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Fig. 3. Example of off-axis PSRG. (a) Anamorphically compressed signal wrapped phase, (b) tilted reference wrapped phase, and (c) resulting dig-
ital hologram, where S/N = 10 . As highlighted in the magnified regions of (a)–(c), one can digitally extract every fourth column to obtain four
phase-shifted holograms, which are analogous to the four digital holograms in Eq. (2) [cf. Figs. 2(a)–2(d)].

the reference complex-optical field, UR(x , y ) , takes the
following form:

UR(x , y )= AR exp

(
− j2π x

x R

λ f

)
, (6)

where AR is the uniform reference amplitude, x R is the x
-coordinate shift of the reference, λ is the reference wavelength,
and f is the focal length of the collimating lens. To achieve the
correct tilt, the following criteria must be met:

x R

f
=
λ

4p
, (7)

where p is the width of a square FPA pixel. This linear phase
ramp yields repeating columns in the digital hologram,
where the average reference phase is 0, π/2 , π , and 3π/2 .
Thereafter, one can digitally extract every fourth column to
obtain four phase-shifted holograms, which are analogous to the
four digital holograms in Eq. (2).

With Eq. (2) in mind, the procedure used to estimate the
signal and wrapped-phase function for the off-axis PSRG is then
identical to the on-axis PSRG [cf. Eq. (3)]. Additionally, the
SNR expression for off-axis PSRG is identical to that obtained
for on-axis PSRG [cf. Eq. (5)]. As with the on-axis PSRG, the
use of this closed-form expression with off-axis PSRG assumes

a reduction in signal strength by a factor of four in obtain-
ing phase-shifted holograms. Next, we formulate the main
difference between on-axis and off-axis models.

C. Modulation-Efficiency Model

With on-axis PSRG, one interferes the signal with a phase-
shifted reference (cf. Fig. 2), whereas with off-axis PSRG, one
interferes an anamorphically compressed signal with a tilted
reference (cf. Fig. 3). Thus, the on-axis model digitizes four
digital holograms, while the off-axis model digitizes a single
digital hologram. In the latter case, one ends up modulating the
digital hologram at a spatial frequency of 0.25p−1 (cycles per
pixel). This modulation unfortunately manifests as an efficiency
loss that we refer to as the modulation efficiency, ηm .

To quantify the effects of ηm , one can use the pixel modu-
lation transfer function (MTF). As a reminder, the pixel MTF
represents the spatial-frequency response of a FPA pixel. We can
mathematically represent the recording of the digital hologram
with the FPA as a 2D convolution between the continuous
hologram, iH(x , y ) , and a square FPA pixel, represented as a
2D rectangle function. Using the convolution theorem, this
convolution is equivalent to the 2D Fourier transform of the
continuous hologram, ĩH( fx , f y ) , multiplied by the pixel
MTF, which is a 2D sinc function (i.e., the Fourier transform of
a 2D rectangle function) [48,49]. In turn,
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iH(x , y ) ∗ ∗rect

(
x
p
,

y
p

)
=F−1

{ĩH( fx , f y )p2sinc(p fx , p f y )},

(8)
where ∗∗ denotes a 2D convolution, p is again the width of a
square FPA pixel, and F−1

{◦} denotes an inverse 2D Fourier
transform. Since energy is conserved between both domains
according to Parseval’s theorem, we quantify the effects of
modulation in terms of a multiplicative loss with the 2D sinc
function in the Fourier domain. Therefore, in accordance with
the off-axis PSRG [cf. Eqs. (6) and (7)], the modulation is in
only x direction with a spatial frequency of fx = 0.25p−1

and ηm = sinc2(0.25)= 0.81 . Note that in this case, the 1D
sinc function is squared because we use the power definition
for the SNR [cf. Eq. (4)]. Also note that for the on-axis PSRG,
ηm = 100% , since there is no modulation. Thus, in the pres-
ence of modulation, ηm degrades due to the spatial sampling
associated with the FPA pixels [3]. Spatial sampling with respect
to the signal’s spatial coherence also manifests as an efficiency
loss, which we formulate next.

D. Coherence-Efficiency Model

Both on-axis and off-axis PSRGs provide an estimate of the
signal. However, as the signal’s spatial coherence degrades, the
accuracy of the estimate degrades due to the spatial sampling
associated with the FPA pixels. To quantify the effects of this
degradation, we leverage an approach originally proposed by
Fried [50] (and used by Barchers and Rhoadarmer [19]), which
develops a relationship between the phase variance, σ 2

φ , and
the number of FPA pixels per Fried coherence length, r0/p ,
where p is the width of the FPA pixels. As a reminder, the Fried
coherence length r0 represents the average diameter where
the root-mean-square phase error is 1.0 rad [51,52]. We then
relate σ 2

φ and r0/p to an efficiency loss that we refer to as the
coherence efficiency, ηc .

To develop the relationship between σ 2
φ and r0/p , we

use a normalized signal with a unit-amplitude random field,
uS(x , y ) , which we simply refer to as the “truth.” In practice,
the “estimate” then follows as

ûS(x p , y p)=
1

p2

∫ y p+p/2

y p−p/2

∫ x p+p/2

x p−p/2
uS(x , y )dxdy , (9)

where (x p , y p) are the coordinates of the FPA pixels. If we
assume that the FPA pixels are square in shape, then Eq. (9)
mathematically represents an average value that physically
accounts for the spatial sampling associated with the FPA pixels.

To calculate the difference, 1uS(x p , y p) , between the esti-
mate and the truth, we use the following expression:

1uS(x p , y p)= ûS(x p , y p)u∗S(x p , y p)= e j1φS (x p ,y p ), (10)

where 1φS(x p , y p) is the phase difference between the unit-
amplitude random fields. If 1φS(x p , y p) follows a zero-mean
Gaussian random process, then the expected value of Eq. (10)
becomes

〈1uS〉 = e−σ
2
φ/2, (11)

where σ 2
φ is the variance of 1φS(x p , y p) . As such,

σ 2
φ =−2 log〈1uS〉. (12)

Now we need to solve for 〈1uS〉 in terms of r0/p .
If we assume that the unit-amplitude random fields are sta-

tistically homogeneous and isotropic, then Eqs. (9) and (10)
result in the following expression:

〈1uS〉 =
1

p2

∫ p/2

−p/2

∫ p/2

−p/2
〈uS(x , y )u∗S(x p = 0, y p = 0)〉dxdy .

(13)
Here, we see that the integrand is equivalent to the coherence

factor, µ(x , y ) , from statistical optics [53]. If we assume that
the atmospheric turbulence follows Kolmogorov statistics [54],
then

µ(x , y )= 〈uS(x p + x , y p + y )u∗S(x p , y p)〉

= exp

[
−3.44

(√
x 2 + y 2/r0

)5/3
]
, (14)

where r0 is again the Fried coherence length. Therefore, if we let
x = ξ p and y = η p , and we substitute Eq. (14) into Eq. (13),
then

〈1uS〉 =

∫ 1/2

−1/2

∫ 1/2

−1/2
exp

[
−3.44(r0/p)−5/3(ξ 2

+ η2)5/6
]

dξdη,

(15)
and after substitution into Eq. (12), we arrive at an integral rela-
tionship between σ 2

φ and r0/p .
To relate σ 2

φ and r0/p to an efficiency loss, we make use of
the coherence efficiency, ηc . In previous work [16], some of the

authors of this paper experimentally showed that ηc = e−σ
2
φ for

temporal phase fluctuations. Here, we can view the efficiency
loss associated with σ 2

φ and r0/p as spatial phase fluctuations,
so the same relationship holds true. Therefore,

ηc = 〈1uS〉
2
=

(∫ 1/2

−1/2

∫ 1/2

−1/2
exp
[
−3.44(r0/p)−5/3(ξ 2

+ η2)
5/6
]

dξdη

)2

,

(16)
which relates r0/p to an efficiency loss that limits the achievable
SNR. The next section describes the simulation setup and met-
rics needed to quantify this last statement.

3. SIMULATION SETUP AND METRICS

This section describes the simulation setup needed to quantify
performance. Additionally, we explain the numerical and ana-
lytical metrics used to quantify performance. These simulations
make use of the wave-optics principles taught by Schmidt in
MATLAB [54].

A. Setup

With Fig. 1 in mind, we simulated a circular pupil with a
diameter D of 50 cm. This circular pupil contained a uniform-
amplitude signal and isoplantic phase errors that followed
Kolmogorov statistics. To generate these phase errors, we used
Monte Carlo phase screens. In particular, we used the Fourier
transform method described by Schmidt with subharmonics
[54]. The prescribed values for the Fried coherence length r0

ranged from 0.125-5 cm; however, as discussed by Charnotskii
[55], Monte Carlo phase screens are not perfect in matching


