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Solar cell BRDF measurement and modeling
with out-of-plane data

TODD V. SMALL,1,* SAMUEL D. BUTLER,1 AND MICHAEL A.
MARCINIAK1

Department of Engineering Physics, Air Force Institute of Technology (AFIT), 2950 Hobson Way,
Wright-Patterson, AFB, OH 45433, USA
*todd.small@afit.edu

Abstract: In this work, a CCD-augmented complete angle scatter instrument (CASI) with a
visible red laser source was used to measure the BRDF of a commercially available solar cell
designed for small satellites, simultaneously capturing both in-plane and out-of-plane data with
high angular resolution surrounding the specular direction. The measurements exhibited three
distinct scatter features: a central specular peak, an offset specular peak, and a diffraction pattern.
The two peaks were caused by different material surfaces with slightly different normal directions,
and the diffraction pattern arose from periodically-spaced metal conducting bars running in one
direction across the solar cell surface. The diffraction pattern measurements were verified in-plane
with an original single-pixel CASI detector and then used to inform the creation of a single
closed-form BRDF model capable of describing the out-of-plane features. Both specular peaks
were modeled using a traditional microfacet formulation, but the offset peak model implemented
a rotation of the incident and scatter directions to account for the difference in surface normal
direction. The diffraction pattern–which is not typically described with microfacet models–was
described based on Fraunhofer diffraction through two rectangular stripes, adjusted in terms
of microfacet coordinates. Parameters for the model were chosen manually, based largely on
physical material properties when possible, rather than using optimized fitting algorithms. Model
results were compared to the measurements by using the same CCD pixel scatter coordinates.
Qualitatively, the model successfully replicated the observed features, and quantitatively, the
modeled peak values agree with the measurements within an order of magnitude.

1. Introduction

The bi-directional reflectance distribution function (BRDF) defines the spatial distribution of light
reflected from a material surface [1]. Material BRDFs can be modeled using a diverse range of
mathematical formulations, but due to a desire for both computational efficiency and radiometric
accuracy, remote sensing applications commonly rely on closed-form isotropic microfacet models
[2–4]. However, due to their simplifying assumptions, such models are typically unable to
describe out-of-plane BRDF features from materials with more complex or anisotropic surface
characteristics.

This work uses a commercially available solar cell designed for satellites as an example material
which possesses complex surface structure. Following a brief discussion in Sec. 2 of pertinent
BRDF measurement and modeling background, Sec. 3 presents in-plane and out-of-plane solar
cell BRDF measurements surrounding the specular direction, collected using a Complete Angle
Scatter Instrument (CASI) augmented with a charge-coupled device (CCD) detector. In addition
to the central specular peak, the measurements display a second offset specular peak caused by a
surface with a different normal direction, as well as a highly-directional diffraction pattern caused
by metal conducting bars periodically spaced along one dimension of the solar cell surface –
neither of which are typically included in closed-form BRDF models. The diffraction pattern
measurements are validated in Sec. 3.3 by comparison with the original CASI detector.

Section 4 presents the construction of a closed-form BRDF model with three terms capable
of describing each of the three prominently measured features, including their out-of-plane
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characteristics. One term models a central specular peak using a standard microfacet formulation;
a second term models an offset specular peak with a similar formulation but rotates the incident
and scatter directions to account for the difference in surface normal direction; and a third term
models a diffraction pattern by reformulating a known closed-form solution from Fourier optics
in terms of microfacet and scatter coordinates. Section 4.4 combines each term and compares the
model results with measurements, showing that the model successfully replicates each feature.

2. Background

Formally, the BRDF is the ratio of scattered radiance to incident irradiance [5], generally written

fr(ω̂i, ω̂s, λ) =
dLs(ω̂i, ω̂s, λ)

dEi(ω̂i, λ)
. (1)

In this expression, λ is the wavelength, and ω̂i and ω̂s represent incident and scattered directions,
respectively, which are often written in spherical coordinates (θi, ϕi) and (θs, ϕs). Scatter
directions within the plane of incidence (in-plane) are defined relative to the incident direction
by ϕi = ϕs or ϕi = ϕs + π. Scatter directions with other ϕs values, then, are located somewhere
outside the plane of incidence (out-of-plane).

In analyzing bulk scatter in general terms, there are two hemispheres of interest, which are
collectively referred to by the Bidirectional Scatter Distribution Function (BSDF). By convention,
θs = 0 refers to the overall surface normal direction. In this convention, θs ≤ π/2 corresponds
to the BRDF, while π/2< θs ≤ π corresponds to the Bidirectional Transmission Distribution
Function (BTDF). Since a solar cell is negligibly transmissive and is the subject of this work,
only the BRDF (θs ≤ π/2) will be considered in this paper when referring to scatter. In other
words, the BSDF is the sum of the BRDF and BTDF in general, although in this case only the
BRDF contributes a non-negligible value.

The BRDF is commonly used in scene generation via the Rendering Equation, [6]

Ls(ω̂s, λ) = Le(ω̂s, λ) +
∫
Ω+

fr(ω̂i, ω̂s, λ)Li(ω̂i, λ) cos θi dω̂i, (2)

where Ls is the total scattered radiance, Li is the incident radiance, Le is the self-emitted radiance,
and Ω+ represents the incident hemisphere. The BRDF is thus crucial in obtaining the total
radiance scattered off an object. In this work, as can be imagined when viewing an object in
space (such as a satellite) from a far off distance (such as from the Earth), high spatial resolution
is required. As a tradeoff, in this work (as with many high fidelity BRDF model papers) we limit
ourselves to a single wavelength, 632.8 nm; other wavelength measurements are saved for future
work. We further assume Le is negligible at this wavelength, since the self-emission even from a
blackbody at satellite temperatures at visible wavelengths is negligible compared to the scattered
radiance; self-emission is saved for future work at infrared wavelengths.

Fundamentally, microfacet models assume geometric optics and describe the material surface
as comprised of many very small specularly-reflecting facets, whose orientations relative to the
overall surface normal are described within a microfacet distribution function [7]. The general
underlying form for most microfacet BRDF models can be written [8]

fr(ω̂i, ω̂s) = ρsD(ω̂h)F(ω̂d)G(ω̂i, ω̂s)σ(θi, θs) + ρvV(ω̂i, ω̂s) +
ρd

π
, (3)

which consists of three terms. The primary term with weight ρs is the specular term, which
contains the microfacet distribution function D, a Fresnel reflectance function F, a shadowing
and obscuration function G, and a cross-section conversion σ. The second term weighted ρv is
the volumetric term, which accounts for additional scattering features such as subsurface particle
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scattering, although in practice, many microfacet models ignore this contribution [8]. The third
term weighted ρd is a constant Lambertian factor.

The microfacet distribution and Fresnel functions are often more conveniently expressed in
terms of microfacet coordinates [9]. Here, ω̂h represents the microfacet normal direction – or
equivalently the half-angle direction located directly between the incident and scattered directions.
Similarly, ω̂d is simply the incident direction expressed relative to the microfacet normal direction
ω̂h rather than the overall surface normal. The conversion from scatter to microfacet coordinates
is

ω̂h =
ω̂i + ω̂s

| |ω̂i + ω̂s | |
ω̂d = Ry(−θh)Rz(−ϕh)ω̂i, (4)

where the generic notation Ra(γ) represents a rotation about the a-axis by the angle γ.
Due to the fundamental assumption of geometric optics, microfacet models almost exclusively

ignore wavelength-dependent features, and so λ does not appear anywhere in Eq. (3). Phenomena
such as diffraction are rooted in the wave nature of light, but BRDF models which include wave
optics, such as the Modified Beckmann-Kirchhoff [10] or Generalized Harvey-Shack [11,12]
models, are much more computationally intensive and often do not possess closed-form solutions.
Based on comparisons between microfacet and wave optics formulations, the Q polarization
factor can be used to replace F, G, and σ within Eq. (3) [13]. The modification

fr(ω̂i, ω̂s) = ρsD(ω̂h)
Q(n, ω̂i, ω̂s)

2(cos θi + cos θs)2
+
ρd

π
(5)

improves microfacet model performance at grazing angles [14].
The vast majority of BRDF measurement research assumes isotropic material surface character-

istics [15,16], which tends to inform models with isotropic microfacet distribution functions. For
example, satellite observation simulations traditionally incorporate isotropic solar cell BRDFs,
usually matching the form of Eq. (3) [17–21], but sometimes simply assuming Lambertian
reflectance [22]. However, because solar cells generally possess complex surface structures
involving coverglass, metal conducting bars, and photovoltaic layers, such models are not able
to incorporate out-of-plane or wavelength-dependent scatter features. Especially since solar
cells often represent one of the largest external surface areas on many satellites, the omission of
out-of-plane information has the potential to degrade agreement between overall satellite obser-
vations and simulations. Our novel CCD-augmented CASI provides a method for simultaneously
obtaining both in-plane and out-of-plane BRDF data with high angular resolution, particularly
surrounding the specular direction, where each pixel measures flux reflected into a unique scatter
direction [23,24].

3. Solar cell BRDF measurements

The solar cell obtained for this study consists of periodically-spaced metal conducting bars
mounted atop triple-junction photovoltaic absorption layers with an epoxy-mounted coverglass.
Figure 1 provides a general schematic of the solar cell’s layered material structure. According to
production specifications, the metal bars are approximately 10 µm wide and spaced approximately
800 µm apart, running in one direction along the solar cell surface. Using alignment, calibration,
and measurement techniques established in previous work for the CCD-augmented CASI [23,24],
the solar cell was mounted onto the material sample stage, and specular measurements were
captured for incident angles of 20◦, 40◦, and 60◦ using a 632.8 nm helium neon (HeNe) laser
source. For this particular solar cell, the top photovoltaic layer is InGaP, which is typically
responsible for ultraviolet and visible absorption below about 650 nm [25]. Even with the beam
focused at the pixel array, the sample’s illumination spot was large enough to encompass multiple
metal bars. Due to occlusion of the source by the detector, 20◦ was selected as the lower limit for
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incident angle; due to material sample mount grazing limitations, 60◦ was selected as the upper
limit; and 40◦ provided an incident angle in between.

Fig. 1. Cross-sectional illustration of the solar cell’s material layer structure. At 632.8
nm used in this work, the light penetrating beyond the top InGaP layer is negligible. The
drawing is not to scale.

3.1. Metal bars oriented in-plane

Figure 2 shows BRDF measurement results from one particular illumination spot when the solar
cell is mounted with the metal bars aligned with the in-plane (horizontal) direction. Figures 2(a)
and 2(c) display the entire pixel array of BRDF measurements for θi = 20◦ and θi = 60◦,
respectively, which simultaneously include both in-plane and out-of-plane data centered on the
specular direction.

Even qualitatively, three distinct scatter features are distinguishable: 1) one specular peak
centered in the frame, 2) a second specular peak offset from the first, and 3) a vertical diffraction
pattern oriented in the out-of-plane direction. Figures 2(b) and 2(d) extract BRDF values from
the pixel columns running vertically (out-of-plane) through the center of each specular peak
in Figs. 2(a) and 2(c). At both incident angles, the diffraction pattern signal is well above
any detector and artifact noise levels [26], and therefore caused by solar cell surface features.
However, for larger θi, as in Fig. 2(c), the diffraction pattern begins to curve noticeably.

Measurement uncertainty was calculated using previously defined methodology, which
identified neutral density (ND) filter uncertainty as the largest contributor [26]. The measurement
for θi = 20◦ required ND filters with a combined optical density (OD) of ODm = 3.3, while the
measurement for θi = 60◦ required an increase to ODm = 4.0 in order to handle the higher scatter
flux at that angle. For ODm = 3.3, none of the stacked ND filters matched those used for the
beam signature, and so the worst-case ND filter uncertainty based on published tolerances was
59.3%. For ODm = 4.0, however, the same 4.0 OD filter was also used in the beam signature,
and so the worst-case ND filter uncertainty was 14.0%.

It is important to note that unlike many other uncertainty contributions, ND filter uncertainty
affects each pixel’s BRDF measurement uniformly, and so does not impact the relative shape of
the BRDF. When ND filter uncertainty is omitted from the overall uncertainty calculation, the
average relative uncertainty considering all other contributions across all pixels for the θi = 20◦
measurement in Fig. 2(a) is only 4.00% with a standard deviation of 0.29%. For the θi = 60◦
measurement in Fig. 2(c), the average relative uncertainty is 6.42% with a standard deviation of
0.24%.

3.2. Metal bars oriented out-of-plane

Fourier optics teaches that diffraction through rectangular apertures results in far field irradiance
patterns with sinc2 spacing between high-frequency peaks [27]. More details involving specific
diffraction model construction and numerical parameter selection are given in Secs. 4.3 and
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Fig. 2. Solar cell BRDF measurement data using a 15 mW red HeNe laser source with
metal conducting bars oriented in-plane, where θi = 20◦ in (a) and (b), and θi = 60◦ in
(c) and (d). The full CCD pixel arrays in (a) and (c) capture three distinct scatter features,
which include a central specular peak, an offset specular peak, and a diffraction pattern. The
pixel column readings through the center of each peak, plotted in (b) and (d), show that each
feature lies well above the noise floor.

4.4, but the high-frequency pattern displayed in Fig. 2 corresponds very well to the diffraction
expected through rectangular apertures whose dimensions match the solar cell’s conducting bars.
It is thus possible to deduce that the diffraction pattern noticeable in the BRDF measurement is
caused by the solar cell’s periodically spaced metal bars.

As a result, changing the orientation of the bars by rotating the solar cell about its surface
normal should cause a corresponding change in diffraction pattern orientation. Figure 3 compares
measurements at θi = 40◦ with the metal bars oriented approximately 45◦ out-of-plane in (a)
and fully out-of-plane in (b). The illumination spot on the solar cell is the same for both cases,
although slightly different than the spot used in Fig. 2. As expected, the diffraction pattern
orientation changes with solar cell orientation.

No matter how the solar cell is oriented, one specular peak always appears aligned with the
center of the diffraction pattern. This peak is plausibly linked to the photovoltaic material beneath
the metal bars, indicating that these two materials have very similar surface normal directions.
The second specular peak, however, is very clearly offset from the first peak. Its apparent location
rotates about the center peak as the solar cell rotates, and even shifts location slightly as the
illumination spot changes. In addition, when a white sheet of paper is slowly advanced from
the CCD to the sample stage (taking advantage of the visible laser source), the apparent spacing
between the two peaks gradually shrinks. The combination of these behaviors indicates that the
second specular peak is caused by another material whose surface normal points in a slightly
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Fig. 3. Solar cell BRDF measurement data using a 15 mW red HeNe laser source and
θi = 40◦, with the metal conducting bars oriented 45◦ out-of-plane in (a) and fully out-of-
plane in (b). Both the diffraction pattern and the offset specular peak rotate about the center
specular peak along with the solar cell.

different direction. The coverglass for this particular solar cell was manually affixed with epoxy,
with slightly uneven or offset applications possible, making it a plausible candidate for the cause
of the second peak.

With each feature plausibly arising from scatter or reflection from a different material surface,
it follows that the peaks of each feature do not necessarily share the same magnitude, because
each material may have different properties affecting the BRDF, including index of refraction.
For instance, if the center peak and the offset peak are indeed predominantly caused by scatter
from the coverglass and photovoltaic layers, respectively, then perhaps the offset specular peak
reaches a higher magnitude because the coverglass material properties lead to more reflection
and less absorption compared to the photovoltaic material.

Interestingly, when the illumination spot location and metal bar orientation are fixed, the
apparent orientation of the diffraction pattern also changes as θi increases. In fact, both the
diffraction pattern and the offset specular peak measurements seem to compress in the out-of-plane
direction. Figures 4(a) and 4(b) demonstrate this phenomenon for one particular illumination
spot and solar cell orientation when θi = 20◦ and θi = 60◦, respectively. This phenomenon will
be addressed within the diffraction model presented in Sec. 4.3.

Fig. 4. Solar cell BRDF measurement data using a 15 mW red HeNe laser source with fixed
illumination spot and metal bar orientation while varying θi from 20◦ to 60◦ in (a) and (b),
respectively. The apparent diffraction pattern orientation and offset specular peak location
shift with θi.
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3.3. In-plane comparison to CASI

Lastly, with the diffraction pattern oriented in-plane, the original CASI detector was used to
validate the CCD measurement. As shown in Fig. 5, using θi = 40◦ as the example, the agreement
is quite good between the industry-standard CASI and the CCD-augmented measurements.
The individual diffraction peak spacing matches, and the peak magnitudes measured by the
CASI are within the uncertainty range of the CCD measurements [26]. The CASI’s maximum
measurement uncertainty reaches approximately 17% near the specular direction [28], and so
even most conservatively, if that uncertainty value is applied to the entire set of CASI data points,
the peak values still fall within the depicted CCD detector uncertainty bounds.

Fig. 5. Comparison of CCD-augmented and original CASI BRDF measurement data with
the solar cell diffraction pattern oriented in-plane. The locations and magnitudes of each
peak in the CASI measurements agree well with the CCD-augmented measurements and fall
within its uncertainty bounds.

Since the traditional CASI detector is constrained to single-pixel slices through the scatter
hemisphere, for any other solar cell and diffraction pattern orientation, the CASI is not able to
easily measure the out-of-plane diffraction captured by the CCD detector.

4. Solar cell BRDF model

Using the solar cell BRDF measurements from Sec. 3 as the reference, a closed-form BRDF
model can be designed with separate terms for each of the three major observed features. The
formulations for each term are discussed sequentially below, where fr1 , fr2 , and fr3 represent the
center specular peak, offset specular peak, and diffraction pattern, respectively. The full model
then becomes the sum fr1 + fr2 + fr3 . This approach is similar to many computationally efficient
scene-rendering BRDF models, which follow the structure of Eq. (3), and break the model into
separate terms which together provide the parameters necessary to fit the overall model to the
measured scatter from a particular surface. In this work, overall feature shape and location are
emphasized, and so combined numeric results are presented using manual parameter estimates,
leaving refined fitting choices for future efforts.

4.1. Center specular peak

The first specular peak, whose center coincides with the center of the diffraction pattern, can be
modeled relatively simply by using Eq. (5) with an isotropic Beckmann distribution function
to govern peak shape [7,29]. When substituted into Eq. (5), the in-plane specular term can be
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written

fr1 = ρs1

Q(n1, ω̂i, ω̂s)

2(cos θi + cos θs)2
1

πm2
1 cos4 θh

exp

[︄
−

tan2 θh

m2
1

]︄
, (6)

which uses only one parameter m1 to adjust Gaussian peak width. The half-angle θh can be
calculated for any desired incident and scatter direction combination by implementing Eq. (4).
Specific selections for m1, the weighting parameter ρs1 , and the complex index of refraction n1 –
which is embedded within Q – are discussed in Sec. 4.4.

4.2. Offset specular peak

The out-of-plane offset specular peak can be modeled using the same basic formulation as the
in-plane center peak with Eq. (5). However, the material surface responsible for this peak has a
different overall normal direction, which correspondingly impacts the microfacet orientations
atop that surface.

One intuitive way to account for this difference is to begin with incident and scatter directions
relative to the first surface normal n̂, and then rotate each direction in order to express them
relative to the second surface normal n̂2. This process is very similar to calculating ω̂d in Eq. (4),
and requires finding the rotation that brings n̂2 into alignment with n̂.

First, the angular offset between n̂ and n̂2 is described in terms of the parameters ∆θ and ∆ϕ0.
As shown in Fig. 6(a), ∆θ is the difference in zenith angle, defined as a positive value when
measured from n̂ to n̂2, and ∆ϕ0 is the difference in azimuthal angle, defined as a positive value
when measured from the +x̂ (in-plane forward scatter) direction towards the +ŷ (out-of-plane)
direction. The arbitrary reference direction φ̂ref is used to define the solar cell’s orientation about
n̂, referenced to the -x̂ in-plane direction. In this work, ϕref = 0 when the metal bars are aligned
in-plane with the diffraction pattern oriented out-of-plane. For other solar cell orientations, as in
Fig. 6(b), ϕref is simply added to ∆ϕ0 as an additional azimuthal offset.

Fig. 6. Illustration of the geometry used to model a specular peak from a second material
with a different surface normal direction n̂2. The incident and scatter directions ω̂i and ω̂s
are expressed relative to the first surface normal n̂, but can be rotated using the parameters
∆θ, ∆ϕ0, and ϕref, which expresses them relative to the second surface normal n̂2 instead.
In this graphic, the gray square represents the solar cell surface with metal bar orientation
depicted to match φ̂ref. The red dot within the dashed grid represents an example CCD pixel
location, in this case in-plane.

The incident and scatter directions relative to n̂2 are then calculated by applying

ω̂i2 = Ry(−∆θ)Rz(−∆ϕ0 − ϕref)ω̂i (7a)

ω̂s2 = Ry(−∆θ)Rz(−∆ϕ0 − ϕref)ω̂s, (7b)
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which in turn can be used in Eq. (4) to calculate an updated microfacet angle ω̂h2 . Finally, the
offset specular peak term can be written

fr2 = ρs2

Q(n2, ω̂i2 , ω̂s2 )

2(cos θi2 + cos θs2 )
2

1
πm2

2 cos4 θh2

exp

[︄
−

tan2 θh2

m2
2

]︄
, (8)

which uses the parameter m2 to adjust Gaussian peak width. As before, specific selections for
m2 as well as the weighting parameter ρs2 and the complex index of refraction n2 – which is
embedded within Q – are discussed in Sec. 4.4.

4.3. Diffraction pattern

Modeling the diffraction pattern requires a significantly different formulation than the geometric
optics-based microfacet terms employed for the center and offset specular peaks. Fortunately,
closed-form solutions exist for diffraction through multiple rectangular apertures using Fourier
theory with the Fraunhofer approximation [27]. The Fraunhofer conditions apply to the
measurements in Sec. 3., based on the highly-focused beam-width (less than 0.15 mm),
wavelength of the visible laser source (632.8 nm), and the established distance between sample
stage and CCD detector (approximately 0.325 cm) [23].

Fraunhofer diffraction solutions tend to be written in terms of collection plane coordinates,
expressed either as linear offsets or angular offsets from an optical axis about which the pattern is
centered [27]. For reflection from the solar cell, the diffraction pattern is centered on the specular
direction with the (x̄, ȳ, z̄) coordinate system as shown in Fig. 7. Here, the z̄ axis points along the
specular direction, and the x̄ and ȳ axes rotate along with φ̂ref to remain aligned with the metal
bar orientation. The x̄ and ȳ directions are chosen so that the projection of x̄ aligns longitudinally
with the metal bars and the projection of ȳ runs transverse to the metal bars.

Fig. 7. Illustration of the geometry and coordinates used to model the diffraction pattern
under Fraunhofer approximations. The gray square represents the solar cell surface with
metal bar orientation depicted to match φ̂ref. The z̄ axis points along the specular direction.
When the solar cell is rotated about its normal, denoted by a change in φ̂ref from (a) to (b),
the x̄ and ȳ axes also rotate by ϕref so that their projections remain aligned with the metal bar
orientation. The red dot within the dashed grid represents an example CCD pixel location,
in this case with an out-of-plane component.

The best agreement with the measurement results was found by basing the model on the
Fraunhofer solution for diffraction through two rectangular stripes with separation a and individual
widths b. The pair of stripes can be mathematically represented by a rect function convolved with
two delta functions. Since the Fourier transform of a rect is a sinc, and the Fourier transform
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of two delta functions is a cosine, the resulting transverse Fraunhofer irradiance pattern can be
represented by sinc2(bȳ/λz̄)cos2(πaȳ/λz̄) where sinc(x) ≡ sin(πx)/πx.

Since the length of each bar extends beyond the effective laser illumination spot, the diffraction
pattern is really only a function of the transverse direction ȳ. However, in practice, the diffraction
band does show some tangible width in the x̄ direction. The incident laser beam is Gaussian, so
simply multiplying by exp(−x̄2/c2) effectively curtails the width of the diffraction band, using c
as the Gaussian width parameter.

The Fraunhofer solution so far, however, assumes normal incidence, and when ȳ is written in
terms of microfacet coordinate angles (shown later in this section), the spacing between modeled
diffraction peaks scales with incident angle, contrary to the observations which show consistent
spacing for different incident angles. The grating equation, written sin θm = mλ/a + sin θi,
demonstrates the potential impact of incident angle on diffraction order spacing. By looking at
its derivative, it is possible to see that multiplying the arguments of the sinc2 and cos2 functions
by

√︁
1 − sin2 θi = cos(θi) should instead preserve consistent spacing as θi varies. In practice, an

extra factor of two was required, demonstrated by models in Sec. 4.4.2,
Combining the pieces above, the diffraction model can be written in terms of x̄, ȳ, and z̄ as

fr3 = ρs3cos2
(︃
2πaȳ
λz̄

cos(θi)
)︃

sinc2
(︃
2bȳ
λz̄

cos(θi)
)︃

exp
[︃
−

x̄2

c2

]︃
. (9)

The leading constant ρs3 is used to adjust the magnitude of the pattern, which would otherwise
be normalized to a peak value of one.

BRDFs are ubiquitously written as functions of incident and scatter angles rather than linear
coordinates, and so several different formulations were attempted for expressing x̄, ȳ, and z̄ in
terms of angles. Rather than writing them directly in terms of ω̂s and ω̂i, the most effective
method discovered involves writing them in terms of the half-angle direction ω̂h. Favorably,
θh = 0 naturally occurs at the specular peak for any θi, so that x̄ and ȳ equal zero there. Good
agreement with measurement was achieved by writing

x̄ = Rsinθhcos(ϕh − ϕref + π) (10a)

ȳ = Rsinθhsin(ϕh − ϕref + π) (10b)

z̄ = R. (10c)

The extra π accounts for the convention of measuring ϕs and ϕh from the -x̂ direction [24].
Conveniently, the R cancels out inside both the cos2 and sinc2 terms in Eq. (9). Also, in this
format, although the x̄ and ȳ coordinates tend to compress as θi increases (due to changes in θh),
the added 2 cos θi within Eq. (9) offsets this impact.

As will be shown in the next section, this choice for the diffraction model and the (x̄, ȳ, z̄)
coordinate conversion sufficiently models the diffraction pattern curvature and orientation changes
observed for various θi and ϕref, matching the measurements in Figs. 2–4.

4.4. Numeric model

This section combines the three BRDF model terms from Secs. 4.1–4.3 and compares them to
the measurements from Sec. 3. Numeric model parameters are manually selected based largely
on physical material characteristics, rather than using any fitting or optimization algorithms. In
order to make valid comparisons, the models are used to generate BRDF results for the same
incident and scatter angles which comprise each pixel within the specular CCD measurements.
The derivation of those angles are described in previous work [24].
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4.4.1. Parameter selection

The in-plane center specular peak model contains three parameters: m1, n1 and ρs1 . After
some manual parameter adjustment to qualitatively approximate the specular peak width and
magnitude, m1 and ρs1 are set for this analysis to 2 × 10−4 and 0.015, respectively. By assuming
that scatter mainly from the InGaP layer causes this peak, n1 can be set to the real component of
InGaP’s index of refraction, 3.6 at 632.8 nm. [30] Note that in reality, the InGaP actually acts
as a diffraction grating because its surface is broken up by the periodic metal bars. However,
the ratio of exposed InGaP to metal bar surface is 80:1, so the bulk of the diffraction energy is
concentrated on the 0th order. Therefore, only the 0th order peak is modeled here.

The out-of-plane offset specular peak model contains five parameters: m2, n2, ρs2 , ∆θ, and ∆ϕ0.
After some manual parameter adjustment to qualitatively approximate peak width and magnitude,
m2 is set to 2 × 10−4 and ρs2 is set to 0.7. The coverglass and the space-grade encapsulant used
for its adhesion both have real-valued refractive indices of 1.4, so n2 is set to this value, assuming
this peak is caused mainly by scatter from the coverglass. For proof of concept, ∆θ and ∆ϕ0 are
simply set to 0.5◦ and 45◦, respectively, which should place the location of the offset peak within
the CCD detector field of view, but down (in the +ŷ out-of-plane direction) and to the right (in
the +x̂ in-plane direction) of the in-plane peak when ϕref = 0.

The diffraction pattern model contains four parameters: a, b, c, and ρs3 . Physically, a represents
the spacing between the solar cell’s metal bars, which also dictates the separation between
high-frequency diffraction peaks according to the quantity λ/az̄. Based on the measured vertical
pattern spacing from Fig. 2(a) and the CCD’s nominal distance from the sample, the derived bar
spacing is approximately 7.5 × 10−4 m, which corresponds closely to the product specification.
Thus, for this section, a is set to the product specification of 8 × 10−4 m. The parameter b
physically represents the width of each metal bar, which is set to the product specification 1×10−5

m. Since the ratio of metal bar to total solar cell surface area is only 1:80, the diffracted energy is
distributed over many diffraction orders. The parameter ρs3 is expected to be quite large, as it is
associated with the overall reflectance of the metal. It is set to 300 here, so that the normalized
cos2 and sinc2 functions approximately match the diffraction peak magnitudes. The parameter c
is set to 4 × 10−5 to qualitatively set the diffraction pattern width.

4.4.2. Model results and comparison to measurements

Using the numeric parameter values discussed in Sec. 4.4.1, Fig. 8 shows the BRDF model results
for incident angles of 20◦ and 60◦ with the solar cell’s metal bars oriented in-plane (ϕref = 0)
and using scatter angles to match CCD pixel locations during the specular measurements in
Fig. 2. Following Fig. 2’s format, Figs. 8(a) and 8(c) display the entire modeled pixel array, while
Figs. 8(b) and 8(d) extract BRDF values from the pixel columns running vertically (out-of-plane)
through the center of each specular peak.

Qualitatively, this model succeeds in reproducing the diffraction pattern and both specular
peaks discovered during measurement, and quantitatively, the modeled maximum values of each
feature are well within an order of magnitude of the measured values. The modeled center peak
is located in the primary specular direction, as desired, with maximum magnitudes of 1.11 × 104

sr−1 and 3.91 × 104 sr−1 for θi = 20◦ and 60◦, respectively, which compare well to the measured
peak values of 9.90 × 103 sr−1 and 4.83 × 104 sr−1 at those incident angles.

The modeled offset peak has shifted down and to the right, as expected, and includes a slight
compression of the down (or out-of-plane) component at the higher incident angles. This peak’s
maximum values are approximately 4.44 × 104 sr−1 and 4.19 × 105 sr−1 for θi = 20◦ and 60◦,
respectively, which compare well to the measured peak values of 6.03 × 104 sr−1 and 4.21 × 105

sr−1 at those incident angles.
At higher incident angles, the curve noticeable in the measurements is also noticeable in the

model. The modeled diffraction peak magnitudes range from 300 sr−1 nearest the center specular
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Fig. 8. Combined solar cell BRDF model results with in-plane metal bar orientation. The
scatter coordinates are the same as the CCD pixel coordinates measured in Fig. 2, with
θi = 20◦ in (a) and (b), and θi = 60◦ in (c) and (d). The full pixel arrays are modeled in
(a) and (c), with vertical pixel columns through the center of each peak plotted in (b) and
(d). The model successfully replicates each of the three primary measured features (center
specular peak, offset specular peak, and diffraction pattern), and the peak values for each
modeled feature compare to the measured data well within an order of magnitude.

peak to 209 sr−1 at each edge of the array. By comparison, when θi = 20◦, the peak measured
diffraction value near the center is 312 sr−1 while the peak values nearest each edge average
to 145 sr−1. When θi = 60◦, the peak measured diffraction value near the center is 312 sr−1

while the peak values nearest each edge average to 202 sr−1. Particularly at θi = 60◦, the vertical
pixel slice in Fig. 8(d) no longer follows the diffraction peaks as closely, so the peak values are
artificially reduced near the edges.

Since the metal bar separation is only known to one significant figure (800 µm), the modeled
diffraction peak spacing also agrees well with the measured diffraction peak spacing (within 8%).
For both incident angles, there are 26 modeled peaks between the CCD center and edges, and
24.5 measured peaks between the center and edges. It is worth noting that omitting the 2 cos θi
within Eq. (9) – whose inclusion was motivated by the grating equation described in Sec. 4.3 –
changes the modeled diffraction pattern spacing so that 14 modeled peaks exist between the CCD
center and edge when θi = 20◦ compared to 26 modeled peaks when θi = 60◦.

Changing the value of ϕref models changing the metal bar orientation relative to the plane
of incidence. Figures 9(a) and 9(b) show that by setting ϕref = 45◦ and 90◦, respectively, the
modeled diffraction pattern and offset peak both rotate about the central peak, mimicking the
measured behavior in Fig. 3. In addition, Figs. 10(a) and 10(b) show that for a fixed metal bar
orientation – for example ϕref = 45◦ – the apparent orientation of the diffraction pattern changes
as θi increases, mimicking the measured behavior in Fig. 4. Here, it is important to note that
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without writing x̄, ȳ, and z̄ in terms of ω̂h in Eq. (10), the model would fail to account for these
observed phenomena; therefore, the model is written in terms of ω̂h.

Fig. 9. Combined solar cell BRDF model results with metal bars oriented (a) 45◦ out-of-
plane and (b) 90◦ out-of-plane. The scatter coordinates are the same as the CCD pixel
coordinates measured in Fig. 3 with θi = 40◦. As in the measured results, the offset specular
peak and diffraction pattern rotate about the center specular peak.

Fig. 10. Combined solar cell BRDF model results while varying θi from 20◦ to 60◦ in (a)
and (b). The scatter coordinates are the same as the CCD pixel coordinates in Fig. 4 and
ϕref = 45◦. Similar to the measured results, the out-of-plane components compress as θi
increases, altering the apparent orientation of the diffraction pattern.

5. Conclusion

This paper presented BRDF measurement results for a commercially available solar cell designed
for satellites. A CCD-augmented CASI was used to capture in-plane and out-of-plane BRDF
data with high spatial resolution for various incident angles. The data showed three distinct
scatter features: 1) one central specular peak, 2) another specular peak offset from the first, and
3) a diffraction pattern. The specular peaks appeared to originate from two distinct material
surfaces with slightly different normal directions, and the diffraction pattern was caused by metal
conducting bars periodically spaced in one direction across the solar cell. A traditional CASI
detector was used to validate the central peak and diffraction pattern with in-plane measurements.

The measurements were used to inform the creation of a single closed-form model to capture
the functionality of each BRDF feature. The central specular peak term was modeled using
a common microfacet formulation. The offset specular peak term used a similar formulation,
but required rotating the incident and scatter directions to account for the difference in surface
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normal direction. Finally, the diffraction pattern term was based on the closed-form solution
for diffraction through two rectangular apertures using the Fraunhofer approximation, adjusted
and written in terms of microfacet coordinates. Parameters for each term were chosen based on
physical material properties, rather than using optimized fitting algorithms.

Model results were compared to the measurements by using the same CCD pixel scatter
coordinates. The solar cell BRDF model successfully replicated each feature. As the solar cell’s
metal bar orientation is rotated relative to the in-plane direction, both the offset specular peak
location and diffraction pattern orientation rotate in kind. In addition, as incident angle increases,
the out-of-plane components compress, leading to apparent differences in offset peak location
and diffraction pattern orientation and curvature. Quantitatively, the peak values of each model
feature agree with the measurements well within an order of magnitude, and the diffraction
pattern spacing remains consistent across various incident angles.

Ultimately, this work outlines a process for using high-spatial-resolution BRDF measurements
to inform the creation of new BRDF models capable of describing out-of-plane specular features.
Although applied to a solar cell here, a similar process can be applied to other materials. The
resulting models can later be incorporated into a variety of radiometric simulations or scene
generators in hopes of improving the accuracy of predicted observations.
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