the tar-
get?

o ED = {Euxploitl, Exploit2, Exploit3} : If ANDES
conducts an exploit action, which potential exploit should
be chosen?

Utility nodes (Vy)(diamonds): Evaluate the expected
utility of a given network configuration. ANDES evaluates
the expected utility for each combination of potential de-
cisions for each host network. This utility function should
be set by operators to account for preferences and desired
behavior. For instance the utility node’s values could be ad-
justed to value information more highly in an attempt to min-
imize taking risky uninformed actions. ANDES has a single
utility variable:

o AU = 9Yay(SR, AR, Access,TN) : What is the ex-
pected utility of the network’s resulting state? Considers
the current combination of known states, chosen actions,
and calculated probabilities.

Figure 3: ANDES host Bayesian decision network.

Execution Component

The Execution Component consists of two subsystems. The
Scanning Subsystem performs network scanning actions and
the Exploitation Subsystem executes remote exploitation
and local information gathering actions.

Scanning Subsystem The Scanning Subsystem scans re-
mote hosts based on targeting information from the Control
Component. Scanning employs the libnmap library(Lyon )
to initiate an Nmap scan, storing and parsing the results as
they return. The parsed scan results include a host’s host-
name, operating system, open ports and associated services.
The information is embedded into a Host Object.

The Scanning Subsystem also supports scanning remote
targets that have been exploited via a remote proxy. This en-
ables ANDES to leverage access inside of a target network
for improved information gathering and to bypass external
security measures.

Exploitation Subsystem To enable exploitation actions
ANDES interfaces with a Metasploit-4.19.0 RPC server
(Rapid7 ). Metasploit is an industry standard, publicly avail-
able exploitation framework. Metasploit contains both an
exploitation and post-exploitation framework enabling re-
mote exploitation attacks, payload delivery, and interactions
with compromised hosts.

The Metasploit RPC client creates a session object con-
taining a handle to the active session residing on the RPC
server. A reference to this session object is stored within the
associated target’s ANDES host object, tying the target and
session together. This enables the Exploit Subsystem to in-
teract with active sessions in the future. Besides the host sur-
vey, the connection provides the ability to establish a proxy
pivot on the compromised host. This enables future scan-
ning and future remote exploits to avoid external security
measures.

A critical implemented component is an exploit execution
feedback module. This module converts the real-world result
of Metasploit execution into the host’s belief state.



Testing and Results

Testing ANDES evaluates the viability behind the princi-
ples and concepts employed. This qualitative approach is in
line with the avenues for potential research directions within
(McKinnel et al. 2019) who advocates that systems should
both move towards live-execution testing and a more qual-
itative approach of assessing the systems performance re-
garding the benefits of the system.

Testing demonstrates the ability of ANDES to perform
a full penetration test on a simplified real-world problem a
penetration tester might face. ANDES was tasked to traverse
the target network in search of the FileServer host, enabling
future data exfiltration from the target.

In order to accomplish this goal, an SME would conduct
scans of the target network, identify potential vulnerabili-
ties, exploit those vulnerabilities, bypass security measures,
and create pivots to gain further access into the enterprise
until locating the target. ANDES is designed to capture an
SME’s knowledge and utilize it in unknown environments
to reproduce their decision making process and skills. As
such, evaluation looks at if ANDES makes the same choices
as the SME whose knowledge was encoded into the system.
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Figure 4: The evaluation network. The dotted line represents
a Firewall rule that restricts access to the FileServer host
from the User host.
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The evaluation network is a virtual environment designed
similar to an environment a pentester might encounter at a
small business (Figure 4). The network consists of four pos-
sible targets, each with a unique configuration. The network
contains:

e Two user machines running Windows 7 corresponding to
employee workstations.

e Machine running Windows Server 2019 and acting as the
Windows Domain Controller and internal DNS Server.

e Ubuntu host serving as a file server, utilized by the busi-
ness to store company data.

Every host has a vulnerability to at least one of the ex-
ploits available to ANDES with the exception of the Win-
Server. The WinServer host is running a vulnerable ser-
vice, however the advanced protections included in the Win-
dows Server 2019 Operating System prevent the service

from being exploited. This serves to show how ANDES re-
acts to non-vulnerable hosts.

Attack Chain Results

Table 1 shows the entire series of actions ANDES per-
formed. During initiation of the test event ANDES was pro-
vided with only two pieces of information, the IP Address of
the EntryPoint host and the IP Address of the FileServer as
the objective target.

ANDES began execution by conducting a remote network
scan of the initial target (1). ANDES detected the Entry-
Point host was running the vulnerable Dup Scout Enterprise
service, as well as being potentially vulnerable to the Eter-
nalBlue exploit. The SME knowledge captured within AN-
DES’s Bayesian decision network led ANDES to chose to
attempt to remotely exploit the Dup Scout Enterprise service
as it had a higher chance of success (2). The action was suc-
cessful and ANDES gained access to the EntryPoint host.
Upon gaining access, ANDES conducted a host survey to
discover additional targets (2.1).

The host survey resulted in ANDES discovering that En-
tryPoint had connectivity to the WinServer host and User
hosts. The next action selected was to perform a remote net-
work scan of the WinServer host (3). Given the fact ANDES
did not have any additional information besides the hosts’
IP Addresses at the time, and neither host was an objective,
selecting to scan either of the two new targets represents a
reasonable decision. From the scan ANDES determined the
WinServer host was also running the vulnerable Dup Scout
Enterprise service. With this information, and no additional
information about the User host, ANDES attempts to exploit
the WinServer (4). As expected given the WinServer host’s
operating system protections, the exploit was unsuccessful,
which resulted in ANDES detecting action failure.

Following this unsuccessful exploit attempt, ANDES de-
cided to scan the User host (5). This scan revealed the User
host may be susceptible to the EternalBlue exploit. ANDES
then decided to attempt to the EternalBlue exploit (6), which
was successful and ANDES gained access to the User host,
after which it conducted a host survey (6.1).

This host survey revealed that the User host has connec-
tivity to the FileServer host, ANDES’s objective. Addition-
ally, the access afforded by EternalBlue is sufficient to allow
ANDES to establish a Pivot on the host. ANDES creates a
pivot which forwards traffic to the User host’s neighbors (7),
in this case the FileServer host. Having located the objective
host ANDES performs a remote network scan of the File-
Server target (8) through the User host pivot. This scan re-
vealed the fact that the SSH service is reachable on the File-
Server from the User host. ANDES then chose to launch
an SSH Brute Force attack against the FileServer through
the User host pivot. The first two attempts at this exploit
fail (9+10). ANDES continues to attempt this exploit until it
is eventually successful (11). ANDES has now reached the
desired objective host and without further objectives termi-
nates all active connections and shuts down (12).

An item to note is ANDES’s willingness to repeatedly
attempts at exploiting the FileServer host. This is in con-
trast to the previously failed exploit against the WinServer



Table 1: System Performance Test Results.

# Action Target Results | Comments & Objective Demonstrated
1 Scan EntryPoint | Success | Initial Target
2 Exploitl EntryPoint | Success | Dup Scout BOF - Obj 1a
2.1 | HostSurvey | EntryPoint | Success | Added WinServer, User to targets- Obj 2
3 Scan WinServer | Success
4 Exploitl WinServer | Failure | Dup Scout BOF - Obj 3
5 Scan User Success
6 Exploit2 User Success | EternalBlue - Obj 1b
Added FileServer to targets- Obj 2
6.1 | HostSurvey | User Success Found Target Objectiveg )
7 Pivot User Success | Added pivot to internal network through ‘User’
8 Scan FileServer | Success | Scan conducted through pivot - Obj 4
9 Exploit3 FileServer | Failure | Attack conducted through pivot - Obj 4, Obj 3
10 | Exploit3 FileServer | Failure | Attack conducted through pivot - Obj 4, Obj 3
11 | Exploit3 FileServer | Success ”?":rlge]?glli?elzz:/c:liga;g
12 | Shutdown N/A Success | Performed clean-up actions

host, after which ANDES proceeded to pursue a different
action. This aligns with SME decision weighting to favor
taking actions against the objective host. It should be noted
that a brute force logon attempt is not normally an exploit
that is commonly repeated, but in virtual environments, cou-
pled with the behavior of the Metasploit SSH Login Scanner
through a proxy, this attack routinely takes several attempts.

Conclusion & Future Work

ANDES represents a shift in the design philosophy to-
wards automated pentesting systems. Representing each
host within a target network as Bayesian decision networks
addresses previous issues with computational complexity
as the target network size grows. This choice, along with
chaining together isolated decision points, allows ANDES
to mimic the decision making process employed by human
SMEs and handle unforseen situations. This was demon-
strated with ANDES successfully performing the pentesting
steps: intelligence gathering, threat modeling, vulnerability
analysis, exploitation, and post exploitation.

ANDES’s currently contains the minimum functional-
ity required to conduct automated pentesting events. Fu-
ture research should include building a robust and com-
plex Bayesian decision network that captures additional
SME and domain knowledge. Additionally, integrating au-
tomated exploitation generation capabilities as demonstrated
in DARPA’s Cyber Grand Challenge (Song and Alves-Foss
2015) would lead to a more capable system.
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