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Non-Linear statistical photo-calibration of photodetectors 
without calibrated light sources  
 
 Stephen C. Cain 
Air Force Institute of Technology, Department of Electrical and Computer Engineering, 2950 Hobson Way, Wright-Patterson AFB, OH, 45433 

 
Abstract. Calibration of CCD arrays is commonly conducted using dark frames. Non-absolute calibration 
techniques only measure the relative response of the detectors. For absolute calibration to be achieved, a 
second calibration is sometimes utilized by looking at sources with known radiances. A process like this can 
be used to calibrate photodetectors if a calibration source is available and sensor time can be spared to 
perform the operation. A previous attempt at creating a procedure for calibrating a photodetector using the 
underlying Poisson nature of the photo-detection statistics  relied on a linear model.  This effort produced the 
SANUC (Statistically Applied Non-Uniformity Calibration) algorithm, which demonstrated an ability to relate 
the measured signal with the true radiance of the source.  

Reliance on a completely linear model does not allow for non-linear behaviors to be described, thus 
potentially producing poor photo-calibration over large dynamic ranges. In this paper, a photo-calibration 
procedure is defined that requires only first and second moments of the measurements and allows the 
response to be modeled using a non-linear function over the dynamic range of the detector.  The technique is 
applied to image data containing a light source measured with different integration times showing that the 
non-linear technique achieves significant improvement over the linear model over a large dynamic range. 

 
Keywords: Calibration, Detection, Statistical Optics 
 
Stephen C. Cain, E-mail: Stephen.Cain@afit.edu  

1 Introduction 

A new method of achieving non-uniformity correction for radiometric calibration of photodetectors is developed and tested in 

this research. The proposed algorithmic refinement allows radiometric quantification of the data in terms of electron count 

without substantial additional computational burden over a larger range of light levels than what is possible with the employment 

of methods that utilize photodetector statistics with a linear model to achieve calibration like “the variance method” and the 

S3NUC and SANUC algorithms. [1] [2] [3].  This is achieved with the introduction of a new non-linear model for the detector 

that determines photodetector response with only two parameters. 

While it is recognized that photodetectors do not exhibit a linear response in  [4],  there are plenty of examples of successfully 

modeling them as such [5], [6], [7] when input signals are held over a small enough range.   The variance, SANUC and S3NUC 

methods all require at least two sufficiently static datasets of the same scene at different integration times [1], [2] [3] in order to 

facilitate the calculation of calibration parameters.  Other techniques have been introduced for achieving non-uniformity 

correction [5], [6], [7] , but these methods do not allow for absolute radiometry in terms of measured electrons to be achieved 
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without the addition of a calibrated light source.  These methods allow for the non-absolute pixel-to-pixel differences in photo-

detector response to be removed, but do not provide an estimate of the gain of the system in units of digital counts per electron or 

the bias in  the linear model that allows the true number of photons to be estimated from the detector measurement and 

knowledge of the quantum efficiency and dark current level.  Absolute radiometry was demonstrated with the SANUC method, 

but often the system response of a photodetector is not linear over its whole input range. The SANUC method is designed to fit 

the calibration of a non-linear detector to a linear detector response [2]. The introduction of a non-linear model that achieves an 

improved ability to describe the photo-detector response over the SANUC approach is the goal of this research. 

The remainder of this paper is organized as follows: Section 2  provides an overview of the variance method and the SANUC 

algorithm. Section 3 will introduce and provide derivations for the Non-Linear Statistical Non-Uniformity Correction 

(NLSNUC) algorithm. Section 4 will serve to present the laboratory data and results that serve to compare the variance method, 

and the SANUC and NLSNUC algorithms by calibrating the detectors in an array of photo-detectors using two data sets and then 

using the calibration information to predict the system response for inputs outside the calibration range.   

2   Variance Method and the SANUC Algorithm 

The variance method can be used to compute the photo-detector gain and is identified and mathematically justified 

in [1].  This method features an approach of measuring the variance and mean of different data sets at different 

illumination levels. The method then specifies that the variance at each data point should be plotted against the 

mean. When this is accomplished for at least two data sets, but preferably more, a line can be fitted between the 

points and the slope of that line reveals the  gain of the system in units of digital counts per electron.  When more 

points are used, a more refined estimate of the gain may be produced. Using this technique, the y-intercept of the 

graph is the readout noise variance present even when there is no illumination on the photo-detector surface. No 

solution for the average number of electrons is presented using this method nor does this method offer a solution for 

detector bias. It is assumed that the photo-detector bias can be measured using dark frames. 

The SANUC algorithm defines  K̅(x,y), as the average number of electrons expected in the first data set (ܦଵ). The average 

number of electrons measured in the second data set, ( ܦଶ), should be NK̅(x,y). In practice, this increase of the electron count can 

be readily accomplished by increasing the integration time of the sensor being used to gather the data by a factor of N [2].  
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Expressions for the mean, E[ ], and variance of the two sets of data , D1and D2, at pixel location (x,y) needed to calculate the 

linear detector parameters are shown in Equations (1-4) below: 

 ( ) ( ) ( ) ( )1 1( , ) [ , ] , , ,D x y E D x y G x y K x y B x y O= = + +   (1) 

 ( ) ( ) ( )2 ( , ) , , ,D x y NG x y K x y B x y O= + +   (2) 

 
1

2 2 2 2
1 1( , ) [( ( , ) ( , )) ] ( , ) ( , )D nx y E D x y D x y G x y K x yσ σ= − = +   (3) 

 
2

2 2 2( , ) ( , ) ( , )D nx y NG x y K x yσ σ= +   (4) 

In these equations the digital offset, O, can be verified by setting the integration time of the camera to be as small as possible and 

closing the aperture to prevent any light from entering.  With some equipment, this offset level can be selected by the user. This 

system of equations is then solved for the parameters G (the gain), B (the model bias), K̅, and σn
2 (the variance of the readout 

noise) using estimates of the means (ܦഥଵ, ଵ,ଶߪ) ഥଶ) and variancesܦ ଶଶߪ ) of the data sets D1 and D2.  In Equation (5) the solution for 

the Gain is solved for as a difference of variances of the data set over the differences in the means between two data sets. This 

difference of variances in the numerator removes any common readout noise variance between the data sets. 

 ( ) 2 1

2

2

1

2 ( , ) (
,

( , )

, )

( , )
D DG x y

D x y D x

y y

y

x xσ σ−
=

−
  (5) 

The solution for K̅  shown in Equation (6) is a function only of the means of the two data sets and the estimated gain from 

Equation (5).  

 2 1( , ) ( , )

( 1) ( ,
( , )

)

D x y D x y
K

N y
x

G
y

x
= −

−
  (6) 

The calculation of the bias, B, is conducted using only the mean of one data set and the estimated gain and electron value.  

 1( , ) ( , ) ( , ) ( , )B x y D x y x y KG x y O= − −   (7) 

 The SANUC method allows for the calculation of the gain in units of digital counts per electron and the “model 

bias”, B, which can alternatively include the offset, O as it was originally presented in [2].   
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  When the number of data sets is equal to two, the gain computed using the variance method is mathematically 

equivalent to the gain computed using the SANUC method. The slope would be rise over run, which is the 

difference between the two variances divided by the difference between the two means, as shown in Equation (5).     

Calculation of the variances removes the mean and any biases from the calculation as variance calculation dictates 

that you subtract the mean from the samples. The differences between the means in the denominator also subtracts 

any bias effects so that neither the model bias nor the voltage offset show up in a plot of variance versus signal mean 

as shown in Figure 1. If the system is completely linear, then the y-intercept is related to the observed readout noise 

variance, which is not equal to either the model bias or the voltage offset. Any error in the location of the y-intercept 

would be due to the non-linearity of the response and noise.  

 

Figure 1: Employment of the variance method for a non-linear photodetector. The gain in units of digital counts per electron is 
the slope of the line tangent to the solid signal variance versus mean signal curve. 
 

It is worth noting that the variance method offers no formal solution for K̅ or the “model bias.”  It stands to reason that Equation 

(6) could be used to compute K̅ using the calculated gain since two data sets are presumed to be available. The variance method 

assumes that the dark level (digital counts measured from dark frames with the same integration time as the illuminated data, but 

with no illumination) accounts for any bias. This would be true if the system response were completely linear. However, for non-

linear systems, the dark level does not account for what this paper refers to as the “model bias.”   

 

Figure 2 shows a notional response curve that highlights the difference between the two quantities. Here the means 

are preserved because we are plotting average digital count on the y-axis versus photon input on the x-axis. The 
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signal mean is computed as a function of the number of electrons hitting the detector as part of the SANUC 

algorithm, but this calculation is not considered as part of the variance method. This is why the variance method 

cannot compute “model bias”.  The offset, O, is the signal measured with no input. More detailed information on the 

SANUC algorithm and its demonstrated radiometric accuracy can be found in [2]. 

 

Figure 2: SANUC method showing how the model bias is computed from the graph of the system output versus input electrons. 
 

3 Non-Linear Statistical Non-Uniformity Calibration (NLSNUC) Algorithm  

The NLSNUC algorithm represents a further modification of the SANUC approach. The derivation of the approach is rooted in a 

hypothesis that the efficiency of a CCD element is a non-linear function of the number of electrons in the well. CCD wells are 

like capacitors in that they store charge. The energy required to add additional charge to an already charged capacitor is more 

than the energy required to add charge to a depleted capacitor. This increase in energy required for charging as the well fills 

produces a reduction in efficiency as a function of well occupancy, which should lead to a reduction in the system gain as the 

well becomes full. The hypothesized model relating the photo-detector output, DN, in relation to the number of electrons 

measured by the detector during the integration time is shown in Equation (8). 

 
( , ) ( , )( , ) ( , )(1 )x y K x y

ND x y C x y e Oα−= − +   (8) 

In the experiments presented in the next section, the measurements were used to verify that the camera black level setting (what 

the user inputs for the black level) is indeed accurate. α is the non-linear gain factor of the camera pixel at location (x,y), N is the 

integration time factor (much the same as in the SANUC method) and C(x,y) is the pixel saturation value in units of digital 

counts.  Since O is easily verified through a zero illumination measurement, and can be directly programed by the user and is 
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often independent of pixel elements (since it is driven by the output amplifier level relative to the analog to digital converter), the 

model possesses the same number of variables as the traditional linear model used by the SANUC method.  Additionally, when 

the programmable offset, O, is removed, this model features the output of the camera being equal to the zero mean readout noise 

when there is no illumination present. 

Calculation of model parameters for the NLSNUC algorithm is a two-step process. The same sort of calibration data is used for 

NLSNUC as in the variance and SANUC methods. A number of frames of data are collected while the light level presented to 

the detector array does not change. There is no need for the light level to be uniform across the array. First, the expected value of 

the two data sets are taken as shown in Equations (9) and (10). 

 1

1

( , ) ( , )[ ( , ) ] [ ]x y K x y
NE D x y O C CE e α−− = −   (9) 

 
 2

2

( , ) ( , )[ ( , ) ] [ ]x y K x y
NE D x y O C CE e α−− = −   (10) 

In these equations, K1 and K2 are Poisson random variables with the mean of K2 electrons being equal to the mean of 

K1 times N2 / N1.Using the Moment Generating Function of a Poisson random variable [8], the ratio of Equation (10) 

divided by Equation (9) is equal to: 
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2 1

2
( , )

1

( , )( 1)/
2

( , )( 1)
1

[ ( , ) ]( , ) 1

( , ) [ ( , ) ] 1

x y

x y

N K x y e N
N

K x y e
N

E D x y OD x y e

D x y E D x y O e

α

α

−

−

−

−

− −= =
− −

  (11) 

Defining the variable g(x,y) being equal to the argument of the exponent in the denominator of Equation (11), this expression 

becomes: 

 
2 1( , )/

2
( , )

1

( , ) 1

( , ) 1

N g x y N

g x y

D x y e

D x y e

−=
−

  (12) 

The sample mean of DN2 divided by the sample mean of  DN1 can be computed from the data to allow for g(x,y) to be estimated 

by finding the g(x,y) that minimizes the following equation. 

                            
2 1

2( , )/
2

( , )
( , ) 1

( , ) 1
ˆ( , ) arg min

( , ) 1

N g x y N

g x y
g x y

D x y e
g x y

D x y e

 −= − − 
                                                          (13) 
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The estimate, ĝ , can be found through a numerical procedure of computing the quantity in Equation (13) for a range of values 

of g(x,y).  With this estimate for g(x,y), it is possible to estimate C(x,y) by equating Equation (9) with ܦഥଵ  from Equation (11) and 

solving for C(x,y). 

 
ˆ ( , )

1( , ) ( , ) / (1 )g x yC x y D x y e= −   (14) 

With a solution of C(x,y) in hand, it becomes possible to transform the data sets DN2 and DN1 into two new data sets HN2 and HN1 

respectively via the following equation: 

 ( , ) log(1 ( ( , ) ) / ( , ))N NH x y D x y O C x y= − − −   (15) 

Following this transformation, HN is now a random variable with mean equal to: 

 [ ( , )] ( , ) ( , )NE H x y x y NK x yα=   (16) 

In this way, the non-linear calibration becomes a linear calibration problem where the model parameter α(x,y) takes on the role of 

the gain and the model bias is known to be zero. Thus, the SANUC algorithm can be used on the new data sets HN2 and HN1 to 

solve for the number of electrons and the gain. Table 1 shows the steps involved in how the different algorithms  process 

laboratory data to compute calibration parameters and average photon rates. 
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Table 1: Steps in the variance method as well as the SANUC and NLSNUC Algorithms. The last row shows how to take the calibration parameters 
and compute an estimated number of electrons for each data sample.   The term “Linear algorithms” refers to both the variance method and the 
SANUC algorithm when indicating the step number in column 1. 
Step# 
 

The variance method and SANUC NLSNUC

Compute Offset, O 
1 Linear algorithms 
1 NLSNUC 

   O = Camera Black Level set by user
(Can also be determined by dark frame 
measurements) 

  O = Camera Black Level set by user 
(Can also be determined by dark frame 
measurements) 

Compute mean of 
data sets D1, D2 
2 Linear algorithms 
2 NLSNUC 

Average the data in the frame dimension
after subtracting the offset O 

Same as SANUC

Compute variances of 
data sets D1,D2 
3 Linear algorithms 
N/A  NLSNUC 

For each pixel in the array, compute the 
variance 

Not done with NLSNUC

Compute detector 
gain 
4 Linear algorithms 
7 NLSNUC 

( ) 2 1

2

2

1

2 ( , ) (
,

( , )

, )

( , )
D DG x y

D x y D x

y y

y

x xσ σ−
=

−  
( ) 2 1

2

2

1

2 ( , ) (
,

( , ( , )

)

)

,H Hx y
H x y H x y

x y x y
α

σ σ
=

−
−

 

Compute ܭഥ 
5 Linear algorithms 
8 NLSNUC 

2 1( , ) ( , )

( 1) ( ,
( , )

)

D x y D x y
K

N y
x

G
y

x
= −

−  
2 1( , ) ( , )

( 1) ( ,
( , )

)

H x y H x y
K

N y
x

x
y

α
= −

−  

Compute Model Bias 
6 Linear algorithms 
N/A  NLSNUC 

Not done for the variance method 
For the SANUC algorithm: 

1( , ) ( , ) ( , ) ( , )B x y D x y x y KG x y= −

Not necessary for NLSNUC 

Compute the 
parameter ݃ ො 
N/A Linear algorithms 
3  NLSNUC 

Not necessary for the variance method or 
SANUC 

Numerical procedure of finding the value of ො݃
2 1

2( , )/
2

( , )
( , ) 1

( , ) 1
ˆ( , ) arg min

( , ) 1

N g x y N

g x y
g x y

D x y e
g x y

D x y e

 −= − −   

Compute the 
Saturation, C(x,y) 
N/A SANUC 
4 NLSNUC 

Not necessary for the variance method or 
SANUC 

ˆ ( , )
1

1

( , ) ( , ) / (1 )
M

g x y

f

C x y D x y e
=

= −
 

Non-Linear Correction 
N/A Linear algorithms 
5 NLSNUC 

Not necessary for the variance method or 
SANUC 

1 1( , ) log(1 ( ( , ) ) / ( , ))H x y D x y O C x y= − − −  
2 2( , ) log(1 ( ( , ) ) / ( , ))H x y D x y O C x y= − − −  

Compute means and 
variances of data with 
Non-Linear Correction 
N/A Linear algorithms 
6 NLSNUC 

Not necessary for the variance method or 
SANUC 

( )
( )

1

2

1 1

2 2

1 1

2

22
2

22 ( , ) [ ]

( , ) [ ( , )]

( , ) [ ( , )]

( , ) ( , )

( , ) ) ( ,[ , ) ](

H

H

H x y E H x y

H x y E H x y

H x y H x y

H x y H x y

x y E

x y E

σ

σ

=
=

−=

−=  
Compute estimated 
value of K from data 
sample 
7 Linear algorithms 
9 NLSNUC 
 

 is an estimate of th number of electrons	ܭ
For the variance method:

( , , ) ( ( , , ) ) / ( , )K x y f D x y f O G x y= −
  

For SANUC: 
( , , ) ( ( , , ) ( , ) ) / ( , )K x y f D x y f B x y O G x y= − −


  

  is an estimate of the number of electronsܭ
ˆ ˆ( , , ) log(1 ( ( , , ) ) / ( , )) / ( , )K x y f D x y f O C x y x yα= − − −
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4 Demonstration of the NLSNUC algorithm  

The calibration algorithms are evaluated using measured photo-detector data. In setting up the laboratory experiment, the goal 

was to present a steady intensity pattern on the detector array so that measurements at different integration times could be related 

to one another without concern that the source was changing in intensity. For this reason, a 4.5-volt DC lamp was powered by 3 

AA batteries to flood-illuminate a white board which then reflected light onto the detector array. Sets of data were taken with the 

CCD (Charge Coupled Device) array covered (no light) as well as exposed to the reflected light with exposures of 1ms, 2 ms, 20 

ms, 40 ms, and 100 milliseconds. Figure 3 shows the laboratory setup.  

 

Figure 3: Laboratory setup showing the relationship between the lamp, CCD array and reflective surface. 
 
The 40 and 100 ms exposure data are used to compute the calibration parameters as well as estimate the number of electrons 

being measured during a 1 ms period using the procedures outlined in the previous sections.  These model parameters are then 

used to compute the predicted number of digital counts produced during the 1 ms, 2 ms and 20 ms integration periods. The 

methodology used for comparison of the algorithms involves processing sets of data as described in Table 1. Each set of data is 

taken with different integration times (1ms, 2 ms, 20ms, 40 ms, 100ms) and contains ten-thousand photo-detectors (100 by 100 

area of the detector) each of which collected 100 samples in time of the intensity of the field incident on their surface.  Table 2 

summarizes the collection parameters. The “Dark” data set was used to verify the digital bias of the CCD array of 52 digital 

counts and closely represents the output of the camera when there is no light incident on the CCD surface.   Further experiments 

showed that for all integration times, the dark level (camera output with no light present) was 52 digital counts. This allows for 

the conclusion that this camera has a dark current of less than 10 electrons/second. 
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                                                 Table 2: Data sets and Integration Times 

Data Set Integration Time (milliseconds) Median Digital Count 

Dark 1, 2, 20, 40 and 100 52

D1 1 188

D2 2 309

D20 20 2400

D40 40 4704

D100 100 11215

 

Figure 4 shows a sample image gathered by the ThorLabs 8050M scientific camera used to collect the data for these 

experiments. It has a thermo-electric cooler which helps control the readout noise present in the image data to a level of 10 

electrons  (root means squared). The pixel pitch is 5.5 micro-meters and the array size is 2472 by 3296 pixels. The camera 

digitizes the output using 14 bits of resolution. [9] 

 

 

Figure 4: 100 by 100-pixel image of a flat field collected with the ThorLabs 8050M Scientific grade CCD camera. This image 
was gathered with an integration time of 100 ms and the region of interest (100 by 100 pixels) was chosen to speed up the image 
acquisition process and decrease processing time.  
 

  Figure 5 shows a flow chart for the processing steps showing how the results are obtained. 
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Figure 5: Flowchart showing how laboratory data is analyzed to produce estimates of calibration error. 
 
  The model parameters are then used to predict the photo-detector response to another input, which is then compared to a photo-

detector response not used in the calibration. In this way, the superior calibration technique can be ascertained by determining 

which technique provided the better parameters for predicting the photo-detector response to an input outside the range of those 

used for calibration (the 40 and 100 ms data sets).  

One hundred samples of 40 ms and 100 ms integration time data are used to compute, K̅, a gain G, and bias B using the variance 

method and the SANUC algorithm.  The median values of the parameters estimated over 10,000 photodetectors (100 samples 

per detector) are shown in Table 3.   

Table 3: Median values for the estimates from the variance method calibration and  the SANUC calibration using 40 and 100 ms data sets. 
Parameter Value Unit 

ഥଵ 443.42ܭ  Electrons 

 Gain (G) 0.1687 Digital Counts/Electron

 Bias (B) Not computed for the variance method

201.975 for SANUC 

Digital Counts 

 



Published by

12 

 Similarly, the 40 ms and 100 ms data were used to calculate the model parameters using the NLSNUC algorithm for each of 

10,000 pixels using 100 samples per photodetector. Median values for the NLSNUC parameters over the 10,000 photodetectors 

(100 samples per detector) are shown in Table 4. 

Table 4: Median values for the estimates from NLSNUC calibration using 40 and 100 ms data sets. 
Parameter Value Unit

 K1 391.84 Electrons

 Nonlinear Gain (α) 2.366  x 10-6 Electrons-1

 Saturation Parameter (C) 1.0277  x 105 Digital Counts 

 

Figure 6(A) shows the distributions for the gain parameter obtained from the variance method and the SANUC algorithm. Some 

of the values are negative, which demonstrates the method is susceptible to noise. 

 

Figure 6: (A) Histogram of the gain computed by the variance method and the SANUC algorithm of the 10,000 photodetectors 
showing a standard deviation of the gain of 0.168 digital counts per electron. 82.7% of the pixels have positive gain values. (B) 
Histogram of the bias computed by the SANUC algorithm of the 10,000 photodetectors showing a standard deviation of 38 
digital counts. (C) Histogram of the saturation parameter computed by the NLSNUC algorithm of the 10,000 photodetectors 
showing a standard deviation of 12724 digital counts. (D) Histogram of the nonlinear gain computed by the NLSNUC algorithm 
of the 10,000 photodetectors showing a standard deviation of 1.76E-6 electrons-1. 89.2 % of the pixels report positive gain values, 
which is 6.5% more than what the variance method and the SANUC algorithm achieved. 
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Figure 6(B) shows a histogram of the bias values obtained from the SANUC algorithm. Figure 6(C) shows the distribution of the 

saturation parameter computed using the NLSNUC algorithm. Figure 6(D) shows the nonlinear gain parameter computed by the 

NLSNUC algorithm. Although some of the gain values are negative, the percentage of negative ones is smaller than that 

generated by the variance method and the SANUC algorithm, thus demonstrating the superior robustness of the NLSNUC 

algorithm. 

 

Table 5 shows the results of applying the variance method, as well as the SANUC and NLSNUC algorithms to the data over 

10,000 pixels (each trial having 100 data samples) .  Equation (17) shows how the mean absolute error, EN, is computed, where N 

is the integration time in milli-seconds, L is the number of columns and rows in the square image and M is the number of frames 

of data.  In this experiment L=100 and M=100. 

 
1 1 1

2

| ( , , ) ( , ) |
L L M

N N
x y m

N

D x y m I x y

E
ML

= = =

−
=


  (17) 

 In this equation, IN(x,y) is the predicted number of digital counts for data calculated with an integration time of N milliseconds 

from the calibration parameters and the estimated average number of electrons.  IN(x,y) is computed from Equation (18)  for 

measuring the performance of the variance method error, Equation (19) for the SANUC algorithm, and  Equation  (20)  when 

computing the performance of the NLSNUC algorithm. 

 ( , ) ( , ) ( , )NI x y G x y NK x y O= +   (18) 

 ( , ) ( , ) ( , ) ( , )NI x y G x y NK x y B x y O= + +   (19) 

 ( , ) ( , )( , ) ( , )(1 )x y NK x y
NI x y C x y e Oα−= − +   (20) 

 

  The accuracy of the algorithm is revealed by the mean absolute error. The statistical significance of the results can be 

determined by evaluating the variation of the mean absolute error over all detectors in the array compared to the differences in the 

error between the methods. The standard deviation of the absolute error, σN , can be computed via Equation (21) and has units of 

digital counts.  The numerator of Equation 21 is the standard deviation of the error for a pixel element. Because the error, EN, 
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represents an average of the errors in all pixels , the deviation of EN is reduced by the square root of the number of pixels used in 

the calculation (factor of 100 reduction) due to averaging over many pixels.   
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  (21) 

The calibration algorithms’ performance reported in Table 5 shows the performance for each algorithm for all the data sets 

gathered in the study. The minimum error difference reported in row 5 is the difference between the lower of the variance 

method  or SANUC average errors and the NLSNUC error. Row 6 shows the ratio of the number reported in row 5 divided by 

the twice the largest error deviation computed from Equation (21) for all the methods used on that particular data set.  This 

provides a lower bound on the ratio reported in row 6.  The ratio appearing in row 6 of Table 5 gives an estimate of the number of 

standard deviations in the error difference. If the number of standard deviations is greater than 6, then the probability that the 

NLSNUC algorithm produces lower error than the next best competitor is greater than 99.9999%. 

Table 5: Laboratory results for all calibration algorithms with all units in digital counts. The error difference and % Confidence rows are only 
applicable for the error columns and not the deviations. 
Algorithm E1  E2  E20  E40  E100  σ1  σ2  σ20  σ40  σ100  

variance 
method 

25.97 37.03 152.63 260.89 260.90 .02 .03 .19 .38 .43

SANUC 184.17 173.10 59.73 57.67 63.24 .37 .36 .19 .04 .05

NLSNUC 17.14 19.53 27.79 37.84 45.70 .01 .02 .02 .03 .08

Min Error 
Difference  

8.83 17.50 31.94 19.83 17.54 N/A N/A N/A N/A N/A

minݎݎܧ ேଶߪඥ2݂݂݅ܦ	  16.8 33.5 118.9 70.4 28.8 N/A N/A N/A N/A N/A

Confidence >99.99% >99.99% >99.99% >99.99% >99.99% N/A N/A N/A N/A N/A

 

These results demonstrate that the NLSNUC algorithm provides a much better fit to the data than either  the variance method or 

the SANUC algorithm, even for the points used to perform the calibration, and that these results are statistically significant with 
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high confidence, since the separation in the error performance between the algorithms’ computed error, EN, is many times greater 

than the error standard deviations.  Figure 7 shows the estimated response curves of the variance method, the SANUC algorithm 

and the NLSNUC algorithm. SANUC produces a response curve that matches the NLSNUC curve where the input is consistent 

with the 40 and 100 ms data sets used in computing the calibration parameters, while the variance method doesn’t. This is due to 

the lack of “model bias” in the variance method. At the low end, the NLSNUC and the variance method agree more closely, 

because the offset in this range is more closely equal to the offset, O. Although the curves  appear nearly linear, the NLSNUC has 

lower error in both the high and low regions due to its ability to “bend”, where the other techniques cannot, as shown in Table 5. 

 

                                                                               (A) 

 

                                                      (B)                                                                                                         (C) 

Figure 7: (A) Total estimated response curves for the three methods showing output digital counts vs. input electrons. (B) shows 
the low end of the range corresponding to inputs from the 1, 2 and 20 ms data sets. (C) shows the response curves in the high end 
corresponding to the 40 and 100 ms data sets used to calibrate the system. 
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5 Conclusions 

  The NLSNUC calibration algorithm produced superior performance well outside the calibration range of the 

experiment. This claim is based on the fact that the 40ms and 100ms integration time data were used to compute the 

calibration parameters and the calibration parameters were used to predict the response of the camera at integration 

times of 1,2 and 20ms for the same illumination level.  The NLSNUC algorithm was the most accurate out of all the 

algorithms tested in the 1ms, 2ms and 20ms cases, which had illumination levels not found in the calibration data. 

The non-linear model utilized in the derivation of the new algorithm successfully modeled the response of the CCD 

pixels and has the feature that it is zero when the CCD pixels are not being illuminated and the offset, O, is 

subtracted along with any dark current.  

 This zero point provides the model an anchor near zero illumination that improves its performance over the linear 

model, which cannot guarantee that the response of the detector at zero illumination is in fact zero, due to model 

bias errors.  The zero point effectively supplies a third data point in a two-point calibration that allows the NLSNUC 

algorithm to predict CCD output values more accurately than the linear model far from the calibration points. This is 

especially important if the system is calibrated at the high end of the response range. Extending the utility of the 

SANUC technique to a broader range of input makes the NLSNUC algorithm an important step forward in 

providing the ability to provide radiometric calibration of photodetectors without calibrated light sources.   
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Caption List 
 
Figure 1: Employment of the variance method for a non-linear photodetector. The gain in units of digital counts per electron is 
the slope of the line tangent to the solid response curve. 
 
Figure 2: SANUC method showing how the model bias is computed from the graph of the system output versus 
input photons 
 
Figure 3: Flowchart showing how laboratory data is analyzed to produce estimates of calibration error. 
 
Figure 4: 100 by 100 pixel image of a flat field collected with the ThorLabs 8050M Scientific grade CCD camera. This image 
was gathered with an integration time of 100 ms and the region of interest (100 by 100 pixels) was chosen to speed up the image 
acquisition process and decrease processing time.  
 
Figure 5: Flowchart showing how laboratory data is analyzed to produce estimates of calibration error. 
 
Figure 6: (A) Histogram of the gain computed by the variance method and the SANUC algorithm of the 10,000 photodetectors 
showing a standard deviation of the gain of 0.168 digital counts per electron. 82.7% of the pixels have positive gain values. (B) 
Histogram of the bias computed by the SANUC algorithm of the 10,000 photodetectors showing a standard deviation of 38 
digital counts. (C) Histogram of the saturation parameter computed by the NLSNUC algorithm of the 10,000 photodetectors 
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showing a standard deviation of 12724 digital counts. (D) Histogram of the nonlinear gain computed by the NLSNUC algorithm 
of the 10,000 photodetectors showing a Standard deviation of 1.76E-6 electrons-1. 89.2 % of the pixels report positive gain 
values, which is 6.5% more than what the variance method and the SANUC algorithm achieved. 
 
Figure 7: (A) Total estimated response curves for the three methods showing output digital counts vs. input electrons. (B) shows 
the low end of the range corresponding to inputs from the 1, 2 and 20 ms data sets. (C) shows the response curves in the high end 
corresponding to the 40 and 100 ms data sets used to calibrate the system. 
 

Table 1: Steps in the variance method as well as the SANUC and NLSNUC Algorithms. The last row shows how to take the 
calibration parameters and compute an estimated number of electrons for each data sample.   The term “Linear algorithms” refers 
to both the variance method and the SANUC algorithm when indicating the step number in column 1. 
 
Table 2: Data sets and Integration Times 

Table 3: Median values for the estimates from the variance method calibration and  the SANUC calibration using 40 and 100 ms 
data sets. 
 
Table 4: Median values for the estimates from NLSNUC calibration using 40 and 100 ms data sets. 
 
Table 5: Laboratory results for all calibration algorithms with all units in digital counts. The error difference and % 
Confidence rows are only applicable for the error columns and not the deviations. 
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