
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Faculty Publications 

3-7-2022 

MADFAM: MicroArchitectural Data Framework and Methodology MADFAM: MicroArchitectural Data Framework and Methodology 

Tor J. Langehaug [*] 
Air Force Institute of Technology 

Scott R. Graham 
Air Force Institute of Technology 

Christine M. Schubert Kabban 
Air Force Institute of Technology 

Brett J. Borghetti 
Air Force Institute of Technology 

Follow this and additional works at: https://scholar.afit.edu/facpub 

 Part of the Computer Engineering Commons 

Recommended Citation Recommended Citation 
T. J. Langehaug, S. R. Graham, C. M. Schubert Kabban and B. J. Borghetti, "MADFAM: MicroArchitectural 
Data Framework and Methodology," in IEEE Access, vol. 10, pp. 23511-23531, 2022, doi: 10.1109/
ACCESS.2022.3153313. 

This Article is brought to you for free and open access by AFIT Scholar. It has been accepted for inclusion in 
Faculty Publications by an authorized administrator of AFIT Scholar. For more information, please contact 
AFIT.ENWL.Repository@us.af.mil. 

https://scholar.afit.edu/
https://scholar.afit.edu/facpub
https://scholar.afit.edu/facpub?utm_source=scholar.afit.edu%2Ffacpub%2F941&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholar.afit.edu%2Ffacpub%2F941&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil


Received January 3, 2022, accepted February 13, 2022, date of publication February 22, 2022, date of current version March 7, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3153313

MADFAM: MicroArchitectural Data
Framework and Methodology
TOR J. LANGEHAUG , (Student Member, IEEE), SCOTT R. GRAHAM, (Senior Member, IEEE),
CHRISTINE M. SCHUBERT KABBAN, AND BRETT J. BORGHETTI
Graduate School of Engineering and Management, Air Force Institute of Technology, WPAFB, OH 45433, USA

Corresponding author: Tor J. Langehaug (tor.langehaug@afit.edu)

ABSTRACT In the aftermath of Spectre and Meltdown researchers have proposed a variety of attack
detection solutions by applying machine learning to data collected from hardware performance monitoring
units. Although many microarchitectural attack detection systems provide high-accuracy detection results,
the behavior of the underlying data collection mechanisms is not well described or understood. This research
introduces theMicroArchitectural Data FrameworkAndMethodology (MADFAM) to prescribe a systematic
approach to collecting and preserving the information available in sequences of microarchitectural data.
The proposed framework focuses on hardware performance counters (HPCs) as the primary data source.
HPC configuration is complex, which makes it difficult for others to reproduce results or advance the
state-of-the-art. This framework includes a description of design decisions that HPC research must consider
across an array of problem domains, including information security. MADFAM proposes a data collection
architecture and evaluation criteria to improve the discussion about the experimental settings and design
decisions used in HPC research. The proposed framework evaluation criteria are then used to establish a
baseline characterization of time series data that future research can use to compare alternative framework
implementations.

INDEX TERMS Computer organization, computer engineering, hardware security, hardware performance
counter, Meltdown, microarchitectural data, Spectre.

I. INTRODUCTION
The release of the Spectre [1] and Meltdown [2] attacks
in 2018 awakened the computer security research com-
munity to risks posed by unintended microarchitectural
side effects resulting from performance optimizations in
microprocessors. Since the release of Spectre and Melt-
down, over 40 papers have been published [3], [4] expos-
ing different types of speculative or transient execution
attacks.

To combat these emerging threats, researchers have
proposed secure cache schemes [5], [6], trusted execution
environments [7], [8], and Hardware Performance Counter
(HPC)-based microarchitectural detectors to identify mali-
cious cache access patterns [9]–[11] or patterns associated
with the critical path to exploit a microarchitectural side chan-
nel [12]. Secure cache architectures and trusted execution
environments provide fundamental long-term solutions to

The associate editor coordinating the review of this manuscript and

approving it for publication was Songwen Pei .

protect systems against microarchitectural threats. However,
the architectural changes necessitated by secure caches and
trusted execution environments do not address the near-term
threat.

An alternative to replacing existing hardware is to leverage
microarchitectural data to improve detection mechanisms.
The most frequently used source for microarchitectural
data are HPCs, which are present on most embedded,
consumer, and server-grade microprocessors. These HPCs
provide detailed information about the performance of a
processor’s microarchitecture (e.g., cache hit rate or # of
branch mispredictions) during the computer’s operation.
HPCs are designed to identify performance problems and are
able to collect large amounts of data with relatively small
impacts to the system performance. Performance Monitoring
Units (PMUs), which are discussed in Section II-B, provide
HPCs.

Prior research has proposed using these HPCs to detect
specific attacks such as Spectre [9] or Meltdown [10],
cache attacks [11], and other malware [13] by creating

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 23511

https://orcid.org/0000-0002-0596-9449
https://orcid.org/0000-0003-0810-1458


T. J. Langehaug et al.: MADFAM: MicroArchitectural Data Framework and Methodology

machine learning models to identify known malicious
patterns in the microarchitectural data for a specific attack.
The effectiveness of this approach is not yet clear. Some
research disputes the value [14], [15], though others such
as Malone et al. [16] and Basu et al. [17] present rigorous
rationale and statistical reasoning to explain how HPC event
sequences create unique execution fingerprints to confirm
conformance to the expected Control Flow Graph (CFG) for
a known program.

Given several demonstrated successes of HPC-based secu-
rity detection systems there is reason to continue evaluating
the utility of HPCs under different conditions. A common
problem associated with HPC research is grappling with the
complexities of the configuration settings and data structures
required to achieve a desired outcome. This research is
motivated by the need to characterize the data collection
process in support of applying statistical models and machine
learning techniques. Additionally, the framework benefits
HPC machine learning system requirements for labeled data,
structured input, an interface to make online inferences,
and reducing random error. The framework presented in
this research provides a structured terminology to discuss
settings and an implementation to achieve these beneficial
properties. This research makes the following notable
contributions:
• Organizes typical data collection considerations to link
HPC configuration with machine learning goals.

• Proposes a novel framework that incorporates new
design ideas for a data collection architecture that can
be expanded or improved upon in future research.

• Provides an analysis approach using three different
microprocessor architectures to establish reference data
that future HPC research and data collection tools could
use for comparison.

• Highlights differences in HPC behavior between proces-
sor generations and vendors which presents challenges
to general purpose machine learning models.

The remainder of this paper is structured to provide a
broad context for HPC research. Section II provides back-
ground to relate several research areas, including computer
architecture, hardware sensors, performance counter data
collection, cache side channels, and transient execution.
Section III discusses related research emphasizing HPC data
for information security applications. Section IV introduces
a model to describe the execution environment from which
data is gathered and organizes several parameters researchers
must consider. Section V describes an implementation
of the framework to collect labeled data that is suit-
able for supervised machine learning research. Section VI
presents four evaluation criteria to describe the behavior
of the implemented architecture. Section VII discusses the
evaluation criteria results and highlights computer system
behavioral challenges that machine learning researchers
should consider when using HPC data. Finally, Section VIII
summarizes the results and discusses directions for future
work.

II. BACKGROUND
This section provides a summary of relevant information
related to computer system organization, hardware sensors
or data sources, PMUs, HPC configuration, the motivating
hypothesis underlying this work, cache side channels, and
transient execution attacks. Each of these topics is considered
in contemporary research and the treatment given here is
intentionally broad. Interested readers are invited to consult
the works referenced in Section III for detailed information.

A. TWO PERSPECTIVES ON SYSTEM ARCHITECTURE
An overview of the environment in which programs execute
or run provides a foundation to understand where microar-
chitectural data originates and why the data is of research
interest. Figure 1 presents a simplified view of the computing
system, which may be read from the bottom-up to understand
the computer architect’s perspective. Alternately, Figure 1
may be read from the top-down to understand a user’s
perspective of the computer system.

One challenge faced by computer architects is to organize
the computer’s memory system to provide users with the
perception that the high-speed Central Processing Unit
(CPU) has access to a large and fast storage device. Small
memory, such as the registers inside the CPU core, are
very fast. However, these few instances of small memory
are insufficient for the data storage requirements of modern
applications and are cost-prohibitive to expand. Larger
memory devices, such as Dynamic Random-Access Memory
(DRAM) or disk-based storage systems, have data access
times several orders of magnitude slower than CPU registers.
Hierarchies of caches are a design decisionmade by computer
architects to move data that was used in the recent past
or is likely to be used in the near future as close to the
CPU as possible to facilitate the user’s perception of a large
and fast storage system. A serious concern for information
security is that several user programs share these resources
simultaneously, and this contention can lead to information
leakage.

User applications, programs, and services such as
databases or web servers rely on an operating system to
efficiently manage access to resources while ensuring private
or secret information confidentiality. In most cases, users are
unaware of the complex multitasking performed by both the
operating system and hardware to create the perception of
fast in-order execution of programs written in a high-level
language. Even programs that use parallel task execution
(i.e., multithreading or multiprocessing) to reduce execution
time do so with limited knowledge about how the operating
system decides which tasks to execute or how the underlying
hardware executes the instructions.

B. HARDWARE SENSORS
Contemporary computing systems, especially mobile
devices, are equipped with different types of sensors, often
added to a computing device for a specific purpose. For

23512 VOLUME 10, 2022



T. J. Langehaug et al.: MADFAM: MicroArchitectural Data Framework and Methodology

FIGURE 1. Overview of computer organization (timescales based on [18]).

example, processors must balance the power used by the
CPU with performance requirements. Thermal and voltage
sensors on the CPU die or package provide continuous
streams of data to control logic which makes decisions
about the CPU’s current maximum operating frequency.
In the case of thermal sensors, logic on the CPU package
may prevent exceeding thermal design limits for the CPU
whereas an operating system may use thermal sensors
to increase system fan speeds as specified by the user.
Spinning disk hard drives in laptops serve as another example
of hardware sensors. Mobile hard drives contain internal
accelerometers that sensewhen a device is falling so that drive
rotation can be halted to prevent catastrophic data loss on
impact.

CPUs are composed of smaller components or modules
and the term microarchitecture refers to the organization
of sub-components such as caches, buffers, and execution
units within a CPU implementation. PMUs are a hardware
facility that encapsulates microarchitectural sensors. PMUs
are common on several device classes including smartphones,
laptops, desktops, servers and embedded devices. PMUs are
to be distinguished from HPCs in that PMUs provide support
to many different types of data which could be used to debug
software performance whereas HPCs are special purpose
registers that can be configured to count microarchitecture
specific performance events. The set of possible events which
HPCs may count are defined by the vendor and subject to
change between processor generations. Several events (e.g.,
number of taken branches or L1 cache misses) are common
across multiple CPU manufacturers.

The device class usually influences the capability of the
PMU. For example, embedded processors typically cannot
configure more than two HPCs simultaneously and typically
have fewer than one hundred possible events that may be
counted. The typical laptop, desktop, or server provides
four configurable counters while maintaining two counters
that always count CPU cycles and total retired instructions.
Server class CPUs, such as those used in high performance
computing and data centers may have several hundred more

architecture-specific events that can be monitored when
compared to laptop or desktop microprocessors.

The data collected by hardware sensors can be used to
establish covert communication channels or for side channel
analysis. This property of hardware sensors poses both risks
and opportunities for information security. In research, risks
posed by side channels are often of interest. For example,
CPU power management sensor data have been used to leak
Advanced Encryption Standard (AES) keys [19]. If power
management sensors are strong enough to leak cryptographic
keys, it is reasonable to believe that those same side channels
might also be used to create robust application finger-
prints. The data collected by PMUs are subject to similar
risk-reward trade-offs. Controlling access to PMU sensor
data is a key component of PMU-based machine learning
research.

C. PERFORMANCE COUNTERS AS SENSORS
HPCs are unique when compared with other kinds of
hardware sensors because they preserve knowledge about the
internal state of the CPU–which is directly related to the
code and data executing on the CPU. Recent HPC research
has used the relationship between HPC data and program
code to hypothesize that HPC events can represent nodes
in a program’s CFG [17]. The CFG is a directed graph
containing all the legal states and transitions between states
that can occur legitimately in a program. State transitions are
manifested as function calls, branch instructions, or jumps.
The instructions executed between state transitions are treated
as a single node within the graph.

Basu et al. [17] presented a statistical framework for
calculating the probability that two distinct CFGs exist with
matching sequences of tuples for two, three, or four simul-
taneously collected events. The following list summarizes
Basu’s findings:

• If HPC events are precisely recorded every CPU clock
cycle, then a counter of branch instructions and branches
taken can represent the state transitions in the CFG.

VOLUME 10, 2022 23513



T. J. Langehaug et al.: MADFAM: MicroArchitectural Data Framework and Methodology

TABLE 1. Commonly used tools to configure HPCs.

• As sequences of event counts grow longer (i.e., the CFG
grows deeper), the probability of finding a CFG with
matching event tuples at each timestep decreases.

• Even though real systems cannot record HPC data every
cycle, the probability of finding a matching CFG when
events are counted over several hundred cycles is low
enough to be useful in practice.

Basu conducted his analysis using a compiler-generated
CFG, controlling program input, assuming a single instruc-
tion is executed per clock cycle, and nondeterminism in
HPC values less than 5%. Basu’s work provides a significant
motivation for continued HPC research. If HPCs can accu-
rately represent a CFG, there are potentially significant ways
HPC data could enhance current software-based security
mechanisms. A limitation of Basu’s assumptions is that
microprocessors are often capable of executing multiple
instructions per cycle and the variation in data sequences
over time is not well described. The operating conditions of
real systems could inhibit the practical application of Basu’s
work; data collected under real operating conditions deserves
further study.

D. COLLECTING HPC DATA
At the lowest level, HPCs are configured by writing a
configuration bit pattern to a special purpose register.
On x86-based systems, this is accomplished with the write
model specific register (wrmsr) instruction. Similarly, the
POWER Instruction Set Architecture (ISA) defines the move
to special purpose register instruction (mtspr) to perform
this operation. Instruction-level configuration provides a high
level of flexibility but is difficult to implement in practice
because the configuration details are often architecture
specific and not easily interpreted by humans. Due to these
complexities, researchers typically rely on a combination
of tools to achieve research goals. This section describes
common tools used in research, leaving fine-grained choices
for tool configuration as a framework contribution described
in Section IV.
Table 1 enumerates commonly used research tools and

summarizes the primary strength and weakness. Understand-
ing these tools and how they function helps in making
research experiment design decisions. Across all tools,
there are generally two different ways to access HPC data.
Polling is a low-overhead, easy-to-configure approach that
simply reads the values stored in the event counter registers.
Sampling is an event-driven approach that records the counter
values each time an event threshold is reached.

Inline assembly is the most direct and low-level approach
to configuring and reading HPC values. When used in this
way, users must be aware that HPCs are not saved and
restored as part of a process-context switch. Therefore, the
implementation must provide kernel-level modifications to
save and restore HPC state during context switches [20].
Depending on the use case for HPCs, not saving and
restoring counter values could result in significant variation.
Inline assembly is a tool for directly studying event counter
behavior, especially when only a single processor or a small
subset of events is of interest. The task of writing correct
inline assembly code for all possible event counter settings
is difficult and benefits from layers of abstraction.
perf is a command line system tool that is provided

as part of the mainstream Linux kernel. The two sub
commands most commonly used to collect data are perf
stat and perf record. Both sub commands provide
command line interfaces to specify events to monitor and
parameters to control data collection behavior. perf stat
implements the polling approach to collect data. perf
record implements a sampling approach to data gathering
and records the instruction pointer address every time an
event threshold is reached. By recording the instruction
pointer each time a threshold is reached, a profile is developed
to identify the code area where the overflow occurred. perf
is powerful, but the command line interface makes it difficult
to target specific portions of a program when collecting
labeled data.

The perf tool is a command line wrapper for the
perf_event_open Linux system call. Using the system
call directly increases the flexibility significantly. Specific
code can be instrumented and custom data output formats can
be used to store data in formats that are easily consumed by
automated tools, such as those tools that support a machine
learning pipeline. Since perf_event_open is an operat-
ing system provided interface, the complexities of correctly
handling context switches are handled automatically through
virtualization of the HPCs [21]. The main drawback of
using perf_event_open directly is the complexity of the
interface, which provides the complete set of functionality
through a single function. Research related to exhaustive
testing of the Linux perf_event_open interface provides
a rich source of examples to adapt to a specific use case [22].

OProfile is a command line utility that wraps the
perf_event_open interface and offers similar features to
perf. OProfile provides some useful post-analysis features
such as reconstructing a call graph from sampled data.
Similar toperf, OProfilemakes it difficult to isolate specific
functions or program areas independent of the main program.
OProfile tries to map a common set of events to several
processors and does not appear to offer a convenient way to
select architecture-specific events.

The Performance Application Program Interface (PAPI) is
a user space library designed to allow precise instrumentation
of source code and was designed for high performance
computing environments. PAPI maintains a strong balance

23514 VOLUME 10, 2022



T. J. Langehaug et al.: MADFAM: MicroArchitectural Data Framework and Methodology

between portability and ease-of-use. The main drawback to
PAPI is that PAPI is designed to monitor code running in user
mode only.
libpfm4 is a library with the sole purpose of translating

text-based event names to proper raw specific architecture
encodings or operating system encodings. libpfm4 is used
by PAPI to translate event names and provides a useful tool
to configure HPCs when the perf_event_open interface
is used directly.

The Intel-provided VTune software provides a robust
Graphical User Interface (GUI) to diagnose application
performance on Linux and Windows systems. Intel’s under-
standing of their own microarchitecture and unique processor
features makes VTune an important tool for analyzing appli-
cations that run on Intel platforms. The primary limitations
with VTune are that the tool is designed for Intel products and
does not support processors from other vendors. Additionally,
as a GUI tool, automating the capture and storing of raw
data is difficult. Command line tools support VTune’s GUI
features but are subject to similar data processing limitations
as perf.

E. CACHE SIDE CHANNELS
In information security, a side channel is an unintended
communication channel that an adversary can use to
learn private information. Many side channels exist in
computer systems, and researchers have identified several
side channels in the caching hierarchy used by modern
CPUs [23]–[26]. The description of a cache side channel
provided in this section is not comprehensive and ignores
many implementation complexities.

Recalling the discussion of Figure 1, caches exist to create
a user experience of accessing a large and fast memory. Cache
and main memory are also shared between the operating
system and user programs simultaneously. Emptying the con-
tents of a cache (e.g., flushing the cache) each time a different
task executes results in significant performance penalties
waiting for the data to be repopulated. Consequently, caches
simultaneously store data from multiple tasks which might
have different permission levels. In light of recent transient
execution vulnerabilities, operating systems may choose to
incur the penalty associated with flushing or invalidating
cache lines on context switches to reduce the possibility of
timing side channels.

Figure 2 presents a simplified view of caches as a function
that maps a large set of possible addresses in main memory
to a much smaller set of addresses in the cache nearest to
the CPU. Given the disparity in address space size, it is
trivial to choose two main memory addresses that would
map to the same address in a particular level of cache
(e.g., L1 in Figure 2). Consider two programs, A and B
that run simultaneously on the same CPU core. Assume
a precise timing source exists to distinguish between read
requests when data is or is not in the cache. If Program
A runs first, then Program A need only access data at 215

addresses to completely populate the cache. After populating

FIGURE 2. Function mapping memory addresses to cache addresses.

the cache, Program B runs and only reads some addresses
with equivalent mappings in the L1 cache. When Program A
is given time on the CPU, Program A can iterate through 215

sequential memory reads to measure access time and identify
a set of possible addresses used by Program B. This is the
basis of a timing-based cache side channel because ideally,
Program A should not be able to learn any information about
Program B.

Cache attacks on real systems are more complex for
several reasons. First, data is read in blocks rather than single
addresses to benefit from the principle of spatial locality.
Second, most caches allow for associativity, whichmeans that
a single main memory address can be mapped to more than
one cache address at each cache level. Third, each CPU core
typically has its own L1 instruction and data cache requiring
an attacker and victim process to reside on the same core.
Attacks against L2/L3 caches are possible but tend to have
much slower read rates. Lastly, caches may choose different
policies (e.g., Least Recently Used or First In First Out) to
determine which data is kept in the cache. Despite these
challenges, timing-based cache side channels are achievable
on most modern CPUs [1], [3], [4].

PMUs provide HPCs as a sensor to monitor cache hits,
misses, flushes, and several other events related to cache
performance. Cache thrashing happens when data is evicted
from the cache and subsequently needed. Cache thrashing
causes undesirable performance degradation that typically
is not present in legitimate programs. Cache side channel
attacks tend to create significant shifts in cache behavior
making the cache side channel detectable by monitoring
HPCs. A limitation of this approach is that cache side
channel read rates can be slowed down, causing cache
misbehavior to be nearly indistinguishable from legitimate
behavior.

F. SPECULATIVE AND TRANSIENT EXECUTION
The terms speculative and transient execution are closely
related. Performance is a primary design consideration in
modern microprocessors. Recall from Figure 1, the time to
access data inmainmemory is 2-3 orders ofmagnitude slower
that the CPU’s speed. Many situations arise when the CPU
can either decide the next action or wait for data to ensure
the right action is always taken. The performance penalty of
waiting for data is significant, somodern processors speculate

VOLUME 10, 2022 23515



T. J. Langehaug et al.: MADFAM: MicroArchitectural Data Framework and Methodology

or predict the likely next action. Speculative execution refers
to all code that is executed before the true data is known to
confirm the prediction. Speculative execution encompasses
both correct and incorrect predictions. Speculative execution
can occur in code flows (e.g., branch prediction) or in data
flows (e.g., cache prefetching).

Speculative execution encompasses all actions taken based
on a prediction–even if the prediction was correct. Transient
execution refers to executed instructions whose results
are never committed. Transient execution never results in
incorrect behavior from the user’s perspective. However,
transiently executed instructions cause state changes in the
microprocessor. The cache is one example of amicroarchitec-
tural component whose state changes as a result of transiently
executed instructions, but others also exist.

Prior to the evolution of transient execution attacks, cache
side channels were mostly passive listening channels. That
is, the adversary could only observe victim behavior, but
could not control what victim data to read. In practice,
the listen-only property of cache side channels reduced
information security concerns. Transient execution attacks
offer adversaries a mechanism to control what data is
loaded into a microprocessor’s cache to actively leak specific
information.

Most PMUs provide HPC events related to a program’s
transient execution control flow. For example, the POWER9
provides the PM_BR_PRED event to count the total number
of branches where hardware made a prediction about the
branch outcome. Additionally, the POWER9 provides the
PM_BR_MPRED_CMPL event to count the total number of
mispredicted branches. By applying Basu’s hypothesis to
hardware events that reflect transient execution flow there
might be opportunities to identify CFGs associated with
speculation-based gadgets.

The information provided in this background section estab-
lished a high-level perspective of the operating environment
in which computer programs run. Basu’s prior work [17]
was summarized to provide a hypothesis-driven foundation
to motivate research in this problem domain. Specifically,
the limitations of Basu’s simplifying assumptions and the
complexities of modern computer hardware were discussed
to establish a need to describe HPC sequence behavior on real
systems.

III. RELATED WORK
This section describes related research that was not discussed
in Section II. This section primarily focuses on information
security papers, though HPC data has been used in automated
performance analysis, debugging, general high purpose com-
puting, operating system support, and power analysis [20].
An excellent summary of non-security and security-focused
HPC papers is available in [20]. The related work is discussed
in the categories of HPC behavior characterization, hardware
malware detectors (HMDs), exploit detection, and arguments
in favor of or against the use of HPCs in information security
applications.

A. HPC BEHAVIOR CHARACTERIZATION
Early HPC research explored the trustworthiness of data
gathered using HPCs. Weaver used an empirical approach to
measure the variation when standard benchmark programs
executed [27]. Weaver observed that HPC variation could
be reduced to reliable levels, but there were nuances
associated with correctly configuring event counters [27].
In a later work, Weaver et al. [28] further examined the
determinism of events on multiple processor architectures
and found that few events are deterministic, which increases
the difficulty of using HPC data for inexperienced users.
More recently, Weaver implemented an extensive test suite
and system call fuzzing utility for the perf_event_open
interface [22] which provides useful technical details for new
tool implementations that abstract the complexities of the
system call.

B. HARDWARE MALWARE DETECTION (HMD)
HMD research focuses on identifying software executing
without the user’s permission or intent (malware) rather
than the mechanism the adversary uses to achieve an
objective. Researchers have proposed several kinds of
malware detection systems using microarchitectural data.
As early as 2013, well before Spectre andMeltdown,malware
detection was proposed using HPC data to classify malware,
rootkits, and hardware design considerations to enable secure
hardware-based malware detection systems [29]. Others used
similar techniques to develop HPC-based detection systems
for mobile devices [30] and improving rootkit detection [31].
The most common approach for malware detection uses
supervised learning, where data used to develop a model
is labeled as belonging to the malware or benignware class
and statistical relationships are estimated to predict class
membership for the new data. Some HPC research uses
unsupervised learning techniques and includes analysis to
determine which HPCs are suitable to detect malware [32].

C. EXPLOIT DETECTION
Exploit detection is considered separately from HMD
research because this research tends to focus narrowly on a
specific attack technique. In 2015, Herath and Fogue [33]
demonstrated the use of HPCs on the Intel x86/64 architecture
to detect a variety of exploit techniques, including ReturnOri-
ented Programming (ROP) [34], Rowhammer [35], Rootkits,
and cache side channels.

ROPSentry detects ROP attacks with data gathered from
HPCs at low sampling rates (100 ms) [36]. The authors
recognized practical limitations of machine learning systems
using HPC data and focused their analysis on understanding
ROP attack behavior to identify a policy threshold for various
metrics. Threshold-based detection systems for different
exploit techniques have been proposed by others [37], but are
subject to the challenges of low-bandwidth attacks.

In one of the earliest Spectre and Meltdown detec-
tion publications, WHISPER was proposed to perform

23516 VOLUME 10, 2022



T. J. Langehaug et al.: MADFAM: MicroArchitectural Data Framework and Methodology

run-time detection of cache side channel attacks and Spec-
tre/Meltdown with greater than 99% accuracy. WHISPER
used both PAPI and perf to collect data [10]. Attack
detection was shown to be effective at coarse sampling
rates (100 ms) and incorporated application-event based
sampling, such as sampling after n encrypted bits were
generated by an encryption algorithm, rather than a fixed time
interval.

The time series nature of HPC event data has been the
focus of research for detecting transient execution attacks.
Alam proposed a two-part detection system composed of
a correlation module and a classification module [38]. The
correlation module used dynamic time warping to determine
the similarity of two sequences, while the classification
module performed classification using a variety of machine
learning techniques. Alam’s research gathered data at sam-
pling intervals of 10 ms and 100 ms using the perf stat
tool [38].

Cache side channels tend to be considered in transient
execution attack detection systems. However, Wang makes
the important observation that caches are not the only side
channel possible when instructions execute transiently [12].
Rather than focusing on a specific attack, Wang generated
thousands of attack variants and designed a detection
mechanism for the critical paths required to load data into
any possible side channel.

D. ARGUMENTS FOR AND AGAINST HPC DATA
The arguments in favor of HPC data for attack detection
are both theoretical and practical. In the development of a
theoretical foundation for program integrity checking, Mal-
one et al. hypothesized that programs can be approximated
as a mathematical relationship between event counts such
that by running a program multiple times with varying inputs
the performance counters could be used to identify the
relationship between the executed program and the observed
event counts [16]. Malone et al. measured user-space event
counts for retired instruction, branch, floating point events,
L1 cachewrites, and completed Input/Output (I/O) operations
by modifying the perf_event system call to read data
every 10,000 cycles [16]. Basu’s statistical analysis to
estimate the probability of creating a matching CFG [17]
supports Malone’s hypothesis. HPCs are not the only source
of data provided by PMUs. Tice et al. [39] proposed using
branch tracing facilities, a common capability implemented
in PMUs, as a mechanism to detect Control Flow Integrity
(CFI) [40] violations.

In a survey of HPC uses across multiple domains, Das
observed that all 41 information security papers chosen
recommended HPCs, while only about fifty percent of
non-information security papers recommended HPCs [20].
Some security research expresses a strong disagreement
with the notion that there is a causal relationship between
high-level software and low-level hardware events [15]. The
contrary work attributes research success with HPCs to
comparatively unrealistic experiment design and uses low

classification accuracy rates (< 80%) for non-deep learning
models as a foundation for argument [14].

IV. FRAMEWORK
The information presented in Section II and III provided
motivation, examples of success, and areas of concern in
HPC research. This framework aims to address concerns
expressed byWeaver andMcKee [27] that HPC configuration
is difficult and Das et al. [20] that research exposes too few
details about how data is gathered to create reproducible
results. Research across multiple problem domains, has
yielded promising results using HPC data and the framework
proposed in this section draws several concepts together to
further HPC research.

The elements of this framework are summarized in
Figure 3. This section introduces the framework, beginning
with the formulation of a model for the microarchitectural
state as a dynamic system that changes over time. Following
the model description is an overview of the classes of
problems for which HPC data has been applied to propose
a solution. The next section enumerates technical considera-
tions (factors) and settings (levels) for configuring HPCs. The
technical considerations and settings have nuanced relation-
ships that are explained in greater detail. The remainder of the
framework steps are presented in Sections V-VII. Technical
considerations and settings are used as the foundation to
design a data collection architecture in Section V and
evaluation criteria in Section VI.

A. THE MODEL OF MICROARCHITECTURAL STATE
There exists a complex interaction between the full set of
executing programs, the operating system scheduler, and
system resources. This section leverages a classical dynamic
system model to describe factors which must be considered
when gathering data to build goal-driven systems using
HPCs.

Equation 1 describes a typical programmer’s view of
using a function to implement a task. The programmer
assembles a sequence of instructions to compose f so
that input x produces the output y. Except for real-time
systems, the programmer’s view of correctness ignores the
time component. A programmer might find time relevant
with regard to algorithmic complexity (e.g., ‘‘Big O’’) but
generally does not consider the number of clock cycles
to execute logic when defining a program’s correctness.
Equation 1 is a simplified view of computer programs
because legitimate programs exist that do not conform to the
mathematical definition of functions.

f (x)→ y (1)

Architectural logic and microarchitectural state are used
to execute instructions at a layer below the program logic.
The architectural logic and state are influenced by time
and nondeterministic events. The representation of a CPU’s
microarchitectural state may be thought of as a classical
dynamic system [41], as shown in Equation 2. For every

VOLUME 10, 2022 23517



T. J. Langehaug et al.: MADFAM: MicroArchitectural Data Framework and Methodology

FIGURE 3. Framework and methodology overview.

function f that a programmer defines and executes, there
is a function internal to the microprocessor m operating
on the microarchitectural state s present at time t . The
programmer’s function f terminates at some time t when
the microarchitectural state has committed all operations
required to produce y correctly. Under this definition, the
function f depends on the microarchitectural state and the
input value x.

m(s(t−1), f , x)→ s(t) (2)

An obvious and simple point must be made with regard
to Equation 2. To develop precise models, some knowledge
about f and the data x must be known. In current CPU
architectures obtaining this granularity of detail at run-time
is difficult. Additionally, even CFG-based HPC research
often neglects the influence x has on the sequences of
states traversed in a program’s graph. In the absence of
representations for x, practitioners should strive to select
HPCs that preserve some information about x.
Although Equation 2 incorporates time and the dependence

of the current state on a previous state, the model is
still idealistic. In reality, the state at time t includes the
results of many other signals from the operating system
and internal to the CPU. Therefore, the formalization of the
microarchitectural system state is proposed in Equation 3.
s′(t) represents the actual microarchitectural state at time t .
A limitation of s′(t) is that it is only partially observable
in real systems. Visibility of the microarchitectural state is
limited to at most four out of several hundred possible events
related to microarchitectural state. HPC data are single-point
measurements of microarchitectural state changes summa-
rizing the number of events in a period of time. A 5 µsec
sampling interval on a 3GHz processor will summarize the
events during 15,000 timesteps.

The function g(t) is introduced to the model to account for
the complex external signals that influence the processor’s
microarchitectural state. The external signals, represented
as g at time t , could include things like asynchronous
interrupts, operating system scheduler decisions, system
load, changes to process priority, cache evictions, detection
of incorrectly predicted branches, and several others. For
practical purposes, g(t) cannot be fully known or modeled, but
the influence exerted by g(t) on the microarchitectural state
cannot be ignored. HPC research should include a detailed
experiment design plan to create conditions where variation
exists in the data collected for model development.

m′(s′(t−1), g(t), f , x)→ s′(t) (3)

TABLE 2. Consolidated HPC goals adapted from [20].

B. DEFINE CLASS OF PROBLEM
Mindful of Equation 3, the next step is to identify the
problem class for which HPCs are being used. Defining the
problem class eases the search for related work and facilitates
informed decision making during experiment design. It is
important to recognize that there are many legitimate goals
for HPC data. At a high level, these goals are either
performance-based or security-based. The survey conducted
by Das et al. [20] presents an excellent summary of several
HPC papers across multiple problem areas. A summary of
problem classes is provided in Table 2.

When an information security application is the primary
goal, a threat model describing adversary capabilities should
also be defined so that the suitability of the data collection
architecture can be evaluated. Threat models are specific to
a particular problem and because this research focuses on a
general approach, these details are omitted. Future research
may consider how aspects of the proposed data collection
architecture could be replaced while maintaining flexibility
to collect labeled data and strong security properties.

C. ENUMERATE TECHNICAL CONSIDERATIONS
In order to conduct repeatable HPC research, there are
several technical considerations to explicitly state. This
research focuses on factors specific to HPCs, though a similar
organization could be performed for other data sources
provided by PMUs. Table 3, arguably one of the principle
contributions of this work, provides an overview of the
considerations discussed in this section. Experiment factors
are a unique combination of settings or levels required to
support a research question, while all other factors are design
decisions that guide the use of existing tools or require the

23518 VOLUME 10, 2022



T. J. Langehaug et al.: MADFAM: MicroArchitectural Data Framework and Methodology

TABLE 3. Overview of technical considerations and design decisions.

development of a new tool. Future researchers may wish to
use the template provided in Table 3 to concisely express the
configuration of HPC data gathering tools.

Collection Technique
There are two ways to collect or read HPC data. The
first way is the polling technique. In the polling technique
HPC values are read directly and the only information
recorded with the poll is the value of the counter(s). When
hardware-based instructions are used to poll counters, the
event counters are accessed with individual read requests
similar to the way general purpose registers are accessed.
Some abstractions, such as perf_event, provide the
individual read instructions and allow organizing counters
into groups so the data for multiple HPCs can be processed in
software through a single read system call. Polling is used
to create a vector with N features, where N is the number
of configured events captured in a period of time. Polling
also can occur at scheduled intervals to create time series
sequences with N features per timestep. Unless polling can
be implemented with dedicated hardware, the time series
sequenceswill vary due to dynamic frequency scaling, system
load, and the operating system scheduler decisions.

The second data collection technique is sampling. PMUs
provide multiple options to configure sampling. For example,
the IBM POWER9 offers continuous sampling, random
instruction sampling, and random event sampling [42].
Random instruction sampling creates PMU interrupts based

on an overflow condition. The overflow condition can
approximate time-based samples (e.g., interrupt every c
cycles) or can be specific to a behavior of interest (e.g.,
interrupt every b branch mispredictions). A benefit of the
sampling approach is that contextual data can be accessed,
including the contents of general purpose registers and the
instruction pointer. Obviously, choosing to collect more data
will have an adverse effect on the time to record a sample.
Skid is a parameter to request a limitation in the number
of instructions that execute between an event occurring and
the operating system kernel being able to record the event.
This is a request, not a guarantee, and the ability to influence
this behavior might differ between processor architectures.
Requesting minimal skid comes with a performance penalty
because deep execution pipelines must be halted abruptly.
Conversely, increased skid contributes to data variation
because a larger amount of unknown pipeline execution is
allowed to occur.

Measurement Interval
When time series data is of interest, there are two approaches
to establishing the collection interval or collection rate. In the
first approach, the polling method is used to schedule HPC
reads after t time has elapsed. This approach is subject to
the limitations of the operating system scheduler, which is
constrained by a minimum execution time before context
switches occur. If the logic of Basu’s framework [17] is
followed, then faster collection rates are desirable.

The second approach schedules an interrupt after c cycles
and records the measurements of counter values in an
interrupt handler. Although a small value for c (e.g., c =
100) could be chosen, doing so is impractical because
of significant performance penalties due to continuous
interrupts and the speed of modern CPUs.

Permission Level
Code may execute with hypervisor, kernel, or usermode
privileges. The purpose for building a system using HPC
data is the primary consideration. A cloud service provider
constructing a detection system for misbehaving hosts
leaking information from co-resident virtual machines [43]
may choose to focus on data collected by code running at the
hypervisor permission level. When CFG-based code identity
is of interest, researchers might collect usermode data only.
Any combination of permission levels is possible and requires
use case analysis or experimentation to determine the best
settings. Users should understand that trying to collect data
for a specific privilege level may not be precise because
information about instruction privilege level is not always
available when an event is counted. This subtle property
could have negative consequences for information security
use cases.

Collection Aperture
The term collection aperture is used to define the visi-
bility scope for collected data. The system-wide aperture

VOLUME 10, 2022 23519



T. J. Langehaug et al.: MADFAM: MicroArchitectural Data Framework and Methodology

aggregates HPC counts for all processes or a chosen subset
of processes. The process or thread-specific aperture collects
data for a unique process and optionally the process’s children
regardless of the core a process executes on. The core aperture
identifies a specific core or set of cores that are of interest.

Systems may implement a combination of apertures to best
address the problem being solved. Aperture is an important
consideration in the selection of a tool because not all
tools provide adequate support for the desired aperture. For
example, Das et al. [20] uncovered how a process aperture
could negatively affect the accuracy of data when PMUswere
configured with assembly instructions due to HPCs not being
saved and restored during operating system context switches.

Chosen Events
Choosing the correct set of events for a particular problem
is difficult, with many opportunities for future work. This
framework section does not exhaustively explore techniques
for event selection, but establishes some guiding principles
and commonly used approaches. Researchers should articu-
late a methodology or rationale for a specific decision.

One aspect of choosing events is hardware limitations.
PMUs generally provide two read-only HPCs for counting
retired instructions and CPU cycles plus four configurable
counters to suit user needs. Vendors impose different
limitations about which event counters may be configured
simultaneously. The ‘‘counters always on’’ level refers to the
condition when the number of events counted does not exceed
the hardware limitations.

Software might optionally be used to multiplex HPCs.
Multiplexing HPCs allows the number of events being
monitored to exceed the limitations of the number HPC
registers by rotating which events are active during a period
of execution. Multiplexing is invaluable from a performance
analysis perspective because it increases the visibility into
possible performance bottlenecks. Conversely, multiplexing
is generally considered undesirable when continuity of
information is important. Information security is an example
where visibility gaps in the data stream could have con-
sequences. As more events are monitored, the possibility
of missing data related to an attack increases. Losing data
is an inherent trade-off of the multiplexing approach but
there are benefits of gaining visibility into multiple areas
of a microarchitecture. Although most information security
research restricts the number of events to the number of
available HPC registers provided by hardware, performance
analysis use cases might have strong reasons to multiplex
events.

Another aspect of choosing events that research con-
siders is the small super set of events common across
multiple CPUs and with widely supported utilities like
perf to make solutions portable across multiple CPU
architectures. However, this may not always yield the
event set most correlated to a phenomenon. Modern
processors, especially server-grade processors, can have
hundreds of candidate events for task-specific on-core events

(e.g., L1 cache hits) or off-core events that occur with shared
input-output resources that might not easily be correlated
with a specific task context [44]. Off-core events can be
layered for use in distributed systems and are outside the
scope of this framework but should be considered for future
extensions.

There are two basic approaches to selecting which events
to monitor. The first approach selects events using prior
research that produced good results. Several published papers
for Spectre, Meltdown, and various cache attacks [9]–[11]
use correct or incorrect branch prediction events and cache
hit sequences because these types of events are expected
to have high correlation with speculative execution and
cache side channels. Others, such as Malone et al. [16] and
Basu et al. [17], identify a small event set based on a theo-
retical view of HPCs as a representation of a CFG. Malone
suggested that the total number of retired instructions,
branch instructions, floating point instructions, return and call
instructions, I/O operations, and L1 cache writes form a good
representation of a program’s CFG [16]. Basu’s framework
focused on the number of retired instructions, total branches,
taken branches, and integer instructions [17].

The second approach to selecting events uses experiments
to evaluate HPC data against the criteria of consistency
and distinctiveness. The consistency and distinctiveness
criteria can be used to study which HPCs are likely to
be associated with new behaviors of interest. Machine
learning tools can be used on small amounts of experimental
data to support HPC selection prior to developing large
experiments for training neural networks. For example,
unsupervised dimensionality reduction approaches such as
t-SNE or principal components analysis [41] could be used
to assess whether the data gathered by an HPC configuration
forms clusters when a specific property under investigation
is present in the system. Similarly, supervised classification
tools such as Random Forest Classifiers (RFCs) [45] could
identify HPCs associated with a decision boundary. Some
RFC implementations expose the calculated relative feature
importance which would facilitate determining which data
contributes to the decision boundary.

There are good reasons to investigate architecture-specific
HPCs for different problem conditions. For example, the
IBM POWER9 counts events related to a proprietary data
address and recirculation queue (DARQ) that issues load and
store operations to cache units [42], [46]. In a cache side
channel analysis use case, it is possible that this type of
architecture-specific event counter provides meaningful data.

A desirable quality for microarchitectural events used
to develop various types of models is consistency. For
the same program input and execution conditions, event
sequences should be consistent (i.e., visually similar when
plotted as a time series sequence). Inconsistent counters
will confound the characterization of the CFG from HPC
event sequences, weakening the fingerprinting properties.
Recalling Equation 3, inconsistent counters might pro-
vide some information about external signals, g(t), but

23520 VOLUME 10, 2022



T. J. Langehaug et al.: MADFAM: MicroArchitectural Data Framework and Methodology

requires further study to determine the event’s relationship
to g(t).

Events can have consistent behavior but yield limited
distinction among classes. The number of retired instructions
at each timestep during a program’s execution could be
consistent, but if a second program produces the same
sequence then the number of retired instructions is not
useful for distinguishing classes. The search for distinct
events uncovers events that exhibit responses when chosen
execution conditions change. Even with painstaking analysis,
it is likely that the chosen events will be based on empirical
evidence and professional judgment.

Monitoring Context
Monitoring context refers to the data collection approach’s
awareness of location or context within executing code.
The system-wide collection aperture used with the perf
stat command to collect sequences does not include any
filtering to identify specific functions executing when data
is collected. In contrast, the system-wide collection aperture
with perf record logs the instruction pointer to capture
the approximate location in a running program at the moment
a sample is recorded. Monitoring context will be chosen
differently for different research questions or goals. For
example, low-overhead cache side channel detection systems
are not likely to care about which code causes a malicious
cache access pattern to take place. However, researchers
confirming the identity of a CFG using HPC events will
take care to collect sequences where the location is precisely
known and labeled.

Data Requirements
The analysis tools applied to the collected data are an
important factor. There are different approaches to machine
learning with different data collection requirements. Three
broad categories of machine learning are described in Table 3.
Supervised learning finds statistical relationships between
input features and a known response variable. The response
could be a point value or label. Unsupervised learning
does not use a response variable but tries to find statistical
relationships between differing groups of features [45].
Semisupervised learning uses a combination of unsupervised
and supervised approaches. Classification problems predict
which labeled class a previously unseen set of data belongs
to, while regression problems predict a point value. HPCs
can be used to collect sequences or point values. When
sequence-based learning techniques are used, such as
Long Short Term Memory (LSTM) [41], training time and
sequence length limitations should be considered because of
the influence on collection interval decisions.

Experiment Settings
The experiment settings aspect is intentionally vague to allow
researchers to define factors and levels associated with new
research questions. Experiment settings could be anything
that is related to a researcher’s goal. Some settings include

factors like system load, CPU architecture, programs to
fingerprint, or the microarchitectural approach.

An important point to consider when designing experi-
ments that will use machine learning techniques is that the
data generated by the collection process introduces bias.
The bias-variance trade-off [45] is a fundamental tension in
machine learning. For example, a model trained with data
on only one CPU microarchitecture will become biased to
recognize patterns present on a single chosen microarchitec-
ture. If multiple types of CPUs exist in production systems,
data collection should address this challenge. This challenge
can manifest itself in security research when data is collected
using known attack variants when researchers do not consider
how adversaries might adjust an attack to create new variants.

V. DATA COLLECTION ARCHITECTURE
This section describes a framework implementation that
simplifies the task of gathering labeled microarchitectural
data suitable for machine learning model development or
statistical analysis. Figure 3 depicts the framework as a
sequential process, recognizing that the development of
evaluation criteria and a data collection architecture includes
feedback. New technical considerations may arise when
implementing the data collection architecture that require
new evaluation criteria. Reflecting on evaluation criteria and
data collection architecture independently while incorpo-
rating feedback provides a more substantive understanding
jointly. The data collection architecture is presented first so
that the evaluation criteria can be understood in the context
of the architecture.

A. DESIGN GOALS
Section II described many tools which may produce data for
machine learning applications. Before building a new tool,
it is important to establish why it is necessary. The three
design goals proposed in this section address gaps in the
current set of tools used in HPC research.

1) EASY TO CONFIGURE AND USE
There are many excellent tools for performance analysis
that make use of HPC data. Low-level tools, such as the
perf_event interface can be daunting to implement. The
data collection architecture should make the researcher’s task
of selecting settings from Table 3 simple. Researchers should
focus on performance events of interest and experiment
design rather than correctly using an obscure system interface
or scraping data from command line tools.

2) EXPERIMENT DRIVEN
Deliberate experimentation should drive research. The data
collection architecture must provide flexibility under a wide
variety of experimental conditions. Researchers should be
able to obtain fine-grained, known program location when
collecting data, and experiment settings should be traceable
to the specific experiment run that produced the data.

VOLUME 10, 2022 23521



T. J. Langehaug et al.: MADFAM: MicroArchitectural Data Framework and Methodology

FIGURE 4. Data collection architecture.

3) TIME SERIES ANALYSIS APPROPRIATE
The benefits of obtaining time series data, resulting from
the real execution of real programs, are potentially signif-
icant. Unlike fixed-length feature vectors, time series data
collection produces variable length sequences that present
organizational and storage challenges. The data collection
architecture should support time series data that is appropriate
for analysis with time series techniques, while minimizing the
data wrangling performed by researchers.

B. IMPLEMENTED ARCHITECTURE
The data collection architecture is shown in Figure 4. The
implementation of the framework provides support for the
known code and known location on a single system. However,
the approach is general enough to enable a system-wide
collection aperture because the request-response protocol can
be used to initiate monitoring sessions without instrumenting
code to obtain system-wide or process-specific data. There
are two key benefits enabled by a client-server approach to
collecting HPC data. First, consider the microarchitectural
state model described in Section IV. System-wide and even
code-specific models implemented using tools like PAPI do
not provide a mechanism to store information about the input
data x. The client-server model presented in this approach
could be extended to enable transmission of x or summary
properties about x to enable context-aware decisions. Second,
the client-server approach could be extended to gather data
when code executes in a distributed environment. These two
benefits are outside the scope of this research, but are viable
future HPC research areas.

The architecture uses Interprocess Communication (IPC)
to establish the client-server channel that allows the client to
provide context information to the server, which the server
uses alongside a settings file to configure HPCs. Session
management refers to the process of configuring HPCs (i.e.,
session establishment), clearing HPC configurations (i.e.,
session tear down), and storing captured data to disk. The
time penalty of session management is viewed as irreducible.
The client-server approach can be easily adapted for online

inference tasks so that control flow in sensitive processes
can be halted when unexpected behavior is encountered.
In addition to enabling online inference, the client-server
model allows for collecting HPC data from precise locations
in the original source code.

Separating concerns between data collection and experi-
ment design eases configuration and promotes experiment-
driven analysis. Data collection parameters are stored in a
key-value format in a configuration file that is read each
time a new collection request is received by the collector.
For production systems, when the data collection parameters
are known, execution overhead could be reduced by injecting
the configuration data using system environment variables or
memory mapped locations.

The experiment design layer is user-specified, meaning
that the user identifies experiment factors and levels, then
specifies the run sequences. The experiment design layer
writes the configuration information prior to each run where
data will be collected. Additionally, the user leverages the
experiment control layer to configure experiment-unique
factors (e.g., implement chosen type of system load) and
launch the target application to collect data from. This
research implemented experiment control using bash, but
using other languages (e.g., python) is feasible. For each
experiment (e.g., the complete set of runs), the collector is
started once and the experiment controller communicates
with the collector by writing the collector configuration and
data labels to a file.

To provide time series data support, the collector maintains
an index tomatch runmetadata with pointers to individual run
sequences. The index file approach allows for flexible storage
of metadata (e.g., run factors/levels, collection interval, etc.)
and multiple labeling for sequences.

VI. EVALUATION METHODOLOGY
Section IV presented a general framework for HPC research
while Section V described one possible implementation
based on the framework. This section discusses the evalu-
ation methodology using the framework implementation to
characterize the behavior of the data collection process and
the approach’s performance overhead. The four evaluation
criteria begin in Subsection VI-A. Subsection VI-E describes
two data collection experiments to gather data to apply the
evaluation criteria. Subsection VI-F describes two techniques
used to automate outlier detection and remediation. Lastly,
Subsection VI-G describes the three computer systems used
to execute the data collection experiments. The evaluation
criteria results are presented in Section VII.

A. CRITERIA #1: STATIONARITY OF ELAPSED TIME
In time series analysis, stationary models maintain an
equilibrium with constant variance about a fixed mean [47].
Although data collection tools are imperfect, the values
observed in the time domain should be stationary. A non-
stationary time domain would indicate the need for remedial
measures when classical time series analysis techniques are

23522 VOLUME 10, 2022



T. J. Langehaug et al.: MADFAM: MicroArchitectural Data Framework and Methodology

used and might be a source of irreducible noise with negative
effects on deep learning models.

A unit root is a parameter in time series models that
accounts for a shift in mean or variance as time changes.
Stationary data does not have a unit root. The HPC collector
implementation should produce stationary data without a unit
root. The augmented Dickey-Fuller (ADF) is a statistical
test used to test for the presence of a unit root in the
sequence [47]. The formal hypothesis for the ADF test is
shown in Equation 4. The number of instanceswhereH0 is not
rejected are counted to determine if nonstationarity occurs as
a result of the data collection process. This test is performed
on a quiescent system with minimal operating system load.
The ADF test is appropriate for sequences of elapsed time
measurements, but other sequences of event counts might not
be stationary, depending on the relationship of the event to
the running program.

H0 : There is a unit root in the series

Ha : The time series is stationary (4)

Lastly, the median value for the elapsed time is estimated
for the different measurement techniques at various collection
intervals. When the median value for the elapsed time mea-
surement is obviously greater than the specified collection
interval then the chosen collection interval is too small for
the architecture to handle reliably.

B. CRITERIA #2: DATA LOSS
Time series data collection tools for HPCs should not lose
data. This proposed evaluation criteria measures lost data by
counting events that are invariant between program runswhen
given the same input. The total number of retired branch
instructions is considered invariant because even if a process
is interrupted and a context switch occurs at arbitrary points
in time during a program’s execution, the aggregated retired
branch instructions should be constant. A subset of data when
only the branch instructions event is enabled (see Table 4)
is used to measure data loss for each collection technique at
various rates for two different programs. Users applying this
framework can monitor event counts over repeated program
runs and use variation in event counts to help determine if the
chosen configuration might be discarding data.

The standard deviation of the total branch instructions
between runs for an ideal collection technique would have
a standard deviation near zero because the total number of
branch instructions would never change. Bootstrap resam-
pling is used to estimate the 95% confidence interval for the
standard deviation of the total number of branch instructions.
The confidence intervals can be used to determine the
possible challenges associated with data loss in the collection
techniques.

C. CRITERIA #3: SEQUENCE VARIATIONS
Experimental data is collected to evaluate the consistency of
invariant events for a program between runs. Two different

approaches are applied to compare results. The first method
uses the Kolmogorov-Smirnov test (KS test) [48] at a type I
error rate of 0.05 (α = 0.05) to compare distributions of
branch instruction event count sequences from pairs of runs
with identical factors. Equation 5 provides H0 and Ha for the
KS test. A pairwise comparison between observations was
performed because there does not exist a standard sequence to
measure each individual sequence against. An α adjustment
was not performed to account for multiple comparisons
because α would be quite small making it unlikely for
statistical tests to reject H0. At α = 0.05 approximately
5% of the tests will reject H0 when the sequences are not
actually different. There are

(100
2

)
combinations of run pairs

per treatment. These tests are efficient on modern computer
hardware, so the KS test results are obtained across all pairs
of runs. For each run, the sequence was split into run windows
of n observations. For the smaller collection intervals (5 µsec
and 10 µsec) n = 20 was used. The sequences for
the 100 µsec collection interval are significantly shorter
(typically no more than 12 observations per sequence),
so n = 5 was chosen.
When H0 is rejected, there is evidence that at least one of

the data points in the window does not come from the same
continuous population. The total number of failures-to-reject
H0 is counted over all windows and the ratio of failures-to-
reject versus the total number of tests performed is computed.
A dataset with

(100
2

)
values of the ratio is created and the data

is resampled to estimate the confidence interval for the ratio
on each of the experiment factor level combinations.

H0 : F(t) = G(t) ∀t

Ha : F(t) 6= G(t) for at least 1t (5)

The second method to compare raw sequences is pair-
wise Dynamic Time Warping (DTW) using the calculated
DTW measurement as a score for similarity between the two
sequences. The DTW implementation in the tslearn [49]
computes the optimal path to align two sequences and then
calculates the Euclidean distance as shown in Equation 6.
The two sequences being compared are represented as a
and b while the value at the sequence index i indicates the
number of executed branch instructions since the previous
timestep. DTW is a well-established dynamic programming
algorithm that originated in speech recognition research [50]
and has been applied in cross-virtual machine side channel
detection research [43]. A 95% confidence interval for the
DTWmeasurement is calculated using the bootstrap method.

DTWmeasurement (a, b) =
√ ∑

(i,j)∈π

‖ai − bj‖2 (6)

where π is the optimal alignment path [49]

D. CRITERIA #4: COLLECTION OVERHEAD
The developed framework implementation achieves code
location aware HPCmonitoring. Achieving this goal imposes
an additional performance penalty not found in systems

VOLUME 10, 2022 23523



T. J. Langehaug et al.: MADFAM: MicroArchitectural Data Framework and Methodology

configuring HPCs in the kernel on context switches or
systems that gather data with a system-wide aperture.
Therefore, two aspects are considered when measuring
the performance overhead. First, the overhead associated
with establishing a monitoring session should be measured.
In contrast with data collection using the perf utility, the
instrumented code must communicate with a collector to
configure the HPCs. Second, the overhead to collect and store
data after a session is established should be considered.

The first overhead aspect, session establishment, was
estimated using data with the sampling mode set to ‘‘None’’
(e.g., data collection turned off) as the control group. When
the duration factor is 0 ms, no work is performed, thus
isolating the session management overhead. The difference
between two randomly sampled data points, one from the
control population and one from the treatment population
(poll or sample) was calculated. A simulation with one
million random samples was used to obtain a point estimate
of the mean difference between the two populations, thus
providing a single value to describe session establishment
overhead in the average case.

The second overhead aspect, data collection and storage,
was estimated by subtracting the point estimate for the
mean time to establish a monitoring session from the total
execution time at 10 ms, 1 sec, and 30 sec to estimate data
collection overhead separate from management overhead.
The result of subtraction can be negative. Negative values
are an indication that the data collection mechanism imposes
minimal overhead once the session establishment overhead is
accounted for.

A program that executed integer operations in a loop
established the session overhead baseline. To compare the
proposed implementation’s performance in a more realis-
tic environment, four programs from the MiBench [51]
microbenchmarking suite were instrumented. The execution
time data collected with the framework implementation
disabled was used as a control group to establish a baseline of
execution times for the collection techniques. The slowdown
ratio is calculated as shown in Equation 7.

Slowdown =
Execution Timecollection on
Execution Timecollection off

(7)

E. TWO DATA COLLECTION EXPERIMENTS
Two data collection experiments were defined to support
the four evaluation criteria from Section VI. The first data
collection experiment provides data for the first three criteria,
while the second data collection experiment gathers the
necessary data to support the third criteria. The detailed
framework settings are described in this section.

1) CRITERIA #1-3 DATA COLLECTION EXPERIMENT
In both sampling and polling techniques, the elapsed time
between measurements is a request, not a hard requirement.
Assuming a constant CPU operating frequency, collection

TABLE 4. Data collection factors and levels for evaluation criteria 1, 2,
and 3.

tools that promote consistency will gather data with minimal
variation in the time elapsed since the previous measurement.

A subset of technical considerations from Table 3 was
used to identify factors and levels to collect data for analysis.
Technical considerations and experiment-unique settings,
which are not varied during an experiment are described
as parameters with settings. Table 4 shows the factors and
levels while Table 5 shows the parameters and settings. For
each combination of factors and levels 100 observations are
obtained. The number of events and the event set chosen
is treated in the analysis as a nuisance factor which might
contribute some effect, but is not a focus of the analysis.

2) CRITERIA #4 DATA COLLECTION EXPERIMENT
The data collection overhead criteria included goals for
measuring session management overhead and data collection
overhead. Two independent experiments were conducted to
measure the total execution time of the instrumented code.
Table 6 describes the parameter settings that were used to
support both experiments. The first experiment gathered data
using the factors and levels described in Table 7 on a trivial
program that performed addition for a specified number of
iterations. The number of iterations was chosen such that the
program ran for an approximate amount of chosen wall clock
time. The experiment used a randomized factorial design
and 25 observations for each combination of factors, with
a random amount of quiescence (0 to 5 seconds) between
runs. The number of events and sampling rate are irrelevant
when the sampling mode is off and were ignored when
building the randomized run list to ensure an even number
of replicates for all configurations. The second experiment
collected execution data on real programs. Table 8 lists the
factors and levels for collecting data on real programs as
opposed to the continuous loop program.

F. AUTOMATED OUTLIER DETECTION
Due to the complex interactions between operating sys-
tems and available computer system resources, sequences

23524 VOLUME 10, 2022



T. J. Langehaug et al.: MADFAM: MicroArchitectural Data Framework and Methodology

TABLE 5. Data collection parameters and settings for evaluation
criteria 1, 2, and 3.

TABLE 6. Parameters and settings to evaluate collection overhead for
both sets of data collected for criteria #4.

collected by any HPC data collection technique will have
outliers. The volume of data generated by the collection

TABLE 7. Factors and levels to evaluate collection overhead on simple
program for criteria #4.

TABLE 8. Factors and levels to evaluate collection overhead for
MiBench [51] programs for criteria #4.

mechanisms alongside the number of replicates for experi-
ments makes manual outlier detection infeasible. Analyzing
the data with statistical tools is helpful to recognize
shortcomings in an HPC data collection approach.

This section describes two approaches to manage different
kinds of data which might have outliers. The first kind of data
are sequences, which record a fixed-length vector of values
every timestep. Second, there are individual point values
which record properties such as total execution time or mean
HPC value for a sequence.

1) COOK’s DISTANCE
Linear regression is a technique to describe the relationship of
variables using linear parameters. Equation 8 shows a simple
linear regression model where Xi holds the ith value of a
predictor variable and Yi records ith observation. β0 is an
intercept term, B1 is the slope of the regression line (e.g.,
change in mean value of Y per unit increase in X , and εi is
a random error term [52].

Yi = β0 + β1Xi + εi (8)

For an ideal collector, the elapsed time between measure-
ments (e.g., interarrival time) should be constant. In an ideal
collector, when Xi is the index of the ith timestep and Yi is the

VOLUME 10, 2022 23525



T. J. Langehaug et al.: MADFAM: MicroArchitectural Data Framework and Methodology

elapsed time then β1 = 0. Fitting a linear regression model to
the observed data produces an estimate for β1 that is nonzero.

Cook’s Distance is a technique used in linear regression to
detect the influence of each Xi observation on the estimate
for β1. When the Cook’s Distance value exceeds a threshold
of 4

n , where n is the number of timesteps in the sequence,
then the outlier elapsed time is replaced with the sequence’s
median elapsed time. Cook’s distance is only used during the
analysis of the elapsed time and therefore the magnitudes of
HPCs are not corrected with this approach. The correction for
possible event count errors is handled using the second outlier
detection approach. The median value was chosen over the
mean because of the sharply peaked nature of the distribution.

2) MODIFIED INNER QUARTILE RANGE
The Modified Inner Quartile Range (IQR) technique [53]
is used to identify and remove outliers from a population.
In this research, the population may be within a single
series (e.g., outlier cache misses) or a set of point values
describing multiple series. The lower threshold for removal
is Q1 − 3.0IQR

(
1+ 0.1 log n

10

)
and the upper threshold is

Q3 + 3.0IQR
(
1+ 0.1 log n

10

)
, where n is the sample size.

The modified IQR technique identifies outliers from the
population mass, with consideration for the sample size n.
The outlier detection and remedial measures are specific

to the evaluation goals in this research. Applications of the
framework to develop deep learning models may choose
different outlier detection approaches and remedial measures
or may choose to eliminate the requirement for outlier
detection.

G. PERFORM EXPERIMENTAL ANALYSIS
The data collection architecture described in Section V
was implemented as a general purpose tool designed to
run on multiple CPUs with the possibility of extension to
larger-scale systems. To demonstrate the usefulness of the
framework, the evaluation criteria described in Section VI
were applied to three different CPU architectures. The IBM
POWER9 and Intel Xeon E5 processors are server-grade
CPUswhile the Intel i7-4700MQ is intended for use inmobile
computers such as laptops. The results of the experimental
analysis are presented and discussed in Section VII.

VII. RESULTS
This section presents the results for three different microar-
chitectures. To provide insight about the fundamental behav-
ior of various approaches to gathering data with HPCs, the
results focused on the criteria established in SectionVI. These
results establish reference data for the application of this
research framework so that others can propose improvements
to the various collection techniques or system architecture.

A. CRITERIA #1: STATIONARITY OF ELAPSED TIME
In contrast to domains where data is sampled at a fixed rate,
the operating system scheduler takes in numerous factors to
determine when each task executes. Therefore, the elapsed

time is actually a measurement of the underlying control
process. Table 9 shows the results of three measurements
related to the stationarity of the elapsed time. An important
point of consideration when interpreting these results is
that the sampling technique and polling technique have
distinct frames of reference for determining when to record
a measurement. The sampling technique interrupts the CPU
after a fixed number of counted cycles whereas the polling
technique relies on the operating system scheduler to grant
the polling process time on the CPU to read the HPC values.

The value shown for ADF failure in Table 9 captures the
ratio of sequences where the presence of a unit root failed
to be rejected at α = 0.05. Lower ADF ratios indicate a
more ideal collection processes. A unit root is an indicator
that another property of the computer execution environment
influenced the achievement of the desired collection interval.
ADF is a low-power test for short sequences (e.g., 100 µsec)
but the nonstationarity of sampling technique sequences
when compared with the polling technique could be a source
of concern. Nevertheless, research that builds systems to use
time series HPC data should discuss the stationarity of raw
data and corrections for nonstationarity.

Figure 5 shows examples of stationary and nonstationary
behavior in traces gathered every 10 µsec (polling) or
every 32K clock cycles (sampling). Figure 5b exhibits an
undesirable amount of variation and was clearly given a
lower execution priority given the high elapsed time at
the beginning. The default Linux completely fair scheduler
corrects the delayed runtime by granting earlier execution for
a period of time. The stair step behavior shown in Figure 5d
is also intriguing. The stair stepping likely occurs because the
CPU frequency increased at those points in time. The results
shown in Figure 5 demonstrate the kinds of shifts statistical
models or neural networks must have the capacity to handle.

The second important result to draw from Table 9 is the
upper-limit for data collection on each of the three systems
used. With 95% confidence, the IBM POWER9 average
collection interval using the polling technique is between
6.39 µsec and 6.41 µsec when a 5 µsec collection interval
is specified. Clearly, the collection interval is not being
satisfied, which could lead to increased noise and unexpected
results during analysis. In contrast, the Intel systems were
reasonably close to the collection interval even at 5 µsec.

B. CRITERIA #2: DATA LOSS
The data loss criteria was evaluated by considering the total
number of branch instruction events counted for multiple
runs of the same program given the same input. Table 10
shows the 95% confidence interval for the observed standard
deviations of total branch instruction events. Recall that an
ideal technique should have no variation because the number
of branch instructions should be invariant between runs of
the chosen program. The sampling technique violates this
property with huge standard deviations across all program
runs. In contrast, the poll technique experienced fairly small
deviations. There was no variation for the IBM POWER9 on

23526 VOLUME 10, 2022



T. J. Langehaug et al.: MADFAM: MicroArchitectural Data Framework and Methodology

TABLE 9. Stationarity of elapsed time and collection interval statistics on
all considered CPUs.

FIGURE 5. Examples of stationary and nonstationary elapsed time
behavior.

TABLE 10. 95% confidence interval for the std deviation of total event
counts for # of branch instructions.

the fibonacci program at the 100 µsec collection interval.
In machine learning applications, a benefit of minimizing
variation in the total event count is that smaller models
operating on a vector of features could be used alongside
sequence classification approaches.

The reasons causing variation are outside the scope of this
analysis. It is plausible that failing to save and restore HPC
state from the kernel during context switch could include
branch instructions from other programs [20]. Reflecting on
Basu’s hypothesis that CFGs could be confirmed using HPC
data, the sampling technique seems to present significant
challenges. However, the polling technique presents a less
obvious reason for concern. Spectre and Meltdown attack
detection research could be impacted by the large variation

VOLUME 10, 2022 23527



T. J. Langehaug et al.: MADFAM: MicroArchitectural Data Framework and Methodology

TABLE 11. 95% confidence interval for distribution-free
Kolmogorov-Smirnov test between any two sequences.

if the sampling technique is used because the variation could
make it easier for low-rate attacks to evade detection.

C. CRITERIA #3: SEQUENCE VARIATIONS
Two different techniques were used to measure the sequence
variation between runs. Table 11 presents the confidence
intervals for the mean ratio of failures to reject H0 (at
least one point comes from a different distribution) to the
number of windows compared in the sequence. A ratio near
1.0 in Table 11 indicates the collection technique yields
similar distributions of event counts across all windows in the
sequence.

In general, the sampling technique produces more sim-
ilar distributions. Given the data loss issues described
in Section VII-B, this similarity could be a result of
events not being counted. The data for 100 µsec on
the Intel processors were omitted because the sequences
contained too few samples. The similarity of the polling
sequences at 5 and 10 µsec is fairly low, especially for the
CPU-bound fibonacci task. Unfortunately, this result suggests
that faster collection rates (which imply stronger relationship
to the CFG in [17]) might experience more than 5%
nondeterminism when analyzed as a sequence.

The second approach to assess the similarity of two
sequences calculated 95% confidence intervals for the DTW
measurement between any two randomly chosen sequences.
The results of the DTW calculation are provided in Table 12.
There are 4 observations to be made. First, the smallest
collection interval achievable on the processor architecture
tends (with some exceptions) to produce the smallest DTW
distance between two sequences for the polling and sampling

TABLE 12. 95% confidence interval for dynamic time warping
measurement between two sequences.

TABLE 13. Observed overhead after subtracting the mean management
overhead for the collection technique.

techniques. On the Intel processors, this suggests that 5 µsec
is a reasonable collection interval while 10 µsec intervals are
reasonable on the IBM POWER9.

Second, the Intel i7-4700MQ processor (which is designed
for laptops) produced noticeably higher DTWmeasurements
for both collection techniques, but the DTW measurement
magnitude for polling at 100 µsec is quite large. Analyzing
the underlying reasons is beyond the scope of this analysis but
could be attributable to mobile-specific power management
design trade-offs or different PMU implementations.

Third, the DTW measurement for the CPU-bound
fibonacci task tends to be lower than the sort task. Initially,
it appears that stochasticity associated with memory accesses
could be a source of variation between CPU-bound tasks and
those that depend on other resources such as main memory.

23528 VOLUME 10, 2022



T. J. Langehaug et al.: MADFAM: MicroArchitectural Data Framework and Methodology

TABLE 14. Total polling overhead on real programs.

TABLE 15. Total sampling overhead on real programs.

However, a direct comparison between fibonacci and sort
is unreasonable since the duration each program executes is
different and the code executed between branch instructions
will lead to different event magnitudes.

Finally, there appears to be disagreement with the KS test
results provided in Table 11 and the DTW results provided
in Table 12. For example, the polling technique produces
low ratios (approx. 50%) but the DTW metric is small.
The windowed approach to the KS test draws hard interval
boundaries assuming a constant rate progression through the
program whereas DTW includes a warping parameter that

allows for alignment between signals of different rates. The
complexities of executing code make the assumption of the
KS test approach unrealistic, while the flexibility of DTW
overcomes this limitation.

D. CRITERIA #4: COLLECTION OVERHEAD
This section describes the results of the collection overhead
analysis. The results were obtained for all three processors
described in this research, but the results were similar enough
to present only the IBM POWER9 results. Table 13 shows
both the estimated overhead for the management of a data
collection session and the time penalty associated with
storing data after the estimated time penalty for session
management has been removed. The first row in Table 13
shows the estimated session establishment overhead for the
polling versus sampling collection techniques. Notably, the
sampling technique takes an order of magnitude longer than
the polling technique to configure the HPCs. If a system uses
a system-wide aperture or monitors long running programs
where the configuration of the HPCs happens infrequently,
this long delay is likely not a significant factor. However,
if the collection aperture narrows to specific threads with
known code locations, this configuration penalty could render
the approach unusable for practical purposes.

The values reported for mean and range on each of the
different durations were calculated by subtracting the esti-
mated average management overhead from the total program
execution time. Negative values occur when programs in the
treatment group finish faster than the program in the control
group. The negative values in Table 13 should be interpreted
as indications that the session management and collection
process imposes negligible overhead in the average case. For
short periods of collection such as a 10 ms program, the
overhead of collecting and storing data is trivial. However,
the length of data collection increases the amount of time
required to save and store data. The data storage task could
be significantly improved by proactively writing data to disk
at intervals during data collection.

Table 14 shows the total overhead (i.e., the estimated mean
configuration time is not subtracted from program execution
time) for real programs when the polling technique is used
and Table 15 shows the total overhead when the sampling
technique is used. For both collection techniques, the average
slowdown tends to decrease for programs that take longer to
finish executing (e.g., lame and typeset), whereas programs
that execute more quickly exhibit greater slowdown because
of the management overhead. If session management costs
are ignored, then the overhead of data collection is negligible.

VIII. CONCLUSION AND FUTURE WORK
This research proposed a framework to organize numer-
ous settings required to configure HPCs. The framework
described is not dependent upon a specific microarchitecture
and allows for the flexibility of choosing different implemen-
tation tools, while providing greater clarity about precisely
how HPCs were configured. The framework informed a data

VOLUME 10, 2022 23529



T. J. Langehaug et al.: MADFAM: MicroArchitectural Data Framework and Methodology

collection architecture that was implemented to establish
a baseline for characterizing the behavior of HPC data as
a sequence on real systems. Four evaluation criteria were
evaluated in an experimental environment on three different
types of CPUs and discussion of the results provides insight
for future HPC research to consider.

There are several opportunities for future work, especially
when the diversity of use cases for HPC data is considered.
First, Basu’s hypothesis [17] suggests strong guarantees
with HPC data. A key limitation of the approach taken by
Basu is the dependence upon a ‘‘golden’’ HPC reading.
An approach based on empirical data that used variation
between sequences as the foundation for analysis while
achieving similar results could be of great benefit. Second,
the quantity of possible events and relationships to different
behaviors of interest are not well described. A methodical
approach to run experiments, collect data and make informed
decisions about which events to select, would fill an important
gap in this research area. Third, in the context of information
security use cases, all current HPC techniques assume the
operating system is not compromised and part of the trusted
computing base. Dedicated hardware to configure PMUs and
collect data could provide stronger security properties.

ACKNOWLEDGMENT
The views expressed in this document are those of the authors
and do not reflect the official policy or position of the U.S.
Air Force, the U.S. Department of Defense, or the U.S.
Government. This document has been approved for public
release; distribution unlimited, case #88ABW-2021-1021.

REFERENCES
[1] P. Kocher, J. Horn, A. Fogh, and D. Genkin, ‘‘Spectre attacks: Exploiting

speculative execution,’’ in Proc. Symp. Secur. Privacy (SP), San Francisco,
CA, USA, 2019, pp. 1–19.

[2] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
‘‘Meltdown: Reading kernel memory from user space,’’ in Proc. 27th
USENIX Secur. Symp. Secur. (USENIX), Baltimore, MD, USA, Aug. 2018,
pp. 973–990.

[3] J. Szefer, ‘‘Survey of microarchitectural side and covert channels, attacks,
and defenses,’’ J. Hardw. Syst. Secur., vol. 3, no. 3, pp. 219–234, Sep. 2019.

[4] C. Canella, K. N. Khasawneh, and D. Gruss, ‘‘The evolution of transient-
execution attacks,’’ in Proc. Great Lakes Symp. VLSI, Virtual Event, China,
Sep. 2020, pp. 163–168.

[5] X. Jin and N. Yu, ‘‘A defense mechanism against transient execution
attacks on SMT processors,’’ IEICE Electron. Exp., vol. 18, p. 10041,
Nov. 2021.

[6] C. Reinbrecht, S. Hamdioui, M. Taouil, B. Niazmand, T. Ghasempouri,
J. Raik, and J. Sepulveda, ‘‘LiD-CAT: A lightweight detector for cache
attacks,’’ in Proc. Eur. Test Symp., Tallinn, Estonia, May 2020, pp. 1–6.

[7] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanoviá, and D. Song, ‘‘Keystone:
An open framework for architecting trusted execution environments,’’
in Proc. 15th Eur. Conf. Comput. Syst., Heraklion, Greece, Apr. 2020,
pp. 1–16.

[8] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek,
A.-R. Sadeghi, and E. Stapf, ‘‘CURE: A security architecture with
customizable and resilient enclaves,’’ in Proc. 30th USENIX Secur. Symp.,
Aug. 2021, pp. 1073–1090.

[9] C. Li and J.-L. Gaudiot, ‘‘Online detection of spectre attacks using
microarchitectural traces from performance counters,’’ in Proc. 30th Int.
Symp. Comput. Archit. High Perform. Comput., Lyon, France, Sep. 2018,
pp. 25–28.

[10] M. Mushtaq, J. Bricq, M. K. Bhatti, A. Akram, V. Lapotre, G. Gogniat,
and P. Benoit, ‘‘WHISPER: A tool for run-time detection of side-channel
attacks,’’ IEEE Access, vol. 8, pp. 83871–83900, 2020.

[11] B. Zheng, J. Gu, J. Wang, and C. Weng, ‘‘CBA-detector: A self-feedback
detector against cache-based attacks,’’ IEEE Trans. Dependable Secure
Comput., early access, Jun. 16, 2021, doi: 10.1109/TDSC.2021.3089882.

[12] W. Wang, G. Chen, Y. Cheng, Y. Zhang, and Z. Lin, ‘‘Specular-
izer: Detecting speculative execution attacks via performance tracing,’’
in Detection Intrusions and Malware, and Vulnerability Assessment,
vol. 12756, L. Bilge, L. Cavallaro, G. Pellegrino, and N. Neves, Eds. Cham,
Switzerland: Springer, 2021, pp. 151–172.

[13] P. Cronin and C. Yang, ‘‘Lowering the barrier to online mal-
ware detection through low frequency sampling of HPCs,’’ in Proc.
IEEE Int. Symp. Hardw. Oriented Secur. Trust (HOST), Apr. 2018,
pp. 177–180.

[14] B. Zhou, A. Gupta, R. Jahanshahi, M. Egele, and A. Joshi, ‘‘Hardware
performance counters can detect malware: Myth or fact?’’ in Proc.
Asia Conf. Comput. Commun. Secur., Incheon, South Korea, May 2018,
pp. 457–468.

[15] B. Zhou, A. Gupta, R. Jahanshahi, M. Egele, and A. Joshi, ‘‘A cautionary
tale about detecting malware using hardware performance counters and
machine learning,’’ IEEEDesign Test, vol. 38, no. 3, pp. 39–50, Mar. 2021.

[16] C. Malone, M. Zahran, and R. Karri, ‘‘Are hardware performance counters
a cost effective way for integrity checking of programs,’’ in Proc. 6th ACM
Workshop Scalable Trusted Comput., 2011, pp. 71–76.

[17] K. Basu, P. Krishnamurthy, F. Khorrami, and R. Karri, ‘‘A theoretical study
of hardware performance counters-based malware detection,’’ IEEE Trans.
Inf. Forensics Security, vol. 15, pp. 512–525, 2020.

[18] J. L. Hennessy and D. A. Patterson, Computer Architecture, Sixth Edition:
A Quantitative Approach, 6th ed. San Francisco, CA, USA: Morgan
Kaufmann, 2017.

[19] M. N. Islam and S. Kundu, ‘‘PMU-Trojan: On exploiting power
management side channel for information leakage,’’ in Proc. 23rd Asia
South Pacific Design Automat. Conf., Jan. 2018, pp. 709–714.

[20] S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Monrose,
‘‘SoK: The challenges, pitfalls, and perils of using hardware performance
counters for security,’’ in Proc. IEEE Symp., Oct. 2019, pp. 20–38.

[21] A. Biswas, Z. Li, and A. Tyagi, ‘‘Performance counters and DWT enabled
control flow integrity,’’ Social Netw. Comput. Sci., vol. 3, no. 1, p. 48,
Jan. 2022.

[22] V. Weaver. (2021). GitHub. Accessed: Sep. 7, 2021. [Online]. Available:
https://github.com/deater/perf_event_tests

[23] O. Aciicmez, ‘‘Yet another microarchitectural attack: Exploiting I-cache,’’
Samsung Inf. Syst. Amer., Samsung Electron., San Jose, CA, USA,
Tech. Rep. 164, 2007.

[24] C. Percival, ‘‘Cache missing for fun and profit,’’ in Free BSD Pre-
sentations Papers. Ottawa, ON, Canada: BSDCan, 2005. Accessed:
Dec. 12, 2021. [Online]. Available: https://papers.freebsd.org/2005/
cperciva-cache_missing/

[25] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, ‘‘Last-level cache
side-channel attacks are practical,’’ in Proc. IEEE Symp. Secur. Privacy,
May 2015, pp. 605–622.

[26] M. Payer, ‘‘HexPADS: A platform to detect ‘stealth’ attacks,’’ in
Engineering Secure Software and Systems (Lecture Notes in Computer
Science), vol. 9639, J. Caballero, E. Bodden, and E. Athanasopoulos, Eds.
Cham, Switzerland: Springer, 2016, doi: 10.1007/978-3-319-30806-7_9.

[27] V. M. Weaver and S. A. McKee, ‘‘Can hardware performance counters
be trusted?’’ in Proc. Int. Symp. Workload Characterization, 2008,
pp. 141–150.

[28] V. M. Weaver, D. Terpstra, and S. Moore, ‘‘Non-determinism and
overcount on modern hardware performance counter implementations,’’ in
Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Apr. 2013,
pp. 215–224.

[29] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman,
S. Sethumadhavan, and S. Stolfo, ‘‘On the feasibility of online malware
detection with performance counters,’’ ACM SIGARCH Comput. Archit.
News, vol. 41, no. 3, pp. 559–570, 2013.

[30] M. Kazdagli, V. J. Reddi, and M. Tiwari, ‘‘Quantifying and improving the
efficiency of hardware-based mobile malware detectors,’’ in Proc. 49th
Annu. IEEE/ACM Int. Symp. Microarchitecture, 2016, pp. 1–13.

[31] B. Singh, D. Evtyushkin, J. Elwell, R. Riley, and I. Cervesato, ‘‘On the
detection of kernel-level rootkits using hardware performance counters,’’
in Proc. Asia Conf. Comput. Commun. Secur., Abu Dhabi, United Arab
Emirates, Apr. 2017, pp. 483–493.

23530 VOLUME 10, 2022

http://dx.doi.org/10.1109/TDSC.2021.3089882
http://dx.doi.org/10.1007/978-3-319-30806-7_9


T. J. Langehaug et al.: MADFAM: MicroArchitectural Data Framework and Methodology

[32] A. Tang, S. Sethumadhavan, and S. J. Stolfo, ‘‘Unsupervised anomaly-
based malware detection using hardware features,’’ in Research Attacks,
Intrusions and Defenses, vol. 8688, A. Stavrou, H. Bos, and G. Portoka-
lidis, Eds. Cham, Switzerland: Springer, 2014, pp. 109–129.

[33] N.Herath andA. Fogh. (2015). Not YourGrandDaddy’s CPUPerformance
Counters—CPU Hardware Performance Counters for Security. Black
Hat 2015 Briefings. Accessed: Nov. 20, 2020. [Online]. Available:
https://www.blackhat.com/docs/us-15/materials/us-15-Herath-These-Are-
Not-Your-Grand-Daddys-CPU-Performance-Counters-CPU-Hardware-
Performance-Counters-For-Security.pdf

[34] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, ‘‘When good
instructions go bad: Generalizing return-oriented programming to RISC,’’
in Proc. 15th ACM Conf. Comput. Commun. Secur., 2008, pp. 27–38.

[35] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, ‘‘Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,’’ in Proc. 41st Int.
Symp. Comput. Archit., Minneapolis, MN, USA, Jun. 2014, pp. 361–372.

[36] S. Das, B. Chen, M. Chandramohan, Y. Liu, and W. Zhang, ‘‘ROPSEntry:
Runtime defense against ROP attacks using hardware performance
counters,’’ Comput. Secur., vol. 73, pp. 374–388, Oct. 2018.

[37] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, ‘‘Flush+Flush: A fast
and stealthy cache attack,’’ in Detection of Intrusions and Malware, and
Vulnerability Assessment (Lecture Notes in Computer Science), vol. 9721,
J. Caballero, U. Zurutuza, and R. Rodríguez, Eds. Cham, Switzerland:
Springer, 2016, doi: 10.1007/978-3-319-40667-1_14.

[38] M. Alam, S. Bhattacharya, and D. Mukhopadhyay, ‘‘Victims can be
saviors: A machine learning–based detection for micro-architectural side-
channel attacks,’’ ACM J. Emerg. Technol. Comput. Syst., vol. 17, no. 2,
pp. 1–31, Jan. 2021.

[39] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, U. Erlingsson,
L. Lozano, and G. Pike, ‘‘Enforcing forward-edge control-flow integrity
in,’’ in Proc. 23rd USENIX Symp., 2014, p. 20.

[40] Y. Xia, J. Liu, H. Chen, and B. Zang, ‘‘CFIMon: Detecting violation of
control flow integrity using performance counters,’’ in Proc. Int. Conf.
Dependable Syst. Netw., Boston, MA, USA, Jun. 2012, pp. 1–12.

[41] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA:MIT Press, 2016. Accessed: Dec. 12, 2021. [Online]. Available:
http://www.deeplearningbook.org

[42] (2018). POWER9 Performming Monitor Unit User’s Guide, V1.2.
Accessed: Oct. 20, 2020. [Online]. Available: https://wiki.raptorcs.
com/w/images/6/6b/POWER9_PMU_UG_v12_28NOV2018_pub.pdf

[43] T. Zhang, Y. Zhang, and R. B. Lee, ‘‘CloudRadar: A real-time side-channel
attack detection system in clouds,’’ in Research in Attacks, Intrusions, and
Defenses (Lecture Notes in Computer Science), vol. 9854, F. Monrose, M.
Dacier, G. Blanc, and J. Garcia-Alfaro, Eds. Cham, Switzerland: Springer,
2016, doi: 10.1007/978-3-319-45719-2_6.

[44] C. Ashford. (2021). LWN. Accessed: Nov. 24, 2021. [Online]. Available:
https://lwn.net/Articles/370414/

[45] G. James, R. T. DanielaWitten, and T. Hastie,An Introduction to Statistical
Learning: With Applications in R. New York, NY, USA: Springer, 2017.

[46] S. Chadha, D. A. Hrusecky, and D. Q. Nguyen, ‘‘Parallel slice processor
having a recirculating load-store queue for fast deallocation of issue queue
entries,’’ U.S. Patent 10 133 576, Nov. 20, 2016.

[47] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series
Analysis: Forecasting Control. Hoboken, NJ, USA: Wiley, 2015.

[48] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric Statistical
Methods, 3rd ed. Hoboken, NJ, USA: Wiley, 2014.

[49] R. Tavenard, J. Faouzi, G. Vandewiele, F. Divo, G. Androz, C. Holtz,
M. Payne, R. Yurchak, M. Rußwurm, K. Kolar, and E. Woods, ‘‘Tslearn, a
machine learning toolkit for time series data,’’ J.Mach. Learn. Res., vol. 21,
no. 118, pp. 1–6, 2020. [Online]. Available: http://jmlr.org/papers/v21/20-
091.html

[50] H. Sakoe and S. Chiba, ‘‘Dynamic programming algorithm optimization
for spoken word recognition,’’ IEEE Trans. Acoust., Speech, Signal
Process., vol. ASSP-26, no. 1, pp. 43–49, Feb. 1978.

[51] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown,
‘‘MiBench: A free, commercially representative embedded benchmark
suite,’’ in Proc. 4th Annu. Int. Workshop Workload Characterization,
Austin, TX, USA, 2001, pp. 3–14.

[52] M. H. Kutner, Applied Linear Statistical Models. Boston, MA, USA:
McGraw-Hill, 2005.

[53] G. Barbato, E. M. Barini, G. Genta, and R. Levi, ‘‘Features and
performance of some outlier detection methods,’’ J. Appl. Statist., vol. 38,
no. 10, pp. 2133–2149, Oct. 2011.

TOR J. LANGEHAUG (Student Member, IEEE)
received the B.S. degree in computer science
from California State University, Sacramento, CA,
USA, in 2009, and the M.S. degree in informa-
tion security from Carnegie Mellon University,
Pittsburgh, PA, USA, in 2017. He is currently
pursuing the Ph.D. degree with the Air Force Insti-
tute of Technology, investigating applications of
machine learning to low-level microarchitectural
data sources.

SCOTT R. GRAHAM (Senior Member, IEEE)
received the Ph.D. degree in electrical engi-
neering from the University of Illinois at
Urbana–Champaign, Champaign, IL, USA,
in 2004. He is currently an Associate Professor of
computer engineering with the Air Force Institute
of Technology, Wright-Patterson Air Force Base,
Dayton, OH, USA. His research interests include
the security of cyber–physical systems, computer
architecture, networks, and security.

CHRISTINE M. SCHUBERT KABBAN received
the B.S. degree inmathematics from theUniversity
of Dayton, Dayton, OH, USA, in 1992, the
M.S. degree in applied statistics from Wright
State University, Dayton, in 1995, and the Ph.D.
degree in applied mathematics from the Air Force
Institute of Technology (AFIT), Wright-Patterson
Air Force Base, OH, USA, in 2005.

She was an Assistant Professor with Virginia
Commonwealth University, Richmond, VA, USA.

She is currently a Professor of statistics with AFIT. She has been researching
and practicing statistics for over 20 years in clinical, engineering, and
statistical fields. Her research interests include applications to structural
health monitoring, target detection, and autonomous systems and networks
with hierarchical and complex multidimensional data.

BRETT J. BORGHETTI earned a Ph.D. degree
in computer science in 2008 from the University
of Minnesota, Twin Cities, MN; a M.S. degree
in computer systems in 1996 from the Air Force
Institute of Technology (AFIT) in Dayton, OH;
and a B.S. degree in electrical engineering in 1992
from the Worcester Polytechnic Institute (WPI),
Worcester, MA.

He is an Associate Professor in the Department
of Electrical and Computer Engineering in the

Graduate School of Engineering Management at the Air Force Institute of
Technology. His research interests focus on improving human–machine team
performance and exploiting sensed information in complex environments
using artificial intelligence andmachine learning. He has research experience
in estimating human cognitive performance, statistical machine learning,
genetic algorithms, self-organizing systems, neural networks, game theory,
information theory and cognitive science.

VOLUME 10, 2022 23531

http://dx.doi.org/10.1007/978-3-319-40667-1_14
http://dx.doi.org/10.1007/978-3-319-45719-2_6

	MADFAM: MicroArchitectural Data Framework and Methodology
	Recommended Citation

	MADFAM: MicroArchitectural Data Framework and Methodology

