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Using the criterion for a genuine cross-spectral density
function, we demonstrate the realization of an Im-Bessel
correlated source, which has only recently been achieved us-
ing the source’s coherent-mode representation. In addition,
with just a simple change, we create a whole new class of
partially coherent sources that have not been realized.
We simulate the generation of these sources and compare
the results to theoretical predictions to validate our analysis.
The partially coherent sources described herein can easily
be synthesized using spatial light modulators, and the
approach presented in this Letter can be used to design
sources for optical trapping, optical tweezers, and other
related applications.

https://doi.org/10.1364/OL.44.001603

By controlling the spatial coherence of an optical source, one
can significantly reduce speckle or scintillation while maintain-
ing beam directionality. This makes spatially partially coherent
beams or sources very useful in many applications (e.g., free-
space optical communications, directed energy, medicine, etc.)
and generally explains their popularity in the literature.

In general, there are two ways to realize a partially coherent
source (PCS). The first starts with a spatially incoherent source
and uses the van Cittert–Zernike theorem, or spatially filters
the incoherent source to produce the desired partially coherent
beam. The interested reader should consult Ref. [1] for more
information on this approach.

The second technique, relevant to the work presented here,
begins with a spatially coherent source and “spoils” the coher-
ence by randomizing the field’s amplitude or phase, typically
using spatial light modulators (SLMs). Several different tech-
niques have been developed to generate screens—either com-
plex amplitude or phase—to synthesize the requisite random
optical fields. These include the Monte Carlo spectral method,
Cholesky factorization or decomposition, using the source’s
coherent-mode representation, and using the genuine cross-
spectral density (CSD) function criterion derived in Ref. [2].

The Monte Carlo spectral method [3] is the most com-
putationally efficient and therefore the most popular; unfortu-
nately, it can be used to synthesize only uniformly correlated or

Schell-model PCSs [4]. Cholesky factorization [5] can be used
to synthesize any PCS with a genuine CSD function; however,
it is computationally onerous—see Ref. [5] for more details.
Using the source’s coherent-mode representation [6] is a rel-
atively new approach and, like Cholesky factorization, can be
used to synthesize any genuine PCS. The main drawback here
is that the source’s coherent-mode representation must be
known—the coherent modes are solutions to an integral equa-
tion [4]—and only a few have been found. Using the genuine
CSD criterion is also a relatively new synthesis approach [7]
and, like the two prior methods, can be used to generate any
genuine PCS. Although the genuine CSD criterion is an inte-
gral equation, its form generally allows one to use intuition to
develop functions for the criterion’s constituents (discussed
later) that satisfy it.

In this Letter, we use the genuine CSD criterion approach to
generate a PCS—an Im-Bessel correlated beam [8]—that has
only recently been realized using the source’s coherent-mode
representation [6]. With just a simple change, we generalize
the results in Refs. [6,8] to create a whole new class of PCSs
that do not have closed-form coherent-mode representations
and have not been realized. To validate our approach, we sim-
ulate the generation of an Im-Bessel correlated source and com-
pare the results to the corresponding theoretical expressions.
We also simulate the generation of a new source—one that has
not been realized—and perform the same comparisons. We
lastly conclude this Letter with a summary of the work pre-
sented herein and a brief discussion of potential applications.

We start with the sufficient condition for a genuine CSD
function W :

W � ρ1, ρ2� �
ZZ

∞

−∞
p�v�H � ρ1, v�H�� ρ2, v�d2v, (1)

where v � x̂vx � ŷvy, ρ � x̂x � ŷy, H is an arbitrary kernel,
and p is a non-negative function [2]. The dependence of the
functions in Eq. (1) on radian frequency ω has been omitted for
brevity.

Although H is a purely mathematical construct, here we
physically interpret it as a realization of an optical field drawn
from a random process [7]. For example, let H � ρ, v� �
τ� ρ� exp� jv · ρ�, where τ is a complex function. This choice
of H produces Schell-model sources [2,4].
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Interpreting H in this manner means that τ is physically the
field’s complex, deterministic amplitude, and the exponential
function is the field’s random phase. For Schell-model sources,
the field’s phase is a randomly tilted phase front, where v is a
random slope. The function p in Eq. (1) is the joint probability
density function (PDF) of the x and y slopes. This approach has
been used to simulate [9] and physically realize Schell-model
sources using only a fast steering (tip-tilt) mirror [10]. We note
that by changing the exponential function from random tilt to
random defocus, nonuniformly correlated beams can be
generated as well [7,11–14].

Here, we let

H � ρ, v� � τ� ρ�Jm� ρv�, (2)

where Jm is an mth-order Bessel function of the first kind; m is
not necessarily an integer, yet we do assume that m ≥ 0;
ρ � jρj; and v � jvj. Substituting the above H into Eq. (1)
and simplifying produces

W Jm� ρ1, ρ2� � τ� ρ1�τ��ρ2�
ZZ

∞

−∞
p�v�Jm� ρ1v�Jm� ρ2v�d2v:

(3)

Assuming that p is rotationally invariant, transforming the in-
tegrals into polar coordinates, and evaluating the trivial integral
over angle yields

W Jm� ρ1, ρ2� � τ� ρ1�τ��ρ2�2π
Z

∞

0

vp�v�Jm� ρ1v�Jm� ρ2v�dv:

(4)

Note that Eq. (4) gives rise to a whole family of PCSs that can
be synthesized by incoherently summing beams composed of
mth-order Bessel functions with random widths v drawn from
joint PDF p. Due to the Jm, these sources generally have an
annular shape with a dark center—the exception being the
m � 0 case, which has a bright center. Depending on τ and p,
the CSD function W Jm can be made shape invariant [8,15].
These characteristics make these sources potentially useful in
applications involving optical trapping or optical tweezers.

We begin by showing that the family of PCSs described by
W Jm includes Im-Bessel correlated beams [8], which have only
recently been synthesized [6]. Let p take a Gaussian form,
namely,

pG�v� �
δ2

π
exp�−δ2v2�, (5)

where δ is a positive constant and physically the source’s cor-
relation or coherence radius. The constant in front of the ex-
ponential is there to ensure that the joint PDF pG integrates
to one.

The integral in Eq. (4), with pG substituted in, can be found
in Ref. [18]:

W JmG� ρ1, ρ2� � τ� ρ1�τ��ρ2� exp
�
−
ρ21 � ρ22
4δ2

�
Im

�
ρ1ρ2
2δ2

�
,

(6)

where Im is an mth-order modified Bessel function of the first
kind. The CSD function of an Im-Bessel correlated source is

W Im� ρ1, ρ2� �
ξ−m∕2

1 − ξ
exp

�
−
1� ξ

1 − ξ

ρ21 � ρ22
σ2

�

× exp�−jm�ϕ1 − ϕ2��Im
�
4

ffiffiffi
ξ

p

1 − ξ

ρ1ρ2
σ2

�
, (7)

where σ is the source’s size, and 0 < ξ < 1 is a measure of the
spatial coherence of the field—ξ → 0 is a coherent field, and
ξ → 1 corresponds to an incoherent field [6,8].

Comparing Eqs. (6) and (7) reveals the following:

δ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

8

1 − ξffiffiffi
ξ

p ,

s

τ� ρ� �
ffiffiffiffiffiffiffiffiffiffi
ξ−m∕2

1 − ξ

s
exp�−jmϕ� exp

�
−

�
1 −

ffiffiffi
ξ

p �
2

1 − ξ

ρ2

σ2

�
: (8)

Substituting the above τ into Eq. (2) gives the stochastic optical
field instance that produces an Im-Bessel correlated source,
namely,

UIm�ρ� �
ffiffiffiffiffiffiffiffiffiffi
ξ−m∕2

1 − ξ

s
exp�−jmϕ� exp

�
−

�
1 −

ffiffiffi
ξ

p �
2

1 − ξ

ρ2

σ2

�
Jm� ρv�,

(9)

where v is a random number drawn from the following joint
Gaussian PDF:

pG�vx , vy� �
σ2

8π

1 − ξffiffiffi
ξ

p exp

�
−
σ2

8

1 − ξffiffiffi
ξ

p �v2x � v2y �
�
: (10)

Note that pG is separable in vx and vy, and thus, vx and vy are
independent, identically distributed, Gaussian random num-
bers. Field instances given by Eq. (9) can easily be synthesized
using SLMs [16].

Choosing another positive, normalized function or PDF for
p produces a different PCS. Here, as an example, we choose a
circular p [a two-dimensional (2D) uniform distribution], i.e.,

pU�v� �
δ2

π
circ�δv�, (11)

where circ�x� is the circle function defined in Ref. [17], and δ
has the same physical interpretation as in Eq. (5). Substituting
Eq. (11) into Eq. (4) produces

W JmU�ρ1,ρ2�� τ� ρ1�τ��ρ2�2δ2
Z

1∕δ

0

vJm� ρ1v�Jm� ρ2v�dv:

(12)

The above integral can be found in Ref. [18] when ρ1 ≠ ρ2:

W JmU� ρ1, ρ2�

� τ� ρ1�τ�� ρ2� × 2
ρ2
δ Jm

�ρ1
δ

�
Jm−1

�ρ2
δ

�
− ρ1

δ Jm−1
�ρ1
δ

�
Jm

�ρ2
δ

��ρ1
δ

�
2 −

�ρ2
δ

�
2

:

(13)

When ρ1 � ρ2 � ρ, the integral in Eq. (12) can be evalu-
ated using Mellin transforms and the Mellin convolution theo-
rem [19]. First, we rewrite Eq. (12) as

W JmU�ρ,ϕ1; ρ,ϕ2�

� τ�ρ,ϕ1�τ��ρ,ϕ2�2
Z

∞

0

dv
v
v2θ�1 − v�J2m

�
ρ

δ
v
�
, (14)
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where θ is the Heaviside unit step function. Substituting in the
Mellin transforms for the functions in the integrand and
simplifying produces

W JmU�ρ,ϕ1; ρ,ϕ2� � τ�ρ,ϕ1�τ��ρ,ϕ2�

×
1ffiffiffi
π

p 1

j2π

Z
C

�
δ

ρ

�
−2s Γ�m − s�Γ�s � 1∕2�

Γ�s � 2�Γ�s � m� 1� ds, (15)

where Γ is the gamma function, and C is the integration path in
the complex s plane shown in Fig. 1. The integrand has simple
poles at s � n� m and s � −n − 1∕2, where n � 0, 1, 2,…,
due to the numerator gamma functions. Examining the asymp-
totic behavior of the integrand reveals that the integral should
be closed in the right-half plane. The integration contour enc-
loses the s � n� m poles, and by Cauchy’s residue theorem,
Eq. (15) becomes

W JmU�ρ,ϕ1;ρ,ϕ2� � τ�ρ,ϕ1�τ��ρ,ϕ2�
�ρ2∕�4δ2��m

Γ�m� 1�Γ�m� 2�
× 1F 2�m� 1∕2;m� 2,2m� 1;−ρ2∕δ2�, (16)

where 1F 2 is a generalized hypergeometric function. Thus,

W JmU� ρ1, ρ2� �
	
Eq: �13� ρ1 ≠ ρ2
Eq: �16� ρ1 � ρ2 � ρ

: (17)

The field that produces this source is

UJmU� ρ� � τ� ρ�Jm�ρv�, (18)

where v is a random number drawn from the PDF in Eq. (11).
We note that Eq. (12) can be evaluated directly using Mellin
transform techniques. The result is a double Taylor series
that converges for all values of ρ1, ρ2, δ. Numerically comput-
ing W JmU using this relation is very slow, and therefore, we
use Eq. (17).

To verify the above analysis, we present simulation results
where we generated the above PCSs. Before proceeding to the
results, we briefly discuss the setup. For the simulations, we
used 512 × 512 computational grids; the grid spacing was
15.38 μm. We generated 100,000 realizations of the optical
fields given in Eqs. (9) and (18) to compute 2D “cuts” through
the four-dimensional (4D) CSD functions in Eqs. (7) and (17),
respectively. To remain consistent with the Im-Bessel correlated
source, we chose the same δ and τ given in Eq. (8) for the PCS
in Eq. (17). The ξ, m, and σ were 0.25 mm, 3 mm, and 1 mm,
respectively.

Figure 2 shows the spectral density S�ρ� � W � ρ, ρ� [4]
results: (a) and (b) show the theoretical and simulated results
for the Im-Bessel correlated source, and (c) and (d) show the
same results for the Eq. (17) source. Figure 2(e) shows the

Fig. 1. Complex s plane corresponding to Eq. (15).

Fig. 2. Spectral density S�ρ� � W �ρ, ρ� results: (a) Im-Bessel
theory, (b) Im-Bessel simulation, (c) Eq. (17) theory, (d) Eq. (17) sim-
ulation, and (e) RMSEs for the simulated Im-Bessel (blue trace) and
Eq. (17) sources (red trace) versus trial number.

Fig. 3. W �ρ1,ϕ; ρ2,ϕ� results versus ρ1 and ρ2: (a) Im-Bessel
theory, (b) Im-Bessel simulation, (c) Eq. (17) theory, and
(d) Eq. (17) simulation.
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root-mean-square errors (RMSEs) for the simulated Im-Bessel
and Eq. (17) sources versus trial number:

RMSE �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N 2

XN 2

k�1

�Ssim�k� − S thy �k��2
vuut , (19)

where k is a pixel index, and the sum is over all N 2 � 5122

pixels. Overall, the simulated results are in excellent agreement
with the theoretical spectral densities. Figure 2(e) shows that
convergence to the theoretical spectral densities occurs rather
quickly, i.e., within 500–1000 field realizations.

Figure 3 showsW �ρ1,ϕ; ρ2,ϕ� plotted versus ρ1 and ρ2 for
both sources. The layout of the figure is identical to Fig. 2, with
the exception of Fig. 2(e). The RMSE results here are similar to
those in Fig. 2(e) and thus are omitted for brevity. Again, the
agreement between theory and simulation is excellent. These
results show an example of where these similar sources differ.

Lastly, Fig. 4 shows the magnitudes (top of each subfigure)
and phases (bottom of each subfigure) of W �x1, y1;l, 0�,
where l � 1.15 mm and 1.55 mm for the Im-Bessel correlated

[theory (a) and simulation (b)] and Eq. (17) [theory (c) and
simulation (d)] sources, respectively. These �x2, y2� points lie
approximately on the maxima of the “rings” in Fig. 2. The re-
sults clearly show that the sources’ phase vortices are accurately
produced. The disagreements between the theoretical and
simulated Im-Bessel source phases [(a) and (b), respectively]
occur in “low-intensity” regions and are numerical in nature.

In conclusion, applying the genuine CSD criterion, we de-
veloped a method to generate PCSs by incoherently summing
beams composed of Bessel functions with random widths. The
PDF of the Bessel function width determined the source. By
choosing a Gaussian PDF, we showed that this new class of
PCSs included Im-Bessel correlated sources, which have only
recently been synthesized using the source’s coherent-mode
representation. We then derived the CSD function for a
new source, one that has not been realized, simply by changing
the random-width PDF from Gaussian to uniform. To validate
our analysis, we simulated the generation of an Im-Bessel cor-
related source and the new PCS. We compared simulated
2D slices of the 4D CSDs to the corresponding theory. The
simulated and theoretical results were in excellent agreement.

The family of PCSs developed in this Letter—being com-
posed of Bessel-beam-like fields—can easily be synthesized us-
ing SLMs. These sources’ annular shapes and shape invariances
make them (and hence the synthesis technique described
herein) potentially useful in optical trapping, optical tweezers,
and other related applications.
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