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Abstract: In recent years, real-valued neural networks have demonstrated promising, and often
striking, results across a broad range of domains. This has driven a surge of applications utilizing
high-dimensional datasets. While many techniques exist to alleviate issues of high-dimensionality,
they all induce a cost in terms of network size or computational runtime. This work examines
the use of quaternions, a form of hypercomplex numbers, in neural networks. The constructed
networks demonstrate the ability of quaternions to encode high-dimensional data in an efficient
neural network structure, showing that hypercomplex neural networks reduce the number of total
trainable parameters compared to their real-valued equivalents. Finally, this work introduces a novel
training algorithm using a meta-heuristic approach that bypasses the need for analytic quaternion
loss or activation functions. This algorithm allows for a broader range of activation functions over
current quaternion networks and presents a proof-of-concept for future work.

Keywords: multilayer perceptrons; quaternion neural networks; metaheuristic optimization;
genetic algorithms

1. Introduction

Over the last several decades, the explosive growth in artificial intelligence and ma-
chine learning (AI/ML) research has driven a need for more efficient data representations
and machine learning training methods. As machine learning applications have expanded
into new and exciting domains, the scale of data processed through enterprise systems
has grown to an almost incomprehensible level. While computational resources have
grown commensurately with this increase in data, inefficiencies in current neural network
architectures continue to hamper progress on difficult optimization problems.

This work examines the use of hypercomplex numbers in neural networks, with
a particular emphasis on the use of quaternions in neural network architectures. This
work demonstrates that quaternion data representations can reduce the total number of
trainable neural network parameters by a factor of four, resulting in improvements in
both computer memory allocations and computational runtime. Additionally, this work
presents a novel, gradient-free, quaternion genetic algorithm that enables the use of several
loss and activation functions previously unavailable due to differentiability requirements.

The remainder of this article is organized as follows: Section 2 provides a review
of neural networks, the quaternion number system, quaternion neural networks, and
metaheuristic optimization techniques. Section 3 describes the methodology used to de-
velop a quaternion neural network and a novel quaternion genetic training algorithm.
Section 4 presents the network results, comparing the quaternion genetic algorithm per-
formance to two analogous real-valued networks. Additionally, a multidimensional in-
put/multidimensional output network is presented for predicting the Lorenz attractor
chaotic dynamical system. Finally, Section 5 provides conclusions, recommendations, and
proposals for future work.
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2. Background and Related Work
2.1. Neural Networks and Multi-Layer Perceptrons

Statistical learning processes have received increasing attention in recent years with the
proliferation of large datasets, ever-increasing computing power, and simplified data explo-
ration tools. In 1957, Frank Rosenblatt proposed a neural structure called the perceptron [1].
A perceptron is composed of several threshold logic units (TLUs), each of which takes
a weighted sum of input values and uses the resulting sum as the input to a non-linear
activation function. While each TLU computes a linear combination of the inputs based on
the network weights, the use of a non-linear activation function allows the perceptron to
estimate a number of non-linear functions by adjusting the weights of each input.

Stacking multiple layers of perceptrons together so that the output of one perceptron
forms the input to a subsequent perceptron allows for the estimation of a vast set of linear
and non-linear problems. In fact, two contemporaries, Cybenko [2] and Hornik et al. [3]
both independently showed that a network with a single hidden layer and sigmoidal
activation functions is able to approximate any nonlinear function to an arbitrary degree of
accuracy. This network structure is called the multilayer perceptron (MLP) and it forms the
most basic deep neural network (DNN). This result (called the Universal Approximation
Theorem) has provided the theoretical justification that has driven neural network research
to the present day. A representation of an MLP is shown in Figure 1, and [4] provides an
overview of MLPs and other common neural network structures.

Figure 1. Representation of a basic MLP [5].

2.1.1. The Backpropagation Algorithm

Although artificial neural networks have existed since the mid-20th century, re-
searchers found them to be computationally expensive to train and impractical for most
applications. As a result, neural network research was largely stagnant until 1986, when
Rumelhart et al. [6] introduced the backpropagation algorithm for training a neural network.
The algorithm developed by Rumelhart et al. extended several key ideas that Werbos [7]
presented in his unpublished doctoral dissertation.

The backpropagation algorithm has proven to be a straightforward, easy-to-understand,
and easy-to-implement algorithm that has enabled efficient implementations of neural
networks across a wide-range of problem sets. Examples of custom architectures include
convolutional neural networks (CNNs) for processing image data, recurrent neural net-
works (RNNs) for processing sequence data, and generative adversarial networks (GANs)
which have been used in recent years to create deep fakes and very convincing counterfeit
data [8].

2.1.2. Shortfalls

Despite artificial neural networks achieving state-of-the-art results in a breathtaking
array of problem domains, ANNs are not without their shortfalls. For example, ANNs
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often require a vast amount of training data. Standard machine learning datasets such
as the ImageNet dataset for computer vision often contain several million datapoints [9].
Consequently, training an ANN requires a large amount of computer resources, in terms
of both RAM and processing time. Additionally, the backpropagation algorithm requires
a significant amount of low-level computational power in order to perform the matrix
multiplications for each forward and backward pass. While GPUs have proven to be
particularly well-suited for this task [10], many of the current large-scale ANN research
applications require prohibitive amounts of computer memory and GPU hours.

Finally, MLPs can struggle to maintain any sort of spatial relationships that are present
within the training data. A simple example of this is seen in color image processing.
In general, each of the three color channels of an RGB image are processed separately in an
MLP since the 3-dimensional matrix representation of the image must first be flattened into
a vector for the network forward pass step. This results in the loss of the spatial relationship
between the red, green, and blue pixel intensities at each pixel.

Many spatial dependency issues can be alleviated using more advanced ANN archi-
tectures such as convolutional neural networks, which preserve spatial relationships within
the data using successive convolutional layers to transform the input data [11]. However,
every CNN must contain at least one fully-connected layer prior to the output layer which
flattens the output of the final convolution into a 1-dimensional real-valued vector. Thus,
even with a CNN, there is some spatial information that is lost when the output of the final
convolution is flattened.

On the other hand, Yin et al. [12] highlight the fact that this spatial hierarchy between
pixel intensity values can be maintained when using higher-dimensional number systems
such as quaternions as opposed to real numbers, and their result is a significant moti-
vation for this paper. Matsui et al. [13] demonstrated similar experimental results on a
3-dimensional affine transformation problem, showing that quaternion-valued deep neural
networks were able to recover the spatial relationships between 3-dimensional coordinates.
Section 2.2 provides a brief summary of hypercomplex number systems, along with a
review of their use and success in advanced neural network applications.

2.2. The Quaternions

The quaternion numbers (denoted by H) are a four-dimensional extension of the
complex numbers. Complex numbers have the form x + iy, consisting of a real part x
and an imaginary part y, and can be thought of as an isomorphism of R2. That is, the
complex numbers contain two copies of the real number line, allowing a single complex
number to encode twice as much information as a single real number. Complex numbers
are particularly useful for describing motion in 2-dimensional space, since there is a very
succinct analogue between complex multiplication and rotations in the plane [14].

Quaternions are referred to as hypercomplex numbers. Each quaternion q consists of
a real part and three imaginary parts, so that the quaternions form an isomorphism with
R4 with basis elements 1, i, j, and k:

q = r + xi + yj + zk. (1)

Quaternions form a generalization of the complex numbers, where the three imaginary
components i, j, and k follow the same construct as i in C:

i2 = j2 = k2 = −1. (2)

However, the three imaginary basis components must also satisfy the following rules:

jk = −kj = i (3)

ki = −ik = j (4)

ij = −ji = k. (5)
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These rules clearly demonstrate that quaternion multiplication is non-commutative.
However, since the multiplication of any two basis elements is plus or minus another basis
element, the quaternions under these rules form a non-abelian group, denoted Q8. The
group Q8, along with the operations of addition and multiplication form a division algebra,
which is an algebraic structure similar to a field where multiplication is non-commutative.

The 4-dimensional structure of each quaternion number indicates that quaternions are
capable of encoding four copies of the real number line into a single quaternion number,
analogous to the two copies of R encoded in the complex numbers. Quaternions were
discovered by the Irish mathematician Sir William Rowan Hamilton in 1843 [15], hence
why the set of quaternions is referred to as H and the quaternion notion of multiplica-
tion, described below, is referred to as the Hamilton Product. For an in-depth review of
quaternions and their applications, see [16].

2.2.1. Quaternion Algebra

The quaternions form a division algebra, meaning that the set of quaternions along
with the operations of addition and multiplication follow 8 of the 9 field axioms (all but
commutativity). Quaternion addition is defined using the element-wise addition operation.
For two quaternions q1, q2 ∈ H, where:

q1 = r1 + x1i + y1j + z1k

and
q2 = r2 + x2i + y2j + z2k.

The sum q1 + q2 is defined as,

q1 + q2 := (r1 + r2) + (x1 + x2)i + (y1 + y2)j + (z1 + z2)k. (6)

Quaternion multiplication, referred to as the Hamilton Product, can easily be derived
using the basis multiplication rules in Equations (3)–(5) and the distributive property. In
reduced form, the Hamilton Product of two quaternions q1 and q2 is defined as:

q1 ∗ q2 :=(r1r2 − x1x2 − y1y2 − z1z2)

+(r1x2 + x1r2 + y1z2 − z1y2)i

+(r1y2 − x1z2 + y1r2 + z1x2)j

+(r1z2 + x1y2 − y1x2 + z1r2)k.

(7)

2.2.2. Quaternion Conjugates, Norms, and Distance

The notion of a quaternion conjugate is analogous to that of complex conjugates in C.
The conjugate of a quaternion q = r + xi + yj + zk is given by q∗ = r− xi− yj− zk. The
norm of a quaternion is equivalent to the Euclidean norm in R and is given by:

||q|| :=
√

qq∗ =
√

r2 + x2 + y2 + z2. (8)

With this quaternion norm, one can also define a notion of distance d(q, p) between
two quaternions q and p as:

d(q, p) := ||q− p||. (9)

2.2.3. Quaternionic Matrices

Since the set of quaternions H form a division algebra under addition and the Hamilton
product, they also form a non-commutative ring under the same operations. Hence,
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quaternionic matrix operations can be defined as for matrices over an arbitrary ring. Given
any two quaternionic matrices A, B ∈ HM×N , the sum A + B is defined element-wise:

(A + B)ij := Aij + Bij. (10)

Similarly, for any quaternionic matrix A ∈ HM×N and B ∈ HN×P, the product
AB ∈ HM×P is defined as:

(AB)(m, p) :=
N

∑
n=1

A(m, n)B(n, p), ∀m = 1, . . . , M, p = 1, . . . , P. (11)

As with matrix multiplication over an arbitrary ring, quaternionic matrix multipli-
cation is non-commutative. Additionally, great care must be taken to ensure the proper
execution of the Hamilton product when multiplying each row of A with each column of
B, since the Hamilton product itself is non-commutative.

2.3. Quaternion-Valued Neural Networks (QNNs)

Many practical applications of machine learning techniques involve data that are mul-
tidimensional. With the mathematical machinery described in Section 2.2, the quaternions
provide a succinct and efficient way of representing multidimensional data. Additionally,
when applied to neural network architectures, quaternions have been shown to preserve
spatial hierarchies and interrelated data components that are often separated and distorted
in real-valued MLP architectures. This section provides a brief review of QNN research,
starting with a brief note on some of the issues in QNN construction stemming from
quaternionic analysis and quaternion calculus. Then, the development of QNNs is traced
chronologically from early works to the state of the art.

2.3.1. A Note on Quaternion Calculus and Quaternionic Analysis

There are very few analytic functions of a quaternion variable. To account for this,
quaternion networks generally utilize “split” activation functions, where a real-valued acti-
vation function is applied to each quaternion coefficient. For example, the split quaternion
sigmoid function [17] for a quaternion q = r + xi + yj + zk is given by:

σ(q) = σ(r) + σ(x)i + σ(y)j + σ(z)k, (12)

where σ(·) is the real-valued sigmoid function. Similar definitions hold for any real-valued
activation function, and many QNNs utilize these split activation functions even when
quaternionic functions, such as the quaternion-valued hyperbolic tangent function, are
available. Research has indicated that true quaternionic activation functions can improve
performance over split activation functions [18], but they require special considerations
since their analyticity can only be defined over a localized domain, and the composition of
two locally analytic quaternion functions is generally not locally analytic [19], providing lim-
ited utility in deep neural networks. Additionally, many complex and quaternion-valued
elementary transcendental functions, including the hyperbolic tangent, are unbounded
and contain singularities [20] that make neural network training difficult.

These issues, along with the non-commutativity of quaternions, also affect the gradient
descent algorithm employed in many quaternion networks. Generally speaking, the non-
commutativity of quaternions precludes the development of a general product rule and
a quaternion chain rule to compute quaternion derivatives and partial derivatives. Thus,
quaternion networks must employ split loss functions and the partial derivatives used in
the backpropagation algorithm are calculated using a similar “split” definition. The split
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partial derivative used in training a Quaternion Multilayer Perceptron (QMLP) network,
first defined by [17], is given by:

∂E
∂W l =

∂E
∂W l

r
+

∂E
∂W l

x
i +

∂E
∂W l

y
j +

∂E
∂W l

z
k, (13)

where E is the loss function and W l is the weight matrix at layer l. Some researchers refer
to this as a “channelwise" [18] or vectorized implementation.

Researchers have made several advances in quaternion calculus, dubbed the general-
ized Hamilton-Real (GHR) calculus [21], with novel product and chain rules. However, as
of this writing, the GHR calculus and the associated learning algorithms implementing the
GHR product and chain rules have yet to be applied to any real-world machine learning
dataset with a deep quaternion network.

This work proposes a genetic algorithm to train a quaternion-valued neural network
with fully quaternion activation functions at each layer of the network. The genetic
algorithm circumvents the need for the convoluted calculus rules that one must employ in
traditional QNNs due to the non-commutativity of quaternions and the locally analytic
nature of the activation functions, allowing for a broader range of available activation
functions. While not yet proven in the quaternion domain, this approach has a strong
theoretical basis that is supported in both the complex- and real-valued domains ([2,3,20]).

2.3.2. Quaternion Neural Networks

The QMLP was first introduced by Arena et al. [17] in 1994, as noted in Section 2.3.1.
The initial QMLP used split sigmoid activation functions and a version of the mean square
error (MSE) loss function E, formed by substituting quaternions into the real-valued MSE
equation. For a network with l = 1, . . . , M layers and 1 < n < Nl nodes per layer, the
output of each node n in each layer l is computed as:

yl
n = σ(Sl

n), (14)

where σ is any split sigmoidal activation function and Sl
n is the linear combination of

network weights, biases, and the output of the l − 1 layer computed as in a normal MLP:

Sl
n =

Nl−1

∑
m=0

wl
nm ∗ yl−1

m + bl
n. (15)

For each Sl
n, the weights, biases, and y-values are all quaternions. Thus, ∗ represents

the Hamilton Product. The loss function E is given by:

E =
1
N

N

∑
n=1

(tn − y(M)
n )2, (16)

where t represents the target (truth) data and y(M) represents the neural network output at
the Mth layer.

The authors also introduced a simple learning algorithm using the split or “channel-
wise” partial derivatives discussed in Section 2.3.1, where the gradient ∆l

n at the output
layer is simply the output error of the network (tn − y(M)

n ) and the error at each prior layer
l is calculated using the formula:

∆l
n =

Nl+1

∑
n=1

w∗l+1
hn ∗ (∆l+1

n · σ′(Sl+1
n )), (17)

where w∗l+1
hn represents the quaternion conjugate of the weight connecting node h in the lth

layer to node n in the l + 1st layer. Additionally, (·) represents the componentwise product,
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not the Hamilton Product between the gradient at the l + 1st layer and the channelwise
partial derivative of σ(·). Using this gradient rule, the biases at each layer are updated
according to the normal backpropagation process:

bl
n = bl

n + ε∆l
n, (18)

where ε is the learning rate. Note, however, that the weights are updated using the rule:

wl
nm = wl

nm + ε∆l
n ∗ S∗l−1

m , (19)

where S∗l−1
m represents the conjugate of the input to the lth layer Sl−1

m .
Although the quaternion backpropagation algorithm bears similarities to the real-

valued backpropagation algorithm, it is unique in several ways. The first is the use of
split derivatives in the weight and bias update step. Although the use of split derivatives
may seem like a trick to bypass a true quaternion derivative definition, it builds on [22],
which proved that split activation functions and derivatives in the complex domain could
universally approximate complex-valued functions. While unproven in the quaternion
domain, Arena et al. demonstrated the effectiveness of this network on a small func-
tion approximation problem, where a quaternion network was used to approximate a
quaternion-valued function. Additionally, the weight update and the gradients leverage
the quaternion conjugate, which improves training performance.

Since the introduction of the QMLP and its associated training algorithm, researchers
have used QMLPs for a variety of tasks. In particular, QMLPs have been used as autoen-
coders [23], for color image processing [24], text processing [25], and polarized signal
processing [26]. Another natural application of quaternions is in robotic control [27], since
quaternions can compactly represent 3-dimensional rotation and motion through space.
Parcollet et al. [28] note that in every scenario, QMLPs always outperform real-valued
MLPs when processing 3- or 4-dimensional signals. These simple networks have driven
further research in more advanced network architectures such as convolutional neural net-
works and recurrent neural networks, both of which have shown promise in the quaternion
domain for advanced image processing [29], speech recognition [30], and other tasks.

2.4. Metaheuristic Optimization Techniques

Whereas the backpropagation algorithm discussed in Section 2.1.1 has dominated
nearly all neural network research since it was first introduced, recent work has shown that
heuristic search methods can also effectively train neural networks at a scale comparable
to gradient descent and backpropagation. Metaheuristic optimization encompasses a
broad range of optimization techniques that do not provide guarantees of algorithmic
closure or convergence, but have shown empirically to perform well in a variety of complex
optimization tasks. In contrast to gradient-based methods such as the backpropagation
algorithm, many metaheuristics do not require any gradient information.

Perhaps the most famous application of a metaheuristic approach in training neural
networks is the NeuroEvolution through Augmenting Topologies (NEAT) [31] process,
which uses a genetic algorithm to simultaneously train and grow neural networks through
an evolutionary process. NEAT has proven to be a very effective neural network training
tool, and subsequent variants of NEAT have successfully evolved neural networks with
millions of weight and bias parameters [32]. More recently, researchers with Uber’s OpenAI
Labs have shown that even basic Genetic Algorithms can compete with backpropagation in
training large networks with up to four million parameters [33]. Several other metaheuristic
implementations have shown promise in training neural networks and optimizing the hy-
perparameters of neural networks. See [34] for a full review of metaheuristic optimization
in neural network design.

Metaheuristic optimization methods have also been applied to a limited number
of search problems in the quaternion domain. A quaternion variant of the Firefly Algo-
rithm [35] demonstrated comparable performance to the real-valued Firefly Algorithm
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in optimizing nonlinear test functions. In addition, [36] introduced a quaternion-based
Harmony Search algorithm, demonstrating the algorithm’s performance on a similar range
of nonlinear test functions. The hypothesis of both approaches is that the search space in
the hypercomplex domain is smoother than the search space in R. While not proven, [37]
summarizes the approach. Additionally, Khuat et al. [38] introduced a quaternion ge-
netic algorithm with multi-parent crossover that was used to optimize a similar set of
nonlinear test functions. Finally, [39] used the Harmony Search algorithm introduced
in [36] to fine-tune the hyperparameters of a neural network. However, as of this writing,
quaternion metaheuristic search methods have yet to be applied to more complex tasks,
such as optimizing a large number of weights and biases in a quaternion neural network.

Given the difficulties in defining globally analytic quaternion loss functions, activation
functions, and quaternion partial derivatives, metaheuristic optimization provides an ideal
method of training quaternion neural networks. Section 3 outlines a novel quaternion
genetic algorithm for training the weights and biases of quaternion neural networks.
The algorithm does not require gradient information and makes no assumptions on the
analyticity of the activation functions of the network at each layer, allowing for a broader
range of quaternion activation functions than have been available in prior works.

3. Methodology

This section describes the test methodology employed in comparing the performance
of real-valued MLPs to quaternion-valued MLPs in several multidimensional function
approximation tasks. First, Section 3.1 describes the test functions selected for use in the
study. Section 3.2 outlines the structure of the neural networks, including an overview of
the neurons, layers, and total trainable parameters of each network. Section 3.3 details
the genetic algorithm used to train the real- and quaternion-valued networks. Finally,
Section 3.4 presents a description of the evaluation strategy and key comparison metrics.

3.1. Test Functions

Demonstrating the ability of a neural network to approximate an arbitrary nonlinear
function is a crucial step in the development of any ANN structure. Cybenko’s Universal
Approximation Theorem [2], discussed in Section 2.1, provides the theoretical underpinning
for all modern ANN research and has legitimized many of the ANN applications to date.
While still unproven for the quaternion domain, this research demonstrates that quaternion
neural networks with elementary transcendental activation functions and a genetic training
algorithm can effectively approximate arbitrary nonlinear functions, using the Ackley
function and the Lorenz attractor chaotic system as test cases.

3.1.1. The Ackley Function

The Ackley function is a non-convex test function that is often used to test global
optimization algorithms. It was first introduced by David Ackley [40] and has since been
included in a standard library of optimization test functions. In three dimensions, the
function is characterized by an elevated eggcrate-like surface, with a global minimum in the
center of the function that sinks down to zero. The Ackley function is a good test case for
quaternion networks since it can easily be defined in any number of dimensions. A vector
representation of the function is given in Equation (20), where a, b, and c are constants and
n represents the dimensionality of the vector x. Additionally, a three-dimensional plot of
the Ackley function is shown in Figure 2.

f (x) = −a exp

(
−b

√
1
n

n

∑
i=1

x2
i

)
− exp

(
1
n

n

∑
i=1

cos(c · xi)

)
+ a + exp(1) (20)

This research uses a 4-dimensional Ackley function, with the a, b, and c coefficient
values set to 20.0,−0.2, and 2π, respectively. The function’s x, y, and z values are generated
over the range [−5, 5], using a meshgrid with a spacing of 0.5 between each point. With
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three-dimensional input, and this results in 9261 data points. The coordinate values are
then translated from R into H by taking the coordinates of each point and casting them into
the three imaginary parts of a quaternion. For example, the point (−5,−5,−5) ⇒ q1 =
0r− 5i− 5j− 5k.

Figure 2. 3D Ackley function.

Finally, the data is split into a training set and a test set. The purpose of this split
is to ensure that the neural networks are producing functions with good generalization
capabilities. The data points are randomly shuffled and 80% of the data points are retained
as training data while 20% of the data points are split into the test set.

3.1.2. The Lorenz Attractor Chaotic System

The Lorenz attractor is a deterministic system of differential equations that was first
presented by Edward Lorenz [41]. The Lorenz attractor is a chaotic system, meaning
that while it is deterministic, the system never cycles and never reaches a steady state.
Additionally, the system is very sensitive to initial conditions. When represented as a set
of 3-dimensional coordinates, the Lorenz attractor produces a mesmerizing graph often
referred to as the Lorenz butterfly. A static representation of this is shown in Figure 3.

The Lorenz attractor is governed by the following system of differential equations:

dx
dt

= σ(y− x) (21)

dy
dt

= ρx− y− xz (22)

dz
dt

= xy− βz (23)

where σ, ρ, and β are constants. For this experiment (and in Figure 3), σ = 10, ρ = 28, and
β = 8

3 . Quaternions are naturally well-suited to predicting chaotic time series, including
the Lorenz attractor, since the problem involves both a multidimensional input and a
multidimensional output. Split quaternion neural networks have proven quite successful
at chaotic time series prediction based on small training datasets ([42–45]).
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Figure 3. Lorenz Attractor.

The data for the Lorenz attractor was again split 80%/20% between training and
test datasets. Additionally, both the inputs and the outputs were cast into the quaternion
domain. This allowed for a direct output error calculation using the quaternion distance
metric defined in Section 2.2.2. The full details of the loss function, the activation functions,
the neurons, and the layers of the networks used in both experiments are discussed in
Section 3.2.

3.2. MLP Network Topologies
3.2.1. Function Approximation

The function approximation experiment focused on the relative performance of real-
valued network architectures to quaternion networks with pure quaternion activation
functions. The comparison experiment operated on three distinct network architecture and
training algorithm combinations. The first is the quaternion multilayer perceptron trained
with a genetic algorithm (from here on referred to as QMLP+GA). This network consists of
an input layer, two hidden layers, and an output layer.

Between each layer of the network, a “normalization” step was added, where the out-
put of each layer is individually normalized. Since the training data-points were encoded
into quaternion values, the input and output layer require a single node each. The two hid-
den layers of the network contain 3 nodes each, resulting in a total of 22 trainable weights
and biases for the network. The pure-quaternion hyperbolic tangent (tanh) function was
selected as the nonlinear activation function for the input layer and both hidden layers.
The tanh function in the quaternion domain is defined as:

tanh(q) =
e2q − 1
e2q + 1

, q ∈ H. (24)

To determine the loss at the output layer, the final output is first mapped from H
into R using the norm defined in Section 2.2.2. This mapping allows for the use of any
real-valued loss function, and the mean absolute error (MAE) loss function was selected
due to its simplicity. The MAE is given by:

1
N

N

∑
i=1
|ŷ− y|, (25)

where N is the number of data-points, ŷ is the predicted value, and y is the truth or
target value.

To provide a baseline comparison for the QMLP+GA network, an equivalent real-
valued network is constructed and trained using the same genetic algorithm as the
QMLP+GA. Finally, an identical MLP is constructed and trained using the gradient descent
(GD) algorithm. These two variants are referred to as the MLP+GA network and the
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MLP+GD network, respectively. The layers, neurons per layer, and total parameters of
each of the three networks are summarized in Table 1.

Table 1. Neural network topologies for the Ackley Function approximation.

Network Input Hidden 1 Hidden 2 Output Parameters

QMLP+GA 1 3 3 1 22
MLP+GA 3 9 9 3 136
MLP+GD 3 9 9 3 136

The real-valued hyperbolic tangent was used as the activation function on the input
layer and both hidden layers, with a MAE loss function. However, since the hyperbolic
tangent is globally analytic in R, the normalization layers from the QMLP were removed.
The learning rate η for the gradient descent algorithm was set to η = 0.03. The real-valued
MLPs contained a total of 136 trainable weight and bias parameters, a six-fold increase
over the QMLP.

3.2.2. Chaotic Time Series Prediction

Chaotic time series prediction of the Lorenz attractor requires multidimensional
input data as well as multidimensional output data. It is a notoriously difficult problem,
especially considering the system’s sensitivity to initial conditions. In contrast with the
function approximation experiment, the time series prediction experiment focused on the
ability of quaternion networks to learn complex multidimensional nonlinearities. To that
end, the time series prediction experiment centered on optimizing a set of quaternion
network hyperparameters and did not consider any equivalent real-valued networks.

To test the predictive capabilities of a simple QMLP+GA network, a set of 500 time
series inputs were generated using a fixed-timestep 4th-order Runge–Kutta Ordinary
Differential Equation (ODE) solver. The first 400 time series formed the training dataset,
while the last 100 were held out for the test set. The starting point for each time series
was randomly generated using a uniform U[−10.0, 10.0] distribution for the x- and y-
coordinates and a uniform U[0.0, 10.0] distribution for the z-coordinates. Initial tests
focused on relatively short time series inputs. Each series was generated over a range of
20 timesteps, and the first 10 values of each series formed the input training data, while the
last 10 values formed the target values for training.

Figure 4 illustrates the sensitivity of the Lorenz system to initial starting conditions.
Several initial starting points were generated using the distributions defined above for the
x-, y-, and z-coordinates. Each system was then solved for 500 timesteps, starting at the
initial position in 3-space. While each curve exhibits the characteristic “butterfly” shape,
the individual coordinates of each series at each time step are drastically different.

Figure 4. Impact of initial conditions on the Lorenz system.
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Initial experiments showed that simple, smaller networks performed better with
the genetic algorithm then larger networks. A 4-layer network was constructed for the
time series prediction experiment. The structure of the network closely resembles an
autoencoder network, where large input layers are scaled down throughout the network
before being scaled back up for the output layer. This structure proved successful over
several rounds of experimentation in predicting the 10-step ahead x, y, and z coordinates
for the test set data. As a final experiment, a QMLP was created to predict the Lorenz
coordinates 50 steps ahead based on in input time series of 25 steps. The layers, neurons
per layer, and total parameters of each network are summarized in Table 2.

Table 2. Neural network topology for chaotic prediction.

Network Input Hidden 1 Hidden 2 Output Parameters

QMLP+GA 10 3 3 10 85
QMLP+GA 25 5 10 50 740

Before processing through the network, the training and test datasets were cast into the
quaternion domain using a vectorized approach. For an input vector τi, the corresponding
quaternion input vector was constructed using the following approach:

τi =


~x1
~x2
...

~x10

 =⇒ τqi =


0.0 + x1i + y1j + z1k
0.0 + x2i + y2j + z2k

...
0.0 + x10i + y10j + z10k

. (26)

Additionally, the target values were cast into quaternions. At each iteration, a quater-
nionic form of the MAE measured the fitness of each solution. Only the imaginary compo-
nents of each input and target vector contained coordinate information, so this experiment
introduced a QMAEimag calculation, defined in Equation (27) below.

QMAEimag : =
1
N

N

∑
i=1
||ŷqi − yqi ||imag

=
1
N

N

∑
i=1
||(x̂ii + ŷij + ẑik)− (xii + yij + zik)||

=
1
N

N

∑
i=1

(√
(x̂i − xi)2 + (ŷi − yi)2 + (ẑi − zi)2

)2
.

(27)

Since this experiment did not consider any real-valued networks, several quaternion
activation functions were utilized during testing that are not available as activation func-
tions in the real-domain. In particular, Ref. [46] notes that quaternionic functions with local
analytic conditions are isomorphic to analytic complex functions. Additionally, Ref. [20]
demonstrate that hyperbolic and inverse hyperbolic trigonometric functions are universal
approximators in the complex domain. This experiment explored the use of several quater-
nionic elementary transcendental functions and found the inverse hyperbolic tangent,
defined in [47], to provide the best performance:

arctanh(p) :=
ln(1 + p)− ln(1− p)

2
. (28)

Whereas the Lorenz prediction QMLP+GA networks required a slightly different net-
work structure than the Ackley function approximation networks, both networks employed
an identical genetic algorithm in the training phase. This approach eliminated the need
for differentiability of both the loss function and the activation functions of the network.
Additionally, it eliminated the need for a quaternion partial derivative calculation, which
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is a notoriously difficult problem. Section 3.3 describes the details of the algorithm, while
Section 4 discusses the results and performance of the algorithm in both experiments.

3.3. Quaternion Genetic Algorithm

This section describes the quaternion genetic algorithm that was developed to train the
QMLP-GA. A simple change of the underlying data type from quaternions to real-valued
inputs, weights, and biases enabled the training of the MLP-GA with an identical algorithm.
This research took a similar approach to Uber’s OpenAI Labs genetic algorithm training
process [33], opting for a very basic algorithm with minimal enhancements to demonstrate
the proof-of-concept. Based on the success of this approach in Uber’s experiments as well
as in the quaternion domain presented here, a more advanced algorithm incorporating
any of the many algorithmic improvements would likely improve on the baseline results
discussed in Section 4.

A general diagram of the genetic algorithm process flow is shown in Figure 5. A genetic
algorithm is a population-based search method, operating on a population of solutions to
iteratively find improving solutions. In this case, an individual neural network, defined by
its weights and biases, represents a single solution. To initialize the algorithm, a population
of N = 20 distinct neural networks was instantiated, with all weights and biases randomly
generated following a uniform distribution over [−1, 1].

Figure 5. Genetic algorithm/genetic programming process.

After instantiation, the algorithm measures the fitness of each solution. For each
neural network, the entire training dataset is processed through the network, capturing
the total MAE for each network. The networks are then rank-ordered based on the lowest
MAE value.

In the selection step, the n best solutions are retained as the “parents” for the next
generation of the algorithm. In this research, n = 5 networks were retained as the parent
generation in each iteration of the algorithm. While many advanced selection techniques
exist, this work employed a simple rank selection, which selected the five best networks
from each generation.

Finally, to generate a new population of solutions, the genetic algorithm performs
a random mutation step, where a parent solution is randomly selected from the n = 5
best parent solutions. Then, the algorithm creates a “child” solution by mutating roughly
half of the weights and biases of the parent solution with random noise. In this case, the
generating distribution for the random noise was the standard normal distribution,N (0, 1).
This process repeats for N − n = 20− 5 = 15 times to create a new generation of solutions.

This process is commonly referred to as a genetic program, where generations are
created solely through the mutation process. Often, genetic algorithms will include an
additional crossover step prior to mutation, where new child solutions are created using
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a selection of features from separate parent solutions. Crossover was omitted from this
algorithm, since mutation alone provided a good baseline performance, reiterating the fact
that the most simple genetic algorithms are competitive to the popular backpropagation
algorithm. A summary of the algorithm is shown in Algorithm 1. Additional details of the
genetic algorithm along with a brief comparison of the computational effort required for
the genetic algorithm versus classic gradient descent are provided in Appendix A.

Algorithm 1 Quaternion Genetic Algorithm

1: Instantiate Pm parent networks, m ∈ N = {1, . . . , 20}, input mutation function ψ.
2: for i ∈ N do
3: Evaluate population fitness Fi
4: end for
5: for g = 1 to G generations do
6: Sort population← Fi

7: Select best parents P g−1
n , n = 1, . . . , 5

8: for j = n + 1 to N do
9: Generate k = UniformInt(1, n)

10: P g
j = ψ(P g−1

k ).
11: end for
12: end for
13: Return final population PG

m for m ∈ N.

3.4. Evaluation and Analysis Strategy

Each of the networks described in Section 3.2 processed the training data from the
Ackley function and the Lorenz attractor system. At each training epoch, the algorithms ei-
ther recorded the MAE of the overall system in the case of the gradient descent network, or
the MAE or (QMAE) of the best solution for the genetic algorithm networks. Additionally,
several computational metrics were recorded including memory allocations and compu-
tational runtime. Finally, each of the trained models processed the test data, recording
the test set percentage error for each instance. Section 4 contains a discussion of network
performance in each problem instance for each network in regards to these metrics.

4. Results

All computations presented here were performed on a desktop workstation running
Windows 10 Enterprise with 64 GB of RAM and dual Intel Xeon Silver 4108 CPUs. Each
CPU contained eight physical cores running at 1.80 GHz. Coding was performed in Julia
1.5.3 using the Quaternion.jl package and Flux.jl [48] for the MLP+GD network.

4.1. Function Approximation Results

The focus of the function approximation test was twofold. First, the function approx-
imation task served as a proof-of-concept for the QMLP-GA. While quaternion neural
networks and metaheuristic neural network training algorithms both exist separately in the
literature, this work demonstrates the first use of metaheuristics to effectively train quater-
nion neural networks. Second, this experiment demonstrated some of the computational
benefits that quaternions provide.

In keeping with these two goals, the three neural networks employed default param-
eters and very basic training algorithm implementations. No attempt was made to tune
the hyperparameters of any of the models; instead, the results speak for themselves. The
training set error for each of the three networks versus epoch is shown in Figure 6.
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Figure 6. The training set mean absolute error for each network.

The QMLP+GA initialized using the random uniform weight initialization scheme de-
scribed in Section 3 had the lowest initial prediction error, at roughly 50% in the first epoch.
In contrast, the MLP+GA started with a nearly 60% initial error, while the MLP+GD was
above 70%. The genetic algorithm improved rapidly, showing significantly faster initial al-
gorithmic improvement versus the gradient descent algorithm. Both GA-trained networks
showed rapid improvements over the first 25 training epochs, while the MLP+GD network
searched for nearly 75 epochs before catching up to the GA-trained networks. The MLP+GD
eventually caught up to the other two networks, but the prediction error remained slightly
higher for the gradient descent network throughout the entire training process.

Table 3 shows the test set performance for each of the three networks across several
measures of merit. In each column, the best results are highlighted in bold text. The
quaternion network had the fastest overall runtime, resulting in the lowest test set error
with the fewest number of trainable parameters. The real-valued MLP had a similar
performance and required less overall system memory throughout the runtime of the
algorithm, but required nearly six times the number of trainable parameters. Finally, the
gradient descent-trained MLP had the worst performance in every category. While the test
set error was comparable to the other two networks, the MLP+GD took more than 50 times
as long to run with over 70 times as much memory allocated to store the gradient and error
information for the backpropagation process.

These results, while cursory, clearly demonstrate the viability of quaternion networks
trained with genetic algorithms. The quaternion network showed the fastest overall im-
provement, lowest final error, and lowest computational cost (in terms of runtime) when
compared to two comparable networks. Additionally, the two GA-trained networks outper-
formed the gradient descent network across all measures of merit. These results validate
the use of genetic algorithms in neural network training and show that quaternion net-
works can easily outperform equivalent real-valued networks involving multidimensional
input data.

Table 3. Neural network comparison results.

Network Runtime (s) Memory (GB) Parameters Test Error

QMLP+GA 17.421 10.238 22 11.01%
MLP+GA 18.069 9.497 136 11.15%
MLP+GD 955.040 778.027 136 11.23%

4.2. Time Series Prediction Results

While the function approximation results demonstrate a viable proof-of-concept for
quaternion neural networks, the chaotic time series prediction task illustrates the power of
QNNs in the difficult task of predicting noisy systems. Additionally, chaotic time series
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prediction provides a natural multidimensional input + multidimensional output test that
is almost tailor made for quaternion networks. In each of the figures displayed in this
section, the orange graph represents the true chaotic time series, while the blue graph
represents the predicted values. The final prediction results presented in Figure 7 are
far from current state-of-the-art results using deep recurrent neural networks (RNNs) or
long-short term memory (LSTM) networks, yet they illustrate the ability of simple QNNs
to learn complex nonlinearities over time.

Figure 7. 10-step ahead predicted coordinate values.

This experiment utilized two distinct QNN network topologies. The first network
predicted the Lorenz attractor for 10 timesteps in the future based on an input time series
of 10 timesteps. The second network predicted the Lorenz attractor for 50 timesteps in
the future based on an input of 25 observations. The structure of each network is listed in
Table 2, while the results for both networks are listed in Table 4. The test error percentage
listed in Table 4 was measured using the mean absolute percentage error (MAPE) for time
series forecasting, defined in Equation (29), where et is the unscaled prediction error for
observation t and yt is the target value at t:

MAPE = mean
(∣∣∣∣100

et

yt

∣∣∣∣). (29)

Early tests indicated that smaller networks performed better with the genetic algo-
rithm. The final two networks contained comparatively few nodes in each layer and were
structured as autoencoder networks, which perform a type of downsampling and subse-
quent upsampling as information passes through the network. Each network was trained
for 50,000 epochs, which equated to roughly 28 min for the 10-step prediction network and
around 4 h for the 50-step prediction network.

Table 4. Lorenz prediction results.

Prediction Steps Runtime (s) Memory (GB) Params Test Error

10 1668.565 947.304 85 10.89%
50 14769.069 2.815 (TB) 740 9.59%

The test set error listed in Table 4 indicates that on average, individual predicted
values were off by about 11%. The actual versus predicted x-, y-, and z-coordinates for one
of the test set time series are shown in Figure 7, while two 3-dimensional path predictions
are shown in Figure 8. While the test error is relatively high, the QMLP+GA performs
remarkably well on future predictions, especially in the long sweeping sections of the
Lorenz attractor curves. The errors understandably grow and compound in the two
“wings” of the curve, where the graph circles closely around each pole of the attractor.

The final experiment tested the ability of the QMLP to predict long sequences based
on a relatively short input. The network was trained over 50,000 epochs to predict 50 obser-
vations based on an input sequence of length 25. Table 4 summarizes several measures of
merit for the network, while the x-, y-, and z-coordinate results for a representative test set
sequence are shown in Figure 9.
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Figure 8. 10-step ahead path predictions.

In each coordinate direction, there is some clear noise at each prediction step, but
the network accurately predicts the general motion of each variable. The motion of each
prediction path is even more evident in the 3-dimensional plots shown in Figure 10, which
shows two path predictions for two series from the test set data. As with the 10-step
prediction model, the 50-step model makes the best predictions along the long sweeping
arcs of the system, with errors compounding near the two “wings” of the attractor.

Figure 9. 50-step ahead predicted coordinate values.

Finally, the unscaled training error plots for both networks are shown in Figure 11.
The genetic algorithm showed similar performance in both time series prediction tasks as it
did in the function approximation task, with dramatic initial improvements and slow but
consistent improvements as the iterations progressed. Surprisingly, the 50-step prediction
experiment resulted in a lower test set prediction error than the 10-step prediction network,
likely due to the scale of each predicted value.

Figure 10. 50-step ahead path predictions.
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10-Step Predictions 50-Step Predictions

Figure 11. Unscaled QMAE training error.

5. Discussion

In the Ackley function approximation experiment, all three networks utilized a ran-
dom uniform weight initialization scheme. However, the quaternion network had between
a 10–20% lower initial prediction error than the real-valued networks. This is likely due to
the fact that the quaternion network employed six times fewer weight and bias parameters
than the real-valued networks. The quaternion network maintained the lowest training set
error across the entire 100-epoch training period, resulting in the best test set performance.
The larger networks constructed in the second experiment demonstrated similar training
characteristics and test set performance.

The genetic algorithm removes the need for expensive gradient calculations, resulting
in better memory performance and more than 50x faster runtime in the first experiment
versus the real-valued gradient descent algorithm. Given the difficulty of calculating
quaternion gradients, the improvement over a quaternion gradient descent algorithm
would likely be even greater. However, a genetic programming approach does come with
some drawbacks. In the naive approach presented here, the algorithm would sometimes
stall for several iterations while searching for an improving solution. There are many exist-
ing techniques designed to mitigate this stalling, but the literature on genetic algorithms is
much less developed compared to comparable work on gradient descent optimization.

Despite this, the genetic algorithm opened the aperture on viable activation functions
and loss functions for use with quaternion networks. This is perhaps the most signifi-
cant contribution of this research. The results from [46] indicate that any locally analytic
complex-valued activation function can be extended and used in the quaternion domain,
but this work presents the first successful implementation of inverse hyperbolic trigono-
metric functions in quaternion networks. The success of the inverse hyperbolic tangent
function in the chaotic time series prediction task demonstrates the value of using gradient
free optimization methods in the quaternion domain.

The quaternions and quaternion neural networks are relatively unexplored compared
to real analysis and real-valued neural networks. While certain applications in image
processing and other domains have driven research in the quaternions and QNNs, there
is still room for significant improvement in both the theoretical and practical aspects of
quaternions. Going forward, the following lines of research will be crucial for continued
innovation in the quaternion domain.

First, a solid foundation of quaternionic analysis is crucial to theoretically sound QNN
research. While a handful of researchers have published works on quaternionic analysis,
the corpus is quite thin. Research in novel quaternion activation functions, quaternion
differentiability, quaternion analytic conditions, and novel quaternion training algorithms
could significantly enhance both the current understanding of quaternion optimization as
well as quaternion implementations of common machine learning models. Additionally,
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the quaternion Universal Approximation Theorem for either split or pure quaternion
activation functions is an outstanding problem that is vital for establishing the legitimacy
of quaternion networks from a theoretical point of view. Proving either variant of the
Universal Approximation Theorem would be a substantial contribution to the field.

Finally, this research simply provided a proof-of-concept for GA-trained quaternion
neural networks. The two examples presented were limited in scope and future work
should build on these results to demonstrate the viability of GA-trained networks in large-
scale optimization problems. In particular, quaternions are particularly well suited to the
fields of image processing and robotic control, both of which have a plethora of neural
network-related application opportunities. The authors intend to build on this proof-of-
concept in future work by examining the scalability of quaternion GAs to large machine
learning datasets and an in-depth comparative analysis of real-valued versus quaternion-
valued neural networks using a design of experiments (DoE) hyperparameter-tuning
approach. Finally, the authors intend to apply GA-trained QNNs to problem domains for
which quaternions are particularly well suited, including 3D optimal satellite control and
reinforcement learning for autonomous flight models.
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Appendix A. MLP-GD and MLP-GA Pseudocode

This section provides a high-level overview of the main algorithmic steps for the
genetic algorithm (GA) and gradient descent (GD) neural network training algorithms.
In terms of computational effort, the main differences between the two algorithms are that
the GA requires a population of different neural networks while the GD algorithm only
requires a single network but instead computes the error gradients at each training itera-
tion. The main computational burden of the GA stems from processing the training data
through each network at every iteration of the algorithm. In contrast, the GD algorithm’s
main computational effort stems from the calculation of expensive partial derivatives to
determine the error gradient at each layer of the network for every iteration. In prac-
tice, the computational cost of the backpropagation step in the GD algorithm outweighs
the repeated processing of training data through each network in the GA. The results in
Section 4.1 provide a good demonstration of this.
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Appendix A.1. MLP-GA

# Network Structure contains weight/bias values
# that define each layer of the neural network

struct network
bias1
Weight1
bias2
Weight2
bias3
Weight3
bias4
fitness

end

# initialization function
function init() do

instantiate n random networks
return list of networks

end

# main forward pass
function update_fitness(X, Y, Networks) do

foreach network in Networks do
foreach x in X do

y_predicted = network output
error = |y_predicted - Y|

end
network.fitness = sum(error)

end
end

# mutation operator
function mutate_weights(weight_array) do

foreach weight in weight_array do
weight = weight + random_noise

end
return weight_array

end

# Genetic Algorithm
function GA(X, Y) do

population = init()
n_epochs = N

for i = 1:N do
update_fitness(X, Y, population)
sort(population, on = fitness, order = ascending)

# retain the best k networks as parents
# mutate parent weights to create new children
for j = k+1:length(population) do

rand = rand(1:k)
population[j] = mutate_weights(population[rand])
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end
end

update_fitness(population)
sort(population, on = fitness, order = ascending)
best_entity = population[1]

return best_entity
end

Appendix A.2. MLP-GD

# Network Structure contains weight/bias values
# that define each layer of the neural network

struct network
bias1
Weight1
bias2
Weight2
bias3
Weight3
bias4

end

# initialization function
function init() do

instantiate single random network
return network

end

# main forward pass
function forward_pass(X, Y) do

foreach x in X do
y_predicted = network output
error = |y_predicted - Y|

end
return error

end

# main backward pass
function backpropagation(network, error, eta)do

foreach layer in network do
gradient(error, layer) = partial derivative of error
layer.weights = layer.weights - eta*gradient

end
return network

end

# Training Algorithm
function train(X, Y) do

network = init()
n_epochs = N
eta = learning rate

for i = 1:N do
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error = forward_pass(X, Y)
network = backpropagation(network, error, eta)

end

return network
end
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