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Multi-Gaussian random variables for modeling
optical phenomena

OLGA KOROTKOVA1 AND MILO W. HYDE IV2,*

1Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146, USA
2Department of Engineering Physics, Air Force Institute of Technology, 2950 Hobson Way, Dayton, OH
45433, USA
*milo.hyde@afit.edu

Abstract: A generalization of the classic Gaussian random variable to the family of multi-
Gaussian (MG) random variables characterized by shape parameter M > 0, in addition to the
mean and the standard deviation, is introduced. The probability density function (PDF) of the
MG family members is an alternating series of Gaussian functions with suitably chosen heights
and widths. In particular, for integer values of M, the series has a finite number of terms and
leads to flattened profiles, while reducing to the classic Gaussian PDF for M = 1. For non-integer,
positive values of M, a convergent infinite series of Gaussian functions is obtained that can be
truncated in practical problems. For all M > 1, the MG PDF has flattened profiles, while for
0<M < 1, the MG PDF has cusped profiles. Moreover, the multivariate extension of the MG
random variable is obtained and the log-multi-Gaussian random variable is introduced. In order
to illustrate the usefulness of these new random variables for optics, the application of MG
random variables to the characterization of novel speckle fields is discussed, both theoretically
and via numerical simulations.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The most famous probability density function (PDF) of a continuous random variable—Gaussian—
stemming from the early works of de Moivre [1] and Gauss [2] can be generalized in a number
of ways for inclusion of desired shape details such as flattening, skewing, splitting, etc. One
well-known generalization was proposed by Subbotin [3] (see also Ref. [4]), who extended the
PDF curve to flatter or sharper versions by varying the power law of the exponential function,
hence the family is sometimes termed exponential-power or super-Gaussian. Subbotin’s PDF
was later rescaled by Lunetta [5] and the resulting family has been well explored (cf. Reference
[6]). While originally used for analysis of astrophysical data, super-Gaussian random variables
are currently employed for characterizing a wide range of statistical phenomena: big data analysis
[7], finance [8,9], genetics [10], and scientific impact assessment [11], to name a few. However,
this seemingly transparent generalization often relies on the use of special functions, such as
hypergeometric functions, as is the case for evaluation of its characteristic function [12] (see also
Ref. [13]).

In this paper, we introduce a novel family of continuous random variables that serves a similar
purpose as the super-Gaussian family, i.e., it reshapes the Gaussian distribution to flat-top or
cusped versions, depending on the value of the shape parameter. However, the main advantage
of our family, vice the super-Gaussian, stems from the fact that the statistical properties of its
members can be expressed as series of those for Gaussian random variables, with very simple
expressions defining their heights and widths. Moreover, in the case when the shape parameter
is an integer, flat-top distributions can be formed by a finite number of terms in the series. As
we show, the ability to represent a PDF of the new random variable as a linear combination of
Gaussian contributions leads to unprecedented tractability in the derivation of a number of its
characteristics. For any value of the shape parameter, we will term our new family of random
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variables multi-Gaussian (MG), not to be confused with the well-known multivariate Gaussian.
The MG functions of various dimensions have been previously used in optics for modeling of
beam intensity profiles [14], aperture shapes [15], scattering potentials [16,17], and various
correlation and coherence functions [18–21].

Starting with the finite series case (i.e., integer values of the shape parameter), we first derive
the MG PDF and discuss its characteristics to gain insight into the behavior of MG random
variables. We then provide calculations of the MG cumulative distribution function (CDF),
moment generating function (MGF), characteristic function (CF), and the cumulant generating
function (CGF). We derive the general expressions for the moments and the cumulants of any
order and find explicit expressions for the first four members of each sequence. Next, we introduce
the log-multi-Gaussian (LMG) random variable on assuming that its logarithm is MG-distributed.
Such a distribution can be regarded as an extension of the classic log-normal distribution [22] to
flat-topped profiles. The LMG distribution has an analog derived from the super-Gaussian family
[23,24]; however, as we show, the calculations of major statistical characteristics of LMG random
variables can be obtained almost effortlessly, as linear combinations of well-known results for
log-normal variables. We also discuss the natural extension of the univariate MG random variable
to the multivariate domain and, in particular, the bivariate domain. Such variables reduce to
classic multivariate/bivariate Gaussian random variables if the shape parameter M = 1. We
also show how to generalize all the aforementioned results to an MG distribution with shape
parameter M taking on any positive value, not necessarily an integer, while discussing numerical
examples for the special case when M is the reciprocal of an integer, leading to the formation of
various cusped distributions. The features of LMG and bivariate MG random variables with any
positive M are also briefly outlined and the corresponding numerical results are provided.

Lastly, as an example, we apply the aforementioned analysis on MG random variables to an
optical application. Namely, we derive the first-order statistics (single-spatial-point statistics)
of polarized, or scalar MG speckle fields. Analogous to traditional speckle fields, where the
optical field real and imaginary parts are jointly Gaussian [25], MG speckle fields have real and
imaginary parts that are jointly multi-Gaussian. From the bivariate MG PDF, we derive the
joint PDF of the MG speckle amplitude and phase, from which, we further obtain the amplitude,
phase, and intensity marginal PDFs. We describe how to simulate MG speckle fields; our
simulation method can easily be applied to synthesize MG speckle fields using a spatial light
modulator. Then we validate our MG speckle analysis by comparing Monte Carlo moments to
the corresponding theory.

2. Multi-Gaussian distribution with integer shape index M

2.1. Probability density function and cumulative distribution function

Let us begin by recalling that the Gaussian PDF of a continuous real random variable X with
mean µ (location parameter) and standard deviation σ (scale parameter), i.e., X ∼ N(µ,σ), has
the form

p(G)

X (x) =
1

√
2πσ

exp
[︃
−
(x − µ)2

2σ2

]︃
. (1)

Consider now a function

f (x) =
1

√
2πσ

[︄
1 −

(︃
1 − exp

[︃
−
(x − µ)2

2σ2

]︃ )︃M]︄
, (2)

where M is a positive real number. For M = 1, f (x) reduces to the Gaussian function in Eq. (1),
while for M>1 and 0<M<1 it describes flat-topped and cusped distributions, respectively. Hence,
we may refer to M as a shape parameter.
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We will first discuss the case when M is an integer, M = 1, 2, 3, . . .. On using the binomial
theorem, namely,

(u + v)M =
M∑︂

m=0

⎛⎜⎝
M

m
⎞⎟⎠ uM−mvm, ⎛⎜⎝

M

m
⎞⎟⎠ = M!

m!(M − m)!
, (3)

with u = 1 and v = − exp
[︁
−(x − µ)2/(2σ2)

]︁
, we arrive at the finite series

f (x) =
1

√
2πσ

M∑︂
m=1

⎛⎜⎝
M

m
⎞⎟⎠ (−1)m−1 exp

[︃
−
(x − µ)2

2σ2
m

]︃
, (4)

with equal mean µ for all terms and mth-term standard deviation

σm = σ/
√

m. (5)

Let us now introduce a PDF as
p(MG)

X (x) =
f (x)∫ ∞

−∞
f (x)dx

, (6)

ensuring that
∫ ∞

−∞
p(MG)

X (x)dx = 1. The denominator of Eq. (6) evaluates to∫ ∞

−∞

f (x)dx = C0(M) =

M∑︂
m=1

⎛⎜⎝
M

m
⎞⎟⎠ (−1)m−1

√
m

, (7)

and therefore, we finally obtain the multi-Gaussian PDF:

p(MG)

X (x) =
1

C0(M)
√

2πσ

M∑︂
m=1

⎛⎜⎝
M

m
⎞⎟⎠ (−1)m−1 exp

[︃
−
(x − µ)2

2σ2
m

]︃
. (8)

We may also say that X ∼ N(µ,σ, M) as a generalization of a normal random variable to any
value of the shape parameter M.

The cumulative distribution function (CDF) of the MG random variable in Eq. (8) can be
readily calculated from its definition and by changing the order of summation and integration:

P(MG)

X (x) =
∫ x

−∞

p(MG)

X (s)ds =
1

2C0(M)

M∑︂
m=1

⎛⎜⎝
M

m
⎞⎟⎠ (−1)m−1

√
m

[︃
1 + Erf

(︃
x − µ
√

2σm

)︃]︃
, (9)

where Erf stands for the error function. Figure 1(A) and (B) show the PDF and CDF of a MG
random variable for M = 1, 2, 10, 40 calculated from Eqs. (8) and (9), respectively. Figure 2
shows the PDF for M = 10 and different values of µ and σ.

2.2. Moment generating function, characteristic function, and moments

The moment generating function (MGF) of the MG random variable in Eq. (8) can also be
directly evaluated from its definition:

M(MG)

X (t) =
∫ ∞

−∞

exp(xt)pX(x)dx =
1

C0(M)
exp(µt)

M∑︂
m=1

⎛⎜⎝
M

m
⎞⎟⎠ (−1)m−1

√
m

exp
(︃
σ2

mt2

2

)︃
. (10)
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Fig. 1. Multi-Gaussian PDF (A) and CDF (B) with µ = 0 and σ = 1.

Fig. 2. Multi-Gaussian PDF with M = 10 and various values of µ and σ.

The characteristic function (CF) of the MG distribution can be readily obtained either from its
definition or its relation to the MGF:

ϕ
(MG)

X (ω) =

∫ ∞

−∞

exp(iωx)p(MG)

X (x)dx = M(MG)

X (iω)

=
1

C0(M)
exp(iωµ)

M∑︂
m=1

⎛⎜⎝
M

m
⎞⎟⎠ (−1)m−1

√
m

exp
(︃
−σ2

mω
2

2

)︃
.

(11)

The statistical moment of order k can be evaluated from the MGF in Eq. (10) via the expression

µ
(MG)

k =
dk

dtk
[M(MG)

X (t)]t=0, (12)

or directly via the PDF function in Eq. (8). Following the latter path, we find that

µ
(MG)

k =

∫ ∞

−∞

xkp(MG)

X (x)dx

=
1

C0(M)

M∑︂
m=1

⎛⎜⎝
M

m
⎞⎟⎠ (−1)m−1

√
m

∫ ∞

−∞

xk
√

2πσm
exp

[︃
−
(x − µ)2

2σ2
m

]︃
dx,

(13)

where we recognize that each integral term is the kth moment of the Gaussian distribution [see
Eq. (1)] with mean µ and standard deviation σm:

µ
(G)

k = σ2(−i
√

2)kU
(︃
k
2

,
1
2

,−
µ2

2σ2
m

)︃
. (14)
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The U(a, b, z) in the above expression is the confluent hypergeometric function [26]. In particular,
on substituting the first four moments of the Gaussian distribution from Eq. (14) into Eq. (13),
we find at once that

µ
(MG)

1 = µ,

µ
(MG)

2 = µ2 + σ2ξ1(M),

µ
(MG)

3 = µ3 + 3µσ2ξ1(M),

µ
(MG)

4 = µ4 + 6µ2ξ1(M) + 3σ4ξ2(M).

(15)

The parameters ξn(M) are defined via ratios

ξn(M) =
Cn(M)

C0(M)
, n = 0, 1, 2, . . . (16)

where

Cn(M) =

M∑︂
m=1

⎛⎜⎝
M

m
⎞⎟⎠ (−1)m−1

mn√m
. (17)

Also, ξn(1) = 1 for any n = 1, 2, 3, . . ., hence, the sequence in Eq. (15) reduces to that in Eq. (14).

2.3. Cumulant generating function and cumulants

The cumulant generating function (CGF) of an MG random variable has the form

K(MG)

X (h) = ln
[︂
M(MG)

X (h)
]︂
= hµ + ln

⎡⎢⎢⎢⎢⎣
1

C0(M)

M∑︂
m=1

⎛⎜⎝
M

m
⎞⎟⎠ (−1)m−1

√
m

exp
(︃
h2σ2

m
2

)︃⎤⎥⎥⎥⎥⎦ , (e18)

as implied by Eq. (10). On expanding the exponential function in Eq. (18) in a Taylor series,
interchanging the order of the two summations, and recognizing the coefficients in the sum as
ξn(M), we get

K(MG)

X (h) = hµ + ln

[︄
∞∑︂

n=0

h2nσ2n

2nn!
ξn(M)

]︄
. (19)

Further, expanding the logarithmic function in Eq. (19) in a Taylor series, we arrive at the double
power series

K(MG)

X (h) = µh +
∞∑︂

p=1

(−1)p+1

p

[︄
∞∑︂

n=0

h2nσ2n

2nn!
ξn(M)

]︄p

. (20)

The cumulants can be found as coefficients κ(MG)
n of powers of h in Eq. (20):

K(MG)

X (h) =
∞∑︂

p=1
k(MG)

p
hp

p!
. (21)

In particular, the first four cumulants are:

κ
(MG)

1 = µ,

κ
(MG)

2 = σ2ξ1(M),

κ
(MG)

3 = 0,

κ
(MG)

4 = 3σ4[ξ2(M) − ξ21 (M)].

(22)

with all odd-order cumulants greater than three equal to zero.
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3. Extensions of multi-Gaussian random variables

3.1. Log-multi-Gaussian (LMG) distribution

Let random variable X be MG-distributed, and Y is ln(Y) = X. If we let Y = exp(X) = g(X) and
X = ln(Y) = g−1(Y), then the PDF for variable Y takes the form

pY (y) = pX[g−1(y)]
|︁|︁|︁|︁dg−1(y)

dy

|︁|︁|︁|︁
= pX(ln y)

1
|y|

, y>0.
(23)

Substitution of the MG PDF from Eq. (8) into Eq. (23) leads to

p(LMG)

Y (y) =
1

C0(M)σ
√

2π |y|

M∑︂
m=1

⎛⎜⎝
M

m
⎞⎟⎠ (−1)m−1 exp

[︃
−
(ln y − µ)2

2σ2
m

]︃
, (24)

which we call the log-multi-Gaussian (LMG) PDF. For M = 1, the LMG PDF reduces to the
classic log-normal (LN) PDF [22]. The CDF of a LMG random variable can be readily found
from

P(LMG)

Y (y) = P(MG)

X (ln y)

=
1

2C0(M)

M∑︂
m=1

⎛⎜⎝
M

m
⎞⎟⎠ (−1)m−1

√
m

{︃
1 + Erf

[︃√︃
m
2

(︃
ln y − µ
σ

)︃]︃}︃
, y>0.

(25)

The MGF of the LMG distribution diverges but the moments can be found from the definition:

µ
(LMG)

k =

∫ ∞

−∞

ykp(LMG)

Y (y)dy

=
1

C0(M)

M∑︂
m=1

⎛⎜⎝
M

m
⎞⎟⎠ (−1)m−1

√
m

{︃
1

√
2πσm

∫ ∞

−∞

yk−1 exp
[︃
−
(ln y − µ)2

2σ2
m

]︃
dy

}︃
.

(26)

The expression in the braces is the kth moment of the LN distribution with mean µ and standard
deviation σm:

µ
(LN)

k =
1

√
2πσm

∫ ∞

−∞

yk−1 exp
[︃
−
(ln y − µ)2

2σ2
m

]︃
dy = exp

[︃
k(2µ + kσ2

m)

2

]︃
; (27)

thus,

µ
(LMG)

k =
1

C0(M)

M∑︂
m=1

⎛⎜⎝
M

m
⎞⎟⎠ (−1)m−1

√
m

exp
[︃
k(2µ + kσ2

m)

2

]︃
. (28)
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In particular, the first four moments are

µ
(LMG)

1 =
exp(µ)
C0(M)

M∑︂
m=1

⎛⎜⎝
M

m
⎞⎟⎠ (−1)m−1

√
m

exp
(︃
σ2

m
2

)︃
,

µ
(LMG)

2 =
exp(2µ)
C0(M)

M∑︂
m=1

⎛⎜⎝
M

m
⎞⎟⎠ (−1)m−1

√
m

exp
(︂
2σ2

m

)︂
,

µ
(LMG)

3 =
exp(3µ)
C0(M)

M∑︂
m=1

⎛⎜⎝
M

m
⎞⎟⎠ (−1)m−1

√
m

exp
(︃
9σ2

m
2

)︃
,

µ
(LMG)

4 =
exp(4µ)
C0(M)

M∑︂
m=1

⎛⎜⎝
M

m
⎞⎟⎠ (−1)m−1

√
m

exp
(︂
8σ2

m

)︂
.

(29)

Figure 3 shows the PDF and CDF of a LMG random variable with µ = 0 and σ = 1, for several
values of the index M. As M increases, the PDF profiles become sharper with maxima occurring
at smaller values of y. Figure 4 illustrates the PDF of a LMG random variable with M = 10 but
different values of σ and µ.

Fig. 3. Log-multi-Gaussian PDF [(A) and (C)] and CDF [(B) and (D)] with µ = 0 and
σ = 1. (C) and (D) are the same as (A) and (B) but on log-linear scale.

3.2. Multivariate multi-Gaussian distribution

Let X = [X1, X2, . . . , XN]
T ∈ R be an N-dimensional vector of real random variables with

T standing for the transpose. Also, let the N-dimensional vector of their mean values be
µ = [µ1, µ2, . . . , µN]

T , and the N×N covariance matrix be Σm =
(︁
Cov

[︁
Xi, Xj

]︁
, 1 ≤ i, j ≤ N

)︁
/m.

Then, the PDF of the multivariate MG random vector can be defined by a straightforward
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Fig. 4. Log-multi-Gaussian PDF with various values of M, µ, and σ.

generalization of the multivariate Gaussian PDF as

P(MG)

X (x1, x2, . . . , xN) =
1

C0 (M)

M∑︂
m=1

⎛⎜⎝
M

m
⎞⎟⎠ (−1)m−1

√
m

×

exp
[︃
−

1
2
(x − µ)T Σ−1

m (x − µ)

]︃
(2π)N/2√︁det [Σm]

,

(30)

where det stands for determinant of a matrix and superscript −1 denotes matrix inverse.
In particular, for N = 2 (i.e., the bivariate MG case), Eq. (30) simplifies to

P(MG)

X1X2
(x1, x2) =

1
C0 (M)

M∑︂
m=1

⎛⎜⎝
M

m
⎞⎟⎠ (−1)m−1 √m

exp
[︃
−

zm
2(1 − ρ2)

]︃
2πσ1σ2

√︁
1 − ρ2

(31)

with

z =
(x1 − µ1)

2

σ2
1

−
2ρ (x1 − µ1) (x2 − µ2)

σ1σ2
+
(x2 − µ2)

2

σ2
2

. (32)

To arrive at Eq. (31), we used

µ =
⎛⎜⎝
µ1

µ2

⎞⎟⎠ , Σm =
1
m

⎛⎜⎝
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

⎞⎟⎠ . (33)

Fig. 5 presents the bivariate MG PDF for several values of ρ and M. As can be clearly seen, the
bivariate MG PDF for integer M is not flat-topped. We derived Eq. (30) such that the marginal
PDF equals the univariate MG PDF given in Eq. (8). This stipulation results in the annular-like
PDF shapes shown in Figs. 5(C) and (D).
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Fig. 5. Bivariate multi-Gaussian PDF with µ1 = µ2 = 0 and σ1 = σ2 = 1: (A) M = 1 and
ρ = 0, (B) M = 1 and ρ = 0.7, (C) M = 40 and ρ = 0, and (D) M = 40 and ρ = 0.7.

3.3. Multi-Gaussian moment theorem

Using Eq. (30), we can derive the MG version of the Gaussian moment theorem [25]. Assuming
µ = 0 for simplicity, the cross-correlation of N MG random variables is

⟨x1x2 · · · xN⟩ =
1

C0 (M)

M∑︂
m=1

⎛⎜⎝
M

m
⎞⎟⎠ (−1)m−1

√
m

×

∬
· · ·

∫ ∞

−∞

x1x2 · · · xN

exp
(︃
−

1
2

xTΣ−1
m x

)︃
(2π)N/2√︁det [Σm]

dx1dx2 · · · dxN .

(34)

The N-dimensional integral evaluates to

∬
· · ·

∫ ∞

−∞

x1x2 · · · xN

exp
(︃
−

1
2

xTΣ−1
m x

)︃
(2π)N/2√︁det [Σm]

dx1dx2 · · · dxN

=
σ1
√

m
σ2
√

m
· · ·
σN
√

m

∑︂
P

(︁
ρijρkl · · · ρqr

)︁
i ≠ j, k ≠ l, q ≠ r,

(35)

where P is the set of distinct pair groupings of the N variables and ρij is the cross-correlation
coefficient of xi and xj [25]. Note that if N is odd, ⟨x1x2 · · · xN⟩ = 0.
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Substituting Eq. (35) into Eq. (34) and simplifying produces

⟨x1x2 · · · xN⟩ = σ1σ2 · · ·σN
∑︂

P

(︁
ρijρkl · · · ρqr

)︁
ξN/2 (M) . (36)

where ξn (M) is defined in Eq. (16). For the physically important N = 4 case,

⟨x1x2x3x4⟩ = σ1σ2σ3σ4 (ρ12ρ34 + ρ13ρ24 + ρ14ρ23) ξ2 (N) . (37)

3.4. Generalization to any M>0
Let us now return to Eq. (2) and assume that M is any positive number, not necessarily an integer.
The fractional binomial theorem is now applicable, and Eq. (3) becomes

(u + v)M =
∞∑︂

m=0

⎛⎜⎝
M

m
⎞⎟⎠ uM−mvm, ⎛⎜⎝

M

m
⎞⎟⎠ = (M)m

m!
, (38)

where
(M)m = M(M − 1) · · · (M − m + 1) (39)

is the Pochhammer symbol (falling factorial). We now set u = 1 and v = − exp
[︁
−(x − µ)2/(2σ2)

]︁
and express f (x) in Eq. (2) via the generalized binomial series:

f (x) =
∞∑︂

m=1

(M)m

m!
(−1)m−1 exp

[︃
−
(x − µ)2

2σ2
m

]︃
. (40)

The MG PDF can be obtained as the normalized version of f (x) in Eq. (40) [see Eq. (6)]:

p(MG)

X (x) =
1

C0(M)
√

2πσ

∞∑︂
m=1

(M)m

m!
(−1)m−1 exp

[︃
−
(x − µ)2

2σ2
m

]︃
. (41)

with

C0(M) =

∞∑︂
m=1

(M)m

m!
√

m
(−1)m−1. (42)

The infinite series in Eq. (41) converges as m → ∞, and hence, in practical applications can be
suitably truncated. All calculations relating to the CDF, MGF, CF, KGF, moments, cumulants,
etc. can be carried out in the same manner as above (integer M) except with binomial coefficients
of the form in Eqs. (38) and (39).

For instance, the CDF for non-integer M>0 takes the form

P(MG)

X (x) =
1

2C0(M)

∞∑︂
m=1

(M)m

m!
√

m
(−1)m−1

[︃
1 + Erf

(︃
x − µ
√

2σm

)︃]︃
. (43)

Figure 6 presents the MG PDF and CDF [Eqs. (41) and (43), respectively] for several rational
values of M. Likewise, the coefficients ξn(M) appearing in the moment calculations and cumulants



Research Article Vol. 29, No. 16 / 2 August 2021 / Optics Express 25781

must now use the more general expression for Cn(M), namely,

Cn(M) =

∞∑︂
m=1

(M)m

m!
(−1)m−1

mn√m
, (44)

instead of that given in Eq. (17). The expression for the LMG PDF now takes the form

p(LMG)

Y (y) =
1

C0(M)σ
√

2π |y|

∞∑︂
m=1

(M)m

m!
exp

[︃
−
(ln y − µ)2

2σ2
m

]︃
, (45)

where C0(M) is given in Eq. (42), and the bivariate MG PDF becomes

P(MG)

X1X2
(x1, x2) =

1
C0(M)

∞∑︂
m=1

(M)m

m!
(−1)m−1√m

exp
[︃
−

zm
2(1 − ρ2)

]︃
2πσ1σ2

√︁
1 − ρ2

, (46)

where z is the same as in Eq. (32). Figures 7 and 8 show the LMG PDF from Eq. (45) and the
bivariate MG PDF from Eq. (46) for rational values of the index M.

Fig. 6. Multi-Gaussian PDF (A) and CDF (B) for rational M with µ = 0, σ = 1, and a
truncation index of 2000.

Fig. 7. LMG PDF for rational M with various values of µ, σ, and a truncation index of
2000.
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Fig. 8. Bivariate MG PDF with µ1 = µ2 = 0 and σ1 = σ2 = 1: (A) M = 1 and ρ = 0, (B)
M = 1 and ρ = 0.7, (C) M = 1/40 and ρ = 0, and (D) M = 1/40 and ρ = 0.7.

4. Theory for speckle fields

As an example optical application of MG random variables, we derive the first-order statistics
of amplitude, phase, and intensity of polarized MG speckle fields. We begin the analysis with
the joint PDFs of the real R and imaginary I parts of an MG speckle field. We assume that the
means ⟨R⟩ = ⟨I⟩ = 0 hereafter.

4.1. Rectangular MG speckle fields

If R and I are statistically independent (analogous to fields obeying circular Gaussian statistics),
then the joint PDF is the product of the marginal R and I PDFs and equal to

pR,I (R,I) =
1

C0 (M)C0 (N)

∞∑︂
m=1

∞∑︂
n=1

(M)m
m!

(N)n
n!

(−1)m+n
√

mn

×
1

2πσRmσIn
exp

(︄
−

R2

2σ2
Rm

)︄
exp

(︄
−

I2

2σ2
In

)︄
,

(47)

where M and N are the shape parameters of the MG distributions for R and I, respectively,
σRm = σR/

√
m, σIn = σI/

√
n, and C0 (M) is a normalization factor given generally in Eq. (44).

As discussed above, M and N can be any real numbers greater than zero. When either is an
integer, the corresponding series is finite with all terms greater than M or N equal to zero. If
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M = N = 1 and σR = σI , Eq. (47) simplifies to the joint PDF of two independent Gaussian
random variables. This PDF, having a circular shape, describes fully developed speckle fields
[also called circular complex Gaussian (CCG) fields] generated by scattering spatially coherent
light from rough surfaces or diffusers [25]. In this way, Eq. (47) can be considered a generalization
of CCG speckle fields, although its shape is rectangular for M, N ≠ 1. By correlating R and I,
we can develop a pR,I that is circular or, more generally, elliptical in shape. We present that
theory in the Section 4.2.

We note that there is no single joint MG PDF that incorporates both rectangular- and elliptical-
shaped pR,I . The one exception to this statement is when M = N = 1, but this is just the joint
Gaussian PDF which has already been discussed.

The joint PDF of the amplitude and phase can be found by performing a random variable
transformation on Eq. (47), namely,

pA,φ (A, ϕ) = pR,I [R (A, ϕ) ,I (A, ϕ)]

|︁|︁|︁|︁|︁|︁det
⎡⎢⎢⎢⎢⎣⎛⎜⎝
∂R/∂A ∂R/∂ϕ

∂I/∂A ∂I/∂ϕ

⎞⎟⎠
⎤⎥⎥⎥⎥⎦
|︁|︁|︁|︁|︁|︁ , (48)

where R = A cos ϕ and I = A sin ϕ [25]. Evaluating Eq. (48) produces

pA,φ (A, ϕ) =
1

C0 (M)C0 (N)

∞∑︂
m=1

∞∑︂
n=1

(M)m
m!

(N)n
n!

(−1)m+n
√

mn

×
A

2πσRmσIn
exp

[︄
−

A2

2

(︄
cos2 ϕ

σ2
Rm
+

sin2 ϕ

σ2
In

)︄]︄
.

(49)

The marginal PDFs of ϕ and A are

pφ (ϕ) =
∫ ∞

0
pA,φ (A, ϕ) dA (50)

pA (A) =
∫ π

−π
pA,φ (A, ϕ) dϕ, (51)

respectively. Substituting Eq. (49) into Eq. (50) and evaluating the integral using substitution
yields

pφ (ϕ) =
1

C0 (M)C0 (N)

∞∑︂
m=1

∞∑︂
n=1

(M)m
m!

(N)n
n!

(−1)m+n
√

mn

×
1

2π
1

σIn

σRm
cos2 ϕ +

σRm

σIn
sin2 ϕ

.
(52)

The integral in Eq. (51) is more difficult to evaluate; the details are shown in Appendix A.
Equation (51) simplifies to

pA (A) =
1

C0 (M)C0 (N)

∞∑︂
m=1

∞∑︂
n=1

(M)m
m!

(N)n
n!

(−1)m+n
√

mn

×
A

σRmσIn
exp

[︄
−

A2

2

(︄
1

2σ2
Rm
+

1
2σ2

In

)︄]︄
I0

[︄
A2

2

(︄
1

2σ2
Rm

−
1

2σ2
In

)︄]︄
,

(53)

where I0 (x) is a zeroth-order modified Bessel function of the first kind. In contrast to CCG fields,
here pA,φ (A, ϕ) ≠ pA (A) pφ (ϕ). Thus, statistically independent MG R and I do not produce
speckle fields with independent amplitudes and phases.
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Lastly, the PDF of the speckle intensities can be derived via a random variable transformation
of pA (A), i.e.,

pI (I) = pA [A (I)]
|︁|︁|︁|︁dA
dI

|︁|︁|︁|︁ , (54)

where A =
√

I. The result is

pI (I) =
1

C0 (M)C0 (N)

∞∑︂
m=1

∞∑︂
n=1

(M)m
m!

(N)n
n!

(−1)m+n
√

mn

×
1

2σRmσIn
exp

[︄
−

I
2

(︄
1

2σ2
Rm
+

1
2σ2

In

)︄]︄
I0

[︄
I
2

(︄
1

2σ2
Rm

−
1

2σ2
In

)︄]︄
.

(55)

We investigate these PDFs further in Section 5.
The speckle contrast, i.e., C = σI/⟨I⟩ [25], can be numerically computed from Eq. (55);

however, we can obtain an analytical result using the MG moments given in Eq. (15). We begin
by expressing C as

C =

√︁
⟨I2⟩ − ⟨I⟩2

⟨I⟩
. (56)

The mean and variance of intensity are

⟨I⟩ = ⟨(R + jI) (R − jI)⟩ = ⟨R2⟩ + ⟨I2⟩

⟨I2⟩ − ⟨I⟩2 = ⟨

(︂
R2 + I2

)︂2
⟩ −

(︂
⟨R2⟩ + ⟨I2⟩

)︂2
= ⟨R4⟩ − ⟨R2⟩2 + ⟨I4⟩ − ⟨I2⟩2.

(57)

Referring back to Eq. (15), the moments of R and I are

⟨R2⟩ = σ2
Rξ1 (M)

⟨I2⟩ = σ2
I
ξ1 (N)

⟨R4⟩ = 3σ4
Rξ2 (M)

⟨I4⟩ = 3σ4
I
ξ2 (N) .

(58)

Substituting Eqs. (57) and (58) into Eq. (56) and simplifying yields

C =

√︂
σ4
R

[︁
3ξ2 (M) − ξ21 (M)

]︁
+ σ4

I

[︁
3ξ2 (N) − ξ21 (N)

]︁
σ2
R
ξ1 (M) + σ2

I
ξ1 (N)

. (59)

If σR = σI and M = N (i.e., a “square” MG speckle field), Eq. (59) simplifies to

C =
1
√

2

√︂
3ξ2 (M) − ξ21 (M)

ξ1 (M)
. (60)

This further simplifies to C = 1 when M = 1, as expected for CCG fields.
Figure 9 shows a plot of Eq. (60). This figure can be used to produce square MG speckle fields

with desired contrasts. As previously stated, square MG speckle fields are equal to CCG speckle
fields when M = 1. All M<1 yield speckle fields with C>1. For M>1, we obtain C<1.
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Fig. 9. Square MG speckle contrast C [Eq. (60)] versus shape parameter M.

4.2. Elliptical MG speckle fields

Having derived the speckle phase, amplitude, and intensity PDFs for independent MG R and I,
we now consider MG R and I that are correlated. The joint PDF of R and I takes the form

pR,I (R,I) =
1

C0 (M)

∞∑︂
m=1

(M)m
m!

(−1)m−1
√

m
1

2πσRmσIm
√︁

1 − ρ2

× exp

[︄
−

1
2
(︁
1 − ρ2

)︁ (︄
R2

σ2
Rm

−
2ρRI
σRmσIm

+
I2

σ2
Im

)︄]︄
.

(61)

where ρ is the Gaussian distribution correlation coefficient and C0 (M) is given in Eq. (44).
In general, the shape of pR,I is elliptical. If ρ = 0 and σR = σI , pR,I becomes circular;
nevertheless, R and I are not statistically independent unless M = 1.

The joint PDF of the amplitude and phase can be found using Eq. (48). Substituting Eq. (61)
into Eq. (48) and simplifying yields

pA,φ (A, ϕ) =
1

C0 (M)

∞∑︂
m=1

(M)m
m!

(−1)m−1
√

m
A

2πσRmσIm
√︁

1 − ρ2

× exp

[︄
−

A2

2
(︁
1 − ρ2

)︁ (︄
cos2 ϕ

σ2
Rm

−
ρ sin (2ϕ)
σRmσIm

+
sin2 ϕ

σ2
Im

)︄]︄
.

(62)

Like above, we are interested in the phase and amplitude marginal PDFs defined in Eqs. (50) and
(51), respectively. The phase PDF integral can be evaluated using substitution, namely,

pφ (ϕ) =
1

2π

√︁
1 − ρ2

σI
σR

cos2 ϕ +
σR
σI

sin2 ϕ − ρ sin (2ϕ)
, (63)
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and interestingly, does not depend on the MG shape parameter M. The amplitude PDF integral is
again much more difficult to evaluate. The details are shown in Appendix B:

pA (A) =
1

C0 (M)

∞∑︂
m=1

(M)m
m!

(−1)m−1
√

m

A exp

[︄
−

A2

2
(︁
1 − ρ2

)︁ (︄
1

2σ2
Rm
+

1
2σ2

Im

)︄]︄
σRmσIm

√︁
1 − ρ2

× I0

⎡⎢⎢⎢⎢⎢⎣
A2

2
(︁
1 − ρ2

)︁ ⌜⃓⎷(︄
1

2σ2
Rm

−
1

2σ2
Im

)︄2

+
ρ2

σ2
Rmσ

2
Im

⎤⎥⎥⎥⎥⎥⎦ .

(64)

With pA, the PDF of intensity follows immediately from Eq. (54):

pI (I) =
1

C0 (M)

∞∑︂
m=1

(M)m
m!

(−1)m−1
√

m

exp

[︄
−

I
2
(︁
1 − ρ2

)︁ (︄
1

2σ2
Rm
+

1
2σ2

Im

)︄]︄
2σRmσIm

√︁
1 − ρ2

× I0

⎡⎢⎢⎢⎢⎢⎣
I

2
(︁
1 − ρ2

)︁ ⌜⃓⎷(︄
1

2σ2
Rm

−
1

2σ2
Im

)︄2

+
ρ2

σ2
Rmσ

2
Im

⎤⎥⎥⎥⎥⎥⎦ .

(65)

Inspection of Eqs. (63) and (64) reveals that, in general, pA,φ (A, ϕ) ≠ pA (A) pφ (ϕ) and therefore,
A and ϕ are not statistically independent. However, if ρ = 0 and σR = σI , i.e., Eq. (61) is
circular, A and ϕ are independent.

We can obtain an expression for the speckle contrast C using Eq. (15) and the MG moment
theorem discussed in Section 3.3. The mean intensity and intensity variance for elliptical MG
speckle fields take the form

⟨I⟩ = ⟨R2⟩ + ⟨I2⟩

⟨I2⟩ − ⟨I⟩2 = ⟨R4⟩ − ⟨R2⟩2 + ⟨I4⟩ − ⟨I2⟩2 + 2
(︂
⟨R2I2⟩ − ⟨R2⟩⟨I2⟩

)︂
.

(66)

The only difference between Eq. (66) and Eq. (57) is the term in parentheses. For rectangular
MG speckle fields this term is zero as R and I are statistically independent. This is not the case
here, however.

The single moments in Eq. (66) are defined in Eq. (58) with N = M. We obtain the joint
moment by using the MG moment theorem and Eq. (37), namely,

⟨R2I2⟩ = σ2
Rσ

2
I

(︂
1 + 2ρ2

)︂
ξ2 (M) . (67)

Substituting Eqs. (58), (66), and (67) into Eq. (56) and simplifying yields the desired result:

C =

√︃(︂
σ4
R
+ σ4

I

)︂ [︁
3ξ2 (M) − ξ21 (M)

]︁
ξ1 (M)

(︂
σ2
R
+ σ2

I

)︂ ⌜⃓⎷
1 +

2σ2
R
σ2
I

σ4
R
+ σ4

I

[︄ (︁
1 + 2ρ2

)︁
ξ2 (M) − ξ21 (M)

3ξ2 (M) − ξ21 (M)

]︄
. (68)

If σR = σI , Eq. (68) simplifies to

C =
1
√

2

√︂
3ξ2 (M) − ξ21 (M)

ξ1 (M)

⌜⎷
1 +

(︁
1 + 2ρ2

)︁
ξ2 (M) − ξ21 (M)

3ξ2 (M) − ξ21 (M)
. (69)

Figure 10 shows a plot of Eq. (69). Like the associated square MG speckle contrast plot (Fig. 9),
Fig. 10 can be used to design speckle fields with specific contrasts. Note that Eq. (69) is the
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square MG speckle contrast [Eq. (60)] multiplied by a term containing ρ. Because of this ρ term,
elliptical MG speckle fields have a larger range of possible contrasts than square MG speckle
fields.

Fig. 10. Elliptical MG speckle contrast C [Eq. (69)] versus shape parameter M and Gaussian
correlation coefficient ρ.

In the next section, we generate MG speckle fields and compare the Monte Carlo PDFs to the
theoretical expressions derived above.

5. Simulation

Here, we present simulation results of polarized MG speckle fields. First, we discuss the
simulation details.

5.1. Setup

For the simulations, we used grids that were 256 points per side with a side-length equal to 1 m.
We generated 500 each rectangular and elliptical MG field instances, from which, we computed
pR,I , pR , pI , pA, pφ , and pI . The simulated rectangular MG parameters were M = 20, N = 1/20,
σR =

√︁
1/2, and σI = 1; the elliptical MG parameters were M = 1/20, σR =

√︁
1/2, σI = 1,

and ρ = 0.6.
We used the following process to generate rectangular and elliptical MG speckle fields:

1. Using the spectral representation method [27–29], we “colored” 256 × 256 matrices of
zero-mean, unit-variance, independent Gaussian random numbers (representing R and I)
to simulate partial spatial coherence and ultimately control the speckle size. We used a
Gaussian-shaped correlation function for this purpose, viz.,

µ (x, y) = exp
(︃
−

x2 + y2

2δ2

)︃
, (70)

where δ = 5 cm.

2. To generate rectangular and elliptical MG fields, we used a technique known by several
different names in the literature: translation [30,31], NORTA (NORmal To Anything) [32],
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and the inverse CDF transform method [28,29]. Translation (NORTA, etc.) starts with a
correlated Gaussian-distributed sequence of random numbers and maps it, via a non-linear
transformation, to a correlated non-Gaussian sequence.

(a) For rectangular MG fields, the input Gaussian sequences RG and IG were translated
to MG R and I using the following:

R = F−1
[︂
FG

(︂
RG; 0,

√︁
1/2

)︂
; M,σR

]︂
I = F−1

[︂
FG

(︂
IG; 0,

√︁
1/2

)︂
; N,σI

]︂
,

(71)

where FG is the Gaussian CDF and F−1 is the inverse MG CDF [the forward CDF
is given in Eq. (9)]. In Eq. (71), FG is parameterized by the mean and standard
deviation of the input sequence (either RG or IG). The output of FG is a standard
uniform random sequence, which subsequently serves as the input to F−1. The
inverse MG CDF (computed numerically) is parameterized by the desired MG shape
parameter and Gaussian standard deviation. The output of Eq. (71) is two independent
sequences of MG random numbers with shape parameters M and N and Gaussian
standard deviations σR and σI , respectively.

(b) Since elliptical MG R and I are correlated, the translation process was more
complicated. We first converted RG and IG to AG and ϕG. Then, we applied the
following sequence of non-linear transforms:

ϕ = F−1
φ [FU (ϕG;−π, π) ;σR ,σI , ρ]

A = F−1
A |φ

[︂
FR

(︂
AG;

√︁
1/2

)︂
| ϕ; M,σR ,σI , ρ

]︂
,

(72)

where FU and FR are the uniform and Rayleigh CDFs, respectively. FU and FR are
parameterized by the interval and scale parameter of the respective distributions, and
the outputs of both are standard uniform sequences. These serve as inputs to F−1

φ and
F−1

A |φ
, which are the inverse MG phase CDF [computed from Eq. (63)] and the inverse

conditional (A given ϕ) CDF, respectively. The latter is computed numerically from
the corresponding forward conditional CDF:

FA |φ (A | ϕ) =

∫ A

0
pA |φ (A′ | ϕ) dA′ =

1
pφ (ϕ)

∫ A

0
pA,φ (A′, ϕ) dA′, (73)

where pA,φ and pφ are given in Eqs. (62) and (63). In the first step of Eq. (72), a
ϕ sequence is generated. F−1

φ is parameterized by the desired MG σR , σI , and ρ.
Since A depends on ϕ in elliptical MG fields (A and ϕ are correlated), the ϕ sequence
must be input into the second step of Eq. (72). F−1

A |φ
is parameterized by the desired

MG shape parameter M, σR , σI , and ρ. The output of Eq. (72) is an MG ϕ sequence
and a correlated A sequence.

3. Lastly, we formed rectangular or elliptical MG speckle field realizations by U = R + jI or
U = A exp (jϕ), respectively.

5.2. Results

Figures 11–13 show the results for the rectangular MG speckle field simulation. Figure 11
compares rectangular MG and CCG speckle field realizations. Figure 12 reports the R and I

PDF results: (A) and (B) show the theoretical and simulated CCG R and I joint PDF pR,I ,
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(C) and (D) show the theoretical and simulated rectangular MG R and I joint PDF pR,I , (E)
compares the theoretical and simulated R marginal PDFs pR , and (F) compares the theoretical
and simulated I marginal PDFs pI . Lastly, Fig. 13 compares the theoretical and simulated A,
ϕ, and I marginal PDFs in (A), (B), and (C), respectively. Figs. 14–16 show the results for the
elliptical MG speckle field simulation. The figure layouts are identical to those for Figs. 11–13.

The agreement between the theoretical and Monte Carlo PDFs in these figures is excellent.
It should be noted that although MG speckle fields look qualitatively similar to CCG speckle
fields (Figs. 11 and 14), their statistics are quite different, especially in phase (Figs. 12, 13,
15, and 16). There has been recent theoretical and experimental work on generating speckle
fields with customizable non-Rayleigh amplitude statistics for use in microscopy and imaging
applications [33–35]. Although we presented MG speckle fields as an example application of
MG random variables, the theory and synthesis method developed in this section might find use
in engineered-speckle-pattern applications.

Fig. 11. Example speckle fields—(A) |U | CCG field, (B) |U | rectangular MG field, (C)
arg (U) CCG field, and (D) arg (U) rectangular MG field.
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Fig. 12. R and I PDFs—(A) theoretical Gaussian pR,I , (B) simulated Gaussian pR,I , (C)
theoretical rectangular MG pR,I , (D) simulated rectangular MG pR,I , (E) pR theory versus
simulation, and (F) pI theory versus simulation. In the legend, "G” stands for Gaussian,
"MG” for multi-Gaussian, "Thy” for theory, and “Sim” for simulation.
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Fig. 13. A, ϕ, and I PDFs—(A) pA theory versus simulation, (B) pφ theory versus simulation,
and (C) pI theory versus simulation. In the legend, "G” stands for Gaussian, "MG” for
multi-Gaussian, "Thy” for theory, and “Sim” for simulation.
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Fig. 14. Example speckle fields—(A) |U | CCG field, (B) |U | elliptical MG field, (C)
arg (U) CCG field, and (D) arg (U) elliptical MG field.
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Fig. 15. R and I PDFs—(A) theoretical Gaussian pR,I , (B) simulated Gaussian pR,I ,
(C) theoretical elliptical MG pR,I , (D) simulated elliptical MG pR,I , (E) pR theory versus
simulation, and (F) pI theory versus simulation. In the legend, "G” stands for Gaussian,
"MG” for multi-Gaussian, "Thy” for theory, and “Sim” for simulation.
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Fig. 16. A, ϕ, and I PDFs—(A) pA theory versus simulation, (B) pφ theory versus simulation,
and (C) pI theory versus simulation. In the legend, "G” stands for Gaussian, "MG” for
multi-Gaussian, "Thy” for theory, and “Sim” for simulation.
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6. Summary

We introduced a new family of continuous, real random variables whose PDF represents flattened
and cusped deviations from the Gaussian PDF depending on a single shape parameter taking
positive values. Gaussian random variables are a particular case of our family when the shape
parameter equals unity. While our new PDF can be expressed in closed form, it is possible
and much more analytically convenient to express it as a linear combination of Gaussian PDFs
with alternating signs, equal means, and monotonically decreasing standard deviations. Hence,
the name of our new random variable, multi-Gaussian. It was shown that for integer values of
the shape parameter, the series of Gaussian functions has a finite number of terms, while for
non-integer positive values, the series has infinite terms, but is convergent and can be suitably
truncated. Due to this feature, the calculations of the statistical properties of multi-Gaussian
random variables reduce to algebraic operations over the well-known statistics of Gaussian random
variables. In addition, we developed the log-multi-Gaussian random variable and extended
univariate multi-Gaussian random variables to their multivariate or joint counterparts. Other
straightforward extensions can readily be made, for instance, relating to complex multi-Gaussian
random variables.

Our motivation for introducing the new type of the PDF function was driven by a search for a
tractable analytical model to be used for prescribing the single-point statistics of a scalar optical
speckle field with a deformed (flattened, stretched, or skewed) shape in the central region of
the distribution, and a Gaussian-like edge profile. Such fields are quite common in optics and
might appear in cases when filtering (absorption or gain) of the field is not uniform but rather
depends on its local amplitude or phase values at incidence. In addition, digitally controlled
devices such as spatial light modulators are now capable of practically unlimited manipulation
of the amplitude and phase statistics of laser beams. This experimental field seems however
little explored because of the lack of analytical models for speckle PDFs. In particular, to our
knowledge, a simple PDF model describing the aforementioned situation does not exist in the
literature. We have therefore used the introduced MG PDF (with integer values of the shape
parameter) for modeling of the real and imaginary parts of a speckle field and found that two PDF
families were possible, the rectangular and elliptical versions. These families can be regarded as
two extensions of the classic circular-Gaussian PDF, both reducing to it when the shape parameter
equals unity. We then investigated in detail the first-order statistics of these scalar multi-Gaussian
speckle fields for both families, reporting the expressions for the amplitude, phase and intensity
PDFs. In addition, for both families, we obtained simple analytic expressions for the high-order
speckle statistics, e.g., the speckle contrast or equivalently, the scintillation index. We further
simulated the generation of such random optical fields and compared the Monte-Carlo-computed
amplitude, phase, and intensity PDFs to the corresponding theory. The agreement was found to
be excellent, thereby validating our theory and synthesis approach.

We envision the multi-Gaussian family of random variables to be useful in the same applications
as Subbotin’s family (exponential-power or super-Gaussian family), but in situations where
simple, analytical results are of importance. As we have illustrated, this statement is valid in
general and, in particular, in application to the theory of optical speckle.
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Appendix

A. Derivation of pA (A) Eq. (53)

Substituting Eq. (49) into Eq. (51) produces
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1
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Using the sine and cosine double-angle formulas, the integral in Eq. (74) can be rewritten as∫ π
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Substituting x = 2ϕ into Eq. (75) and accounting for the evenness of the integrand produces∫ π
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Splitting the integral into the sum of two integrals yields∫ π
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Making the substitution u = x − π into the second integral and applying cos (u + π) = − cos u
simplifies Eq. (77) to∫ π
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The integral definition for a zeroth-order modified Bessel function of the first kind is [26]

I0 (z) =
1
π

∫ π

0
exp (±z cos θ) dθ. (79)
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Using Eq. (79), Eq. (78) is equivalent to∫ π
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Lastly, substituting Eq. (80) into Eq. (74) yields Eq. (53).

B. Derivation of pA (A) Eq. (64)

Substituting Eq. (62) into Eq. (51) yields
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Applying the sine and cosine double-angle formulas, the integral in Eq. (81) is equivalent to∫ π
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In the analysis to follow, we let
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for brevity. Introducing X and Y into Eq. (82) and making the substitution t = 2ϕ produces∫ π

−π
exp

[︄
−

A2

2
(︁
1 − ρ2

)︁ (︄
cos2 ϕ

σ2
Rm
+

sin2 ϕ

σ2
Im

−
ρ sin (2ϕ)
σRmσIm

)︄]︄
dϕ

= exp

[︄
−

A2

2
(︁
1 − ρ2

)︁ (︄
1

2σ2
Rm
+

1
2σ2

Im

)︄]︄
1
2

∫ 2π

−2π
exp (−X cos t) exp (Y sin t) dt.

(84)



Research Article Vol. 29, No. 16 / 2 August 2021 / Optics Express 25798

We now split the t integral into the sum of two integrals yielding∫ π
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make the substitution t′ = −t into the first integral in the brackets in Eq. (85), and simplify, such
that ∫ π
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From [26],∫ 2π
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∫ 2π

0
exp (−X cos t + Y sin t) dt = 2πI0

(︂√︁
X2 + Y2

)︂
. (87)

Substituting X and Y [Eq. (83)] into Eq. (87), Eq. (87) into Eq. (86), and lastly, Eq. (86) into
Eq. (81) results in Eq. (64) with some minor algebraic manipulation.
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