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Abstract: Knowledge of turbulence distribution along an experimental path can help in effective
turbulence compensation and mitigation. Although scintillometers are traditionally used to measure
the strength of turbulence, they provide a path-integrated measurement and have limited operational
ranges. A technique to profile turbulence using time-lapse imagery of a distant target from spatially
separated cameras is presented here. The method uses the turbulence induced differential motion
between pairs of point features on a target, sensed at a single camera and between cameras to extract
turbulence distribution along the path. The method is successfully demonstrated on a 511 m almost
horizontal path going over half concrete and half grass. An array of Light-Emitting Diodes (LEDs) of
non-uniform separation is imaged by a pair of cameras, and the extracted turbulence profiles are
validated against measurements from 3D sonic anemometers placed along the path. A short-range
experiment with a heat source to create local turbulence spike gives good results as well. Because the
method is phase-based, it does not suffer from saturation issues and can potentially be applied over
long ranges. Although in the present work, a cooperative target has been used, the technique can
be used with non-cooperative targets. Application of the technique to images collected over slant
paths with elevated targets can aid in understanding the altitude dependence of turbulence in the
surface layer.

Keywords: time-lapse imaging; turbulence; zernike tilt; profiling; sonic anemometry

1. Introduction

For compensation and mitigation schemes to work effectively, it helps to know how
turbulence is distributed along a path. Scintillometers have been the gold standard for
measuring turbulence [1], but scintillometers provide an integrated turbulence measure-
ment, and have limited range capability. Several irradiance-based as well as phase-based
techniques to profile turbulence has been discussed in the literature. The Scintillation De-
tection and Ranging (SCIDAR) technique has been used by astronomers to vertically profile
turbulence [2]. The technique uses correlation of scintillation due to a binary star pair at
the pupil plane of the telescope. A phase-based technique known as Slope Detection and
Ranging (SLODAR) profiles turbulence by measuring the cross-correlation of wavefront
tilts due to a binary star pair using a Shack-Hartmann sensor [3]. Whiteley et al. introduced
another phase-based method known as Difference in Differential Tilt Variance (DDTV)
that relied on differential tilt measurements between two receiver apertures due to three
beacons [4]. Gladysz et al. have also used differential tilt measurements at a single receiver
due to an array of LEDs to characterize turbulence along a horizontal path [5].
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In an earlier work, a time-lapse imaging technique was introduced to measure inte-
grated turbulence parameters remotely from a single site [6]. The technique was applied to
images collected over a 7 km slant path from Fitz Hall at University of Dayton to Dayton
VA Medical Center. By tracking the motion of window corners on the hospital building,
path-weighted estimates of the refractive index structure constant, C2

n were evaluated. The
estimates were in good agreement with co-located scintillometer measurements. Time-
lapse estimates from a second imaging experiment conducted over a 1 km horizontal path
close to the ground with cooperative and non-cooperative targets at the Laser Experimental
Range at Wright Patterson Air Force Base agreed with scintillometer measurements as well.

In all of the above-mentioned experiments in time-lapse, a single camera was used to
capture images of the scene which enabled estimation of integrated turbulence parameters.
In the present work, two spatially separated cameras were used to image an array of LEDs
over a 511 m heterogeneous path, half being concrete, the rest grass. The differential tilt
variances due to a pair of LEDs sensed by a single camera and between two cameras
form a rich set of measurements from which turbulence distribution along the path can
be extracted. The profiling results were compared to 3D sonic anemometers placed every
100 m along the path. A second experiment was conducted over a shorter grassy path with
a gas heater placed in the middle of the path to generate a localized spike in turbulence. A
poster board with white circles against a black background was imaged by the two cameras.
Both the experiments were done over an approximately horizontal path very close to the
ground. It is worth mentioning here that commercially available systems such as DELTA,
developed by MZA Associates Corporation profiles turbulence along a path from time-
lapse imagery of a single camera [7]. A richer set of weighting functions, and hence better
prospect at profiling can be obtained by use of multiple cameras, as described in this work.
The imaging approach is also a low cost, portable approach to profiling when compared
to more sophisticated systems such as MZA’s PROPS [8]. Methodology for the present
work is described in Section 2. Theoretical expressions for the path weighting functions,
which are an important component of this work have been derived here. Section 2 also
provides a description of the imaging experiments. Profiles derived from time-lapse
imagery measurements are compared to anemometer measurements in Section 3. A
summary of the work and future research directions is discussed in Section 4.

2. Methodology
2.1. Weighting Functions

Given the size of the LEDs was only 7% of the imaging aperture diameter, they were
treated as point sources in the present framework [9]. The source-aperture geometry
permits 3 different scenarios: (i) sensing by a pair of apertures where the sensing paths
cross each other somewhere along the path, (ii) sensing by a pair of apertures such that
the sensing paths tend to cross behind the apertures, and (iii) sensing by a single aperture
where the sensing paths converge at the aperture. These three geometries are shown in
Figure 1. Consider the crossed-path geometry of Figure 1a. The two apertures, each of
diameter D are located at position coordinates r1 and r2, respectively, with their center-to-
center separation being s = r2−r1. The z-tilt over the 1st aperture when viewing the 2nd
source in the direction θ2 can be expressed as [10].

α1(θ2) =
32λ

π2D4

∫
dr(r−r1)W(r−r1)φ(r,θ2), (1)

where λ is the wavelength, φ(r,θ2) is the turbulence induced wavefront distortion at
aperture coordinate r due to the 2nd source and,

W(r−r1) =

{
1 |r−r1| ≤ 0.5D
0 |r−r1| > 0.5D.

(2)
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Figure 1. Imaging path geometries. (a) Sensing paths cross; (b) Sensing paths do not cross; (c) Sens-
ing at a single aperture. 
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Figure 1. Imaging path geometries. (a) Sensing paths cross; (b) Sensing paths do not cross; (c) Sensing
at a single aperture.

Similarly, the z-tilt over the 2nd aperture when viewing the 1st source in the direction
θ1 can be expressed as:

α2(θ1) =
32λ

π2D4

∫
dr(r−r2)W(r−r2)φ(r,θ1), (3)

where φ(r,θ1) is the turbulence induced wavefront distortion at aperture coordinate r due
to the 1st source.

Since the z-tilts are zero mean random processes, the differential tilt variance can be
expressed as.〈

[α1(θ2)−α2(θ1)]
2
〉

= 〈[α1(θ2)−α2(θ1)] · [α1(θ2)−α2(θ1)]〉

=
(

32λ
π2D4

)2〈∫ ∫
drdr

′
[(r−r1)W(r−r1)φ(r,θ2)−(r−r2)W(r−r2)φ(r,θ1)]

·
[(

r
′−r1

)
W
(

r
′−r1

)
φ
(

r
′
,θ2

)
−
(

r
′−r2

)
W
(

r
′−r2

)
φ
(

r
′
,θ1

)]〉
,

(4)

where the angled brackets indicate ensemble averaging.
By interchanging the order of integration and ensemble averaging, Equation (4) can

be rewritten as,〈
[α1(θ2)−α2(θ1)]

2
〉

=
(

32λ
π2D4

)2[∫ ∫
drdr

′
(r−r1) ·

(
r
′−r1

)
W(r−r1)W

(
r
′−r1

)〈
φ(r,θ2)φ

(
r
′
,θ2

)〉
−
∫ ∫

drdr
′
(r−r2) ·

(
r
′−r1

)
W(r−r2)W

(
r
′−r1

)〈
φ(r,θ1)φ

(
r
′
,θ2

)〉
−
∫ ∫

drdr
′
(r−r1) ·

(
r
′−r2

)
W(r−r1)W

(
r
′−r2

)〈
φ(r,θ2)φ

(
r
′
,θ1

)〉
+
∫ ∫

drdr
′
(r−r2) ·

(
r
′−r2

)
W(r−r2)W

(
r
′−r2

)〈
φ(r,θ1)φ

(
r
′
,θ1

)〉]
.

(5)

Equation (5) can be equivalently expressed as,〈
[α1(θ2)−α2(θ1)]

2
〉

=
(

32λ
π2D4

)2[∫ ∫
drdr

′
(

r · r′
)

W(r)W
(

r
′
)〈

φ(r+r1,θ2)φ
(

r
′
+r1,θ2

)〉
−
∫ ∫

drdr
′
(

r · r′
)

W(r)W
(

r
′
)〈

φ(r+r2,θ1)φ
(

r
′
+r1,θ2

)〉
−
∫ ∫

drdr
′
(

r · r′
)

W(r)W
(

r
′
)〈

φ(r+r1,θ2)φ
(

r
′
+r2,θ1

)〉
+
∫ ∫

drdr
′
(

r · r′
)

W(r)W
(

r
′
)〈

φ(r+r2,θ1)φ
(

r
′
+r2,θ1

)〉]
.

(6)

Since
∫ ∫

drdr
′
(

r · r′
)

W(r)W
(

r
′
)
= 0, terms which are functions of either r or r

′
and

not both, can be added without changing the result of the integration.
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Hence, Equation (6) becomes,〈
[α1(θ2)−α2(θ1)]

2
〉

= −
(

32λ
π2D4

)2∫ ∫
drdr

′
(

r · r′
)

W(r)W
(

r
′
)[

Dφ

(
r−r

′
)

−0.5
{

Dφ

(
r−r

′
,θ1−θ2, s

)
+ Dφ

(
r−r

′
,θ2−θ1,−s

)}]
,

(7)

where

Dφ

(
r−r

′
)
=

〈[
φ(r+r1,θ2)− φ

(
r
′
+r1,θ2

)]2
〉

=

〈[
φ(r+r2,θ1)− φ

(
r
′
+r2,θ1

)]2
〉

,

Dφ

(
r−r

′
,θ1−θ2, s

)
=

〈[
φ(r+r2,θ1)− φ

(
r
′
+r1,θ2

)]2
〉

,

Dφ

(
r−r

′
,θ2−θ1,−s

)
=

〈[
φ(r+r1,θ2)− φ

(
r
′
+r2,θ1

)]2
〉

,

(8)

are the phase structure functions.
Considering a spherical wave propagating from each source through turbulence

characterized by the Kolmogorov power spectrum, and assuming that the wave structure
function is approximately equal to the phase structure function [11],

〈
[α1(θ2)−α2(θ1)]

2
〉

= −2.91k2
(

32λ
π2D4

)2 L∫
0

dzC2
n(z)

∫ ∫
drdr

′
(

r · r′
)

W(r)W
(

r
′
)[∣∣∣(r−r

′
)(

1− z
L
)∣∣∣5/3

−0.5
{∣∣∣(r−r

′
)(

1− z
L
)
+s−∆θz

∣∣∣5/3
+
∣∣∣(r−r

′
)(

1− z
L
)
−s+∆θz

∣∣∣5/3
}]

,
(9)

where ∆θ = θ2 − θ1 is the angular separation between the two sources, k = 2π/λ is the
wave number and L is the path length. The apertures are located at z = 0 and the sources
are located at z = L. To make the analysis simple, it is assumed that the source separation
vector, ∆θ and the aperture separation vector, s point in the same direction as shown in
Figure 1a.

The integrations over r and r
′

can be done using techniques outlined by Fried [12] and
Winick et al. [13]. Applying those techniques, Equation (9) reduces to

〈
[α1(θ2)−α2(θ1)]

2
〉

= −2.91
(

16
π

)2
D−1/3

L∫
0

dzC2
n(z)

2π∫
0

dϑ
1∫

0
du
[(

u cos−1 u
)
− u2(3− 2u2)√1− u2

]
×
[∣∣u(1− z

L
)∣∣5/3 − 0.5

{
u2(1− z

L
)2

+
(
|s−∆θz|

D

)2
+ 2u

(
1− z

L
)( |s−∆θz|

D

)
cos ϑ

}5/6

−0.5
{

u2(1− z
L
)2

+
(
|s−∆θz|

D

)2
− 2u

(
1− z

L
)( |s−∆θz|

D

)
cos ϑ

}5/6
]

.

(10)

The differential tilt variance is thus a path-weighted integral of C2
n, the path weighting

function being.

fdc(z) = −2.91
(

16
π

)2
D−1/3

2π∫
0

dϑ
1∫

0
du
[(

u cos−1 u
)
− u2(3− 2u2)√1− u2

]
×
[∣∣u(1− z

L
)∣∣5/3 − 0.5

{
u2(1− z

L
)2

+
(
|s−∆θz|

D

)2
+ 2u

(
1− z

L
)( |s−∆θz|

D

)
cos ϑ

}5/6

−0.5
{

u2(1− z
L
)2

+
(
|s−∆θz|

D

)2
− 2u

(
1− z

L
)( |s−∆θz|

D

)
cos ϑ

}5/6
]

.

(11)
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The path weighting function for the differential tilt variance due to a pair of sources
in the sensing configuration shown in Figure 1b is obtained by replacing s − ∆θz in
Equation (11) with s + ∆θz:

fdnc(z) = −2.91
(

16
π

)2
D−1/3

2π∫
0

dϑ
1∫

0
du
[(

u cos−1 u
)
− u2(3− 2u2)√1− u2

]
×
[∣∣u(1− z

L
)∣∣5/3 − 0.5

{
u2(1− z

L
)2

+
(
|s+∆θz|

D

)2
+ 2u

(
1− z

L
)( |s+∆θz|

D

)
cos ϑ

}5/6

−0.5
{

u2(1− z
L
)2

+
(
|s+∆θz|

D

)2
− 2u

(
1− z

L
)( |s+∆θz|

D

)
cos ϑ

}5/6
]

.

(12)

Here, ∆θ is the angular separation between the two sensing paths shown in Figure 1b.
The differential tilt variance due to the two sources sensed by a single aperture is also

a path-weighted integral of C2
n, the path weighting function being [14],

fds(z) = −2.91
(

16
π

)2
D−1/3

2π∫
0

dϑ
1∫

0
du
[(

u cos−1 u
)
− u2(3− 2u2)√1− u2

]
×
[∣∣u(1− z

L
)∣∣5/3 − 0.5

{
u2(1− z

L
)2

+
(

∆θz
D

)2
+ 2u

(
1− z

L
)(∆θz

D

)
cos ϑ

}5/6

−0.5
{

u2(1− z
L
)2

+
(

∆θz
D

)2
− 2u

(
1− z

L
)(∆θz

D

)
cos ϑ

}5/6
]

,

(13)

where ∆θ is the angular separation between the two sources at a single aperture. Note
that Equation (13) can be obtained from Equation (11) by setting the aperture separation to
be zero.

15 different source separations result out of the LED array configuration used in
the longer range, mixed path experiment. Figure 2 shows the path weighting functions
of differential tilt variance corresponding to the 15 different source separations for the
3 sensing scenarios described in Figure 1. The weighting functions for all three cases drop
to zero at the source end of the path. This implies that the apertures cannot sense the
turbulence at the source end. The weighting functions for case (i), i.e., the crossed-path
geometry, all have a characteristic notch, where they dip to zero. The notch appears
where the two sensing paths from the LEDs to the apertures cross along the path. The tilt
contribution due to turbulence at this location is exactly the same for both paths, and hence
has zero weight on the differential signal. The locations of the notches change with LED
separation. As the separation between the LEDs increase, the notch locations move closer
to the aperture end of the path. The single aperture weighting functions have characteristic
peaks whose locations depend on the separation between the pair of LEDs. Larger the
separation, the closer is the peak to the aperture. Since in this geometry, the two sensing
paths converge at the aperture, the effect of turbulence at the aperture is canceled. This
results in zero weighting at the aperture end in Figure 2c. The weighting functions for case
(ii) show less diversity, as can be seen in Figure 2b. All three sets of weighting functions
have very similar values beyond 370 m. This clearly suggests that the present technique
will fail to profile turbulence for z > 370 m.
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Figure 2. Path weighting functions of differential tilt variance for 15 different source separations in
the long-range experiment. The weighting functions are for the imaging path geometries shown in
Figure 1. (a) Sensing paths cross; (b) Sensing paths do not cross; (c) Sensing at a single aperture.

By sampling the weighting functions along the path and generating a matrix M, where
the rows are formed from the individual sampled weighting functions, and the columns
then correspond to the range where these functions are sampled, C2

n along the path can
be estimated:

C2
n,est = M+V, (14)

where M+ is the pseudo-inverse of M and V is a set of measured differential tilt variances.
Equation (14) can be rewritten as:

C2
n,est = M+MC2

n (15)

Equation (15) shows a relationship between the estimated and actual values of C2
n

along the path. The matrix M+M is in essence the influence function matrix, or the impulse
response matrix. Each column of the matrix describes the response of the estimation
method to a turbulence impulse at that range. It also describes how turbulence estimated at
a particular location is influenced by turbulence elsewhere along the path. Figure 3 shows
these influence functions at 5 different locations for the mixed path experiment. Near
the apertures (Figure 3a), the profiling resolution is satisfactory, and improves between
120–220 m as the influence function starts getting narrower (Figure 3b). The resolution
again starts degrading as we move closer and closer to the source end (Figure 3c). The
nature of the influence functions at and beyond 370 m (Figure 3d,e) clearly suggest that the
present technique fails to profile turbulence here.
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2.2. Dual-Camera Time-Lapse Imaging Experiment

Two experiments were conducted to demonstrate the dual-camera profiling approach.
The first experiment was done at the Laser Experimental Range at Wright Patterson Air
Force Base in Dayton, Ohio over 2 days in June and 1 day in July of 2019. The 511 m
experimental path was approximately horizontal and about 1.5 m above the ground. An
LED target board constructed using several 100 W, 5 mm diameter LEDs of wavelength
850 nm and varying separations was placed on one end of the path. The LED array
configuration resulted in 15 different source separations of 4, 6, 8, 10, 14, 16, 20, 24, 30, 36,
40, 44, 50, 60 and 80 cm. At the other end, two science cameras (FLIR GS3-U3-89S6M-C),
fitted with Nikon lenses of focal length 300 mm (f/#4), were mounted on a tripod within a
trailer. The cameras were spatially separated by 10 cm. The first 250 m of the imaging path
from the cameras was concrete, and the remainder was grass. The experimental path and
the setup are shown in Figure 4. A set of 10 short exposure images of the LED board was
captured by both cameras every 10 s. Due to changes in brightness conditions throughout
the day, the exposure times of the cameras had to be varied, but care was taken to keep
the exposures short such that the turbulence was frozen during each frame capture. Four
Sonic Anemometers from Applied Technologies, Inc. were set up every 100 m along the
path. Two anemometers were thus on grass and two were on concrete. The anemometers
measured sonic temperature and wind speed in three directions, and a C2

n value could be
derived from the temperature structure constant obtained from these measurements at
each location.
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The images were cropped around the LED board and the cropped images were
250 pixels × 250 pixels. Figure 5 shows a cropped image captured by one camera at
14:50 local time (UTC—4) on 27 June 2019. Due to camera setup imperfections, the images
from the two cameras appeared to be rotated by different amounts. To estimate the angle of
rotation and to correct for it, a mean frame was generated by averaging 300 frames captured
over a 5-min period. Centroids were found for 12-pixel × 12-pixel blocks surrounding
each of the five spots in the top row of the pattern. A linear fit was done on the centroid
locations, and the angle of rotation was determined from the slope of the line fit. This
exercise was done for the images captured by each camera. Next, x- and y-centroids (in
pixels) were computed for every 12 pixels × 12 pixels blocks surrounding each spot on
every frame. The centroids were corrected for the rotation. Angular tilts were obtained
by multiplying the x-and y-centroids (in pixels) by the ratio of the camera pixel pitch to
the focal length. In weak turbulence conditions, each spot in the image could be clearly
identified. However, when the turbulence grew strong, the spots with the least separation
merged, making it difficult to track these spots. Hence, only 7 out of the 15 separations
could be exploited during periods of strong turbulence.
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time (UTC—4) on 27 June 2019.

Difference between tilts obtained from a single camera or between the two cameras
due to every pair of sources with a specific separation were computed. This was repeated
for all 300 frames. The differential tilt variances were computed across frames for each
source pair. The x- and y- variances were added and averaged across all source pairs
that had the correct separation, resulting in 15 different variances, corresponding to the
15 separations, for each of the 3 sensing geometries of Figure 1. The 45 different weighting
functions shown in Figure 2 were sampled at 0.5 m intervals, so a 45 × 1023 matrix M was
generated. By using the Moore-Penrose technique, a pseudo-inverse of M was computed
with a threshold. The thresholding was done to suppress noise effects, since it set all the
singular values of M less than the threshold to zero. The pseudo-inverse matrix along with
the computed tilt variances were used to profile turbulence along the path. Through this
inversion process several unrealistic negative values of C2

n were generated. A constrained
nonlinear optimization technique was then applied to drive the profile towards having only
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positive values of C2
n The objective function to be minimized was the squared difference

between the measured differential tilt variances and those arising from a given choice of C2
n

values along the path. The optimizer’s initial guess values for C2
n were the same as those

obtained through the matrix inversion technique and the negative values were replaced
by a floor. The choice of floor was based on the range of C2

n values obtained from the
matrix inversion technique and it varied depending on weather conditions and time of
day. An upper and a lower bound were set as well, based on the estimates from the matrix
inversion technique.

The second experiment was over a shorter range. The 48 m experimental path was
once again approximately horizontal, and over grass, about 1.7 m above the ground. The
experiment was conducted during the evening hours of 15 November 2019 in the front yard
of a house in Beavercreek, OH. The target board in this experiment consisted of 5 rows of
0.8 mm diameter white dots, with varying separations, printed against a black background.
The imaging system was the same as that used in the previous experiment. At 18 m from
the cameras, a propane heater was placed. The purpose of the short-range experiment
was to further test the dual-camera profiling approach by checking if the extracted profile
would show the local spike in turbulence, caused by the propane heater. An LED source
illuminated the target board and the cameras captured 10 frames every 15 s, with an
exposure time of 30 micro-seconds. The experimental setup is shown in Figure 6.
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The arrangement of dots on the target board resulted in 81 different separations,
and hence 243 weighting functions, corresponding to the 3 sensing geometries could be
obtained. The weighting functions for the short-range experiment are shown in Figure 7.
The differential tilt variances were computed from the centroid motion of the dots, in the
same way as in the long-range experiment. Only the top row of dots was considered, owing
to concerns that turbulence might not be fully developed closer to the ground, where the
heater was. Turbulence was very strong, too for the lower rows, resulting in neighboring
dots merging together. The straight up matrix inversion method again gave some negative
values of C2

n, and hence the constrained optimization technique was used with initial guess
values from the matrix inversion method.
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3. Results
3.1. Long-Range Imaging Experiment

Figure 8 shows 4 example profiles from the long-range experiment. The blue trace
corresponds to the profile extracted using the matrix inversion technique and the red trace
corresponds to the profile from the optimizer. The black diamonds correspond to the C2

n
outputs from the 4 anemometers. Gaps in the blue trace are due to negative values of
C2

n, which sometimes appear in the matrix inversion method. The oscillations in the blue
trace are due to noise from the measurement and from the profile extraction method. The
constrained optimization technique performs better in presence of noise. Overall, there is
good agreement between the optimizer profiles and the anemometer derived C2

n values.
They follow the same trend, and the values are reasonably close. It is important to note
here that due to a power issue, one of the 4 anemometers stopped recording during some
data collections. It is apparent from Figure 8 that the present technique fails to profile
turbulence beyond 370 m from the cameras. As mentioned before, the weighting functions
start looking very similar beyond this point.
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Figure 8. Comparison of time-lapse derived estimates with sonic anemometer measurements.
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In strong turbulence conditions, the spots with the smallest separation merged, making
it impossible to track their motion. This resulted in only 7 usable separations, and hence
21 weighting functions that could be used for extraction of profile in the strong turbulence
cases. The reduced set of weighting functions for the strong turbulence case makes the
technique fail even earlier. Thus, it is not possible to compare the C2

n value obtained
from the anemometer at 400 m with a corresponding estimate derived from time-lapse
measurements. The profiles from time-lapse measurements (red trace) in Figure 8b,c have
C2

n values lower than those from the anemometers. Both these profiles correspond to times
when the turbulence was strong and hence the assumption that the phase structure function
is approximately equal to the wave structure function does not hold good. This assumption
used in the derivation of the weighting functions probably caused the underestimation
of C2

n in these cases. However, the differences are not significant. Although effects due to
any common mode disturbances were eliminated by using a differential tilt signal, any
difference in the motion of the two cameras could have affected the results. During strong
turbulence situations, it was difficult to get the cameras focused. This defocus could have
been an additional source of noise.

3.2. Short-Range Imaging Experiment

Figure 9 shows the profiles from the short-range experiment. The red and the blue
traces correspond to the matrix inversion method and the constrained optimizer, respec-
tively. Again, the straight up matrix inversion method gives noisy results, with several
negative values of C2

n. In Figure 9, the negative values have been replaced by a floor of
5 × 10−13 m−2/3. The optimizer performs better, and clearly shows a spike at 18 m from
the cameras, where the gas heater was placed. Different data sets were processed and
they all showed this spike in turbulence at 18 m, thus validating the dual camera profiling
technique. It is evident from Figure 9 that the technique fails to profile turbulence beyond
30 m from the cameras.

Appl. Sci. 2021, 11, 6221 11 of 13 
 

In strong turbulence conditions, the spots with the smallest separation merged, mak-
ing it impossible to track their motion. This resulted in only 7 usable separations, and 
hence 21 weighting functions that could be used for extraction of profile in the strong 
turbulence cases. The reduced set of weighting functions for the strong turbulence case 
makes the technique fail even earlier. Thus, it is not possible to compare the 2

nC  value 
obtained from the anemometer at 400 m with a corresponding estimate derived from time-
lapse measurements. The profiles from time-lapse measurements (red trace) in Figure 8b,c 
have 2

nC  values lower than those from the anemometers. Both these profiles correspond 
to times when the turbulence was strong and hence the assumption that the phase struc-
ture function is approximately equal to the wave structure function does not hold good. 
This assumption used in the derivation of the weighting functions probably caused the 
underestimation of 2

nC  in these cases. However, the differences are not significant. Alt-
hough effects due to any common mode disturbances were eliminated by using a differ-
ential tilt signal, any difference in the motion of the two cameras could have affected the 
results. During strong turbulence situations, it was difficult to get the cameras focused. 
This defocus could have been an additional source of noise. 

3.2. Short-Range Imaging Experiment 
Figure 9 shows the profiles from the short-range experiment. The red and the blue 

traces correspond to the matrix inversion method and the constrained optimizer, respec-
tively. Again, the straight up matrix inversion method gives noisy results, with several 
negative values of 2

nC . In Figure 9, the negative values have been replaced by a floor of 5 
× 10—13 m—2/3. The optimizer performs better, and clearly shows a spike at 18 m from the 
cameras, where the gas heater was placed. Different data sets were processed and they all 
showed this spike in turbulence at 18 m, thus validating the dual camera profiling tech-
nique. It is evident from Figure 9 that the technique fails to profile turbulence beyond 30 
m from the cameras. 

 
Figure 9. Turbulence profiles from the short-range imaging experiment. Profiles were derived from 
images captured at 20:05 local (UTC—5) on 15 November 2019. 

4. Discussion 
A method for obtaining turbulence distribution along a path using time-lapse im-

agery from a pair of spatially separated cameras was described. Given that the method is 
phase-based, it has the potential to be applied over longer paths, where irradiance-based 

Figure 9. Turbulence profiles from the short-range imaging experiment. Profiles were derived from
images captured at 20:05 local (UTC—5) on 15 November 2019.

4. Discussion

A method for obtaining turbulence distribution along a path using time-lapse imagery
from a pair of spatially separated cameras was described. Given that the method is phase-
based, it has the potential to be applied over longer paths, where irradiance-based methods
fail due to saturation issues. Another advantage is it is a low-cost, portable approach,
capable of remote estimation from a single site without deployment of sensors or sources at
the target location. Although cooperative targets have been used in this work, the method
can work with targets of opportunity as long as there are enough trackable features on
the target.
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Two experiments were conducted to verify this approach. One experiment was over
a heterogeneous path of part grass and part concrete. The time-lapse estimates were
compared to sonic anemometer derived C2

n values and there was good agreement. The
change in C2

n from concrete to grass was however, not dramatic. A second shorter range
experiment was conducted over grass with a gas heater placed in the middle of the path.
The idea was to verify if the profiling technique would show the local spike in turbulence
due to the gas heater. The profile extracted from the time-lapse imagery showed the spike in
turbulence at the location of the heater. The technique, however, fails to profile turbulence
close to the source end of the path.

The straight up matrix inversion technique to extract the profiles gives noisy results,
with several negative values of C2

n. A constrained nonlinear optimization technique was
used to improve upon the profiles obtained from the matrix inversion method. The results
can be improved by refining the present optimization technique or more sophisticated
algorithms can be used that are more robust to noise. It was difficult to get the cameras
focused during periods of strong turbulence and this introduced additional errors. The way
the two cameras were mounted in the long-range experiment, differential motion between
them was possible. This could have negatively affected the results as well. The assumption
in the mathematical model that the wave structure function is approximately equal to
the phase structure function probably resulted in underestimation of C2

n during strong
turbulence conditions. Results can be greatly improved by focusing the cameras when
turbulence levels are low and by using a stable imaging platform such that the differential
motion between cameras is minimized. Multiple spatially separated cameras, instead of a
pair of cameras can help in improving the profiling resolution as well as the fraction of the
path over which meaningful C2

n estimates can be obtained.
The dual-camera profiling technique can be useful in studying how turbulence changes

with altitude in the surface layer. There is very limited information about the surface layer
and these type of measurement campaigns can help improve existing atmospheric models.
Future work will include imaging elevated targets over slant paths to understand the
altitude dependence of turbulence. Multiple spatially separated cameras will also be used
to profile over longer ranges using targets of opportunity.
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