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Multiple Pursuer Multiple Evader Differential

Games

Eloy Garcia, David W. Casbeer, Alexander Von Moll, and Meir Pachter

Abstract

In this paper an N -pursuer vs. M -evader team conflict is studied. The differential game of border

defense is addressed and we focus on the game of degree in the region of the state space where the

pursuers are able to win. This work extends classical differential game theory to simultaneously address

weapon assignments and multi-player pursuit-evasion scenarios. Saddle-point strategies that provide

guaranteed performance for each team regardless of the actual strategies implemented by the opponent

are devised. The players’ optimal strategies require the co-design of cooperative optimal assignments

and optimal guidance laws. A representative measure of performance is proposed and the Value function

of the game is obtained. It is shown that the Value function is continuous, continuously differentiable,

and that it satisfies the Hamilton-Jacobi-Isaacs equation – the curse of dimensionality is overcome and

the optimal strategies are obtained. The cases of N = M and N > M are considered. In the latter case,

cooperative guidance strategies are also developed in order for the pursuers to exploit their numerical

advantage. This work provides a foundation to formally analyze complex and high-dimensional conflicts

between teams of N pursuers and M evaders by means of differential game theory.

I. INTRODUCTION

Differential game theory provides the right framework to analyze pursuit-evasion problems and,

as a corollary, combat games. Pursuit-evasion scenarios involving multiple agents are important

but challenging problems in aerospace, control, and robotics. Pursuit-evasion problems were first

formulated in the seminal work [1]. Concerning many players games, reference [2] addressed

the interesting dynamic game of a fast pursuer trying to capture in minimal time two slower

evaders in succession. Motivated by the work in [2], the paper [3] analyzed the case where

the fast pursuer tries to capture multiple evaders. Reach and avoid differential games which

include time-varying dynamics, targets and constraints were addressed in [4] by means of a
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modified Hamilton-Jacobi-Isaacs (HJI) equation in the form of a double-obstacle variational

inequality. The work in [4] has interesting applications in collision avoidance, motion planning,

and aircraft control. The authors of [5] provided a game formulation to solve reach and avoid

problems involving nonlinear systems. Other approaches and applications regarding reach and

avoid games are found in [6], [7].

The paper [8] considered a group of cooperative pursuers that try to capture a single evader

within a bounded domain. The domain may also contain obstacles and the solution employs

Voronoi partitions of the plane. Similar games concerning multiple pursuers that try to capture

an evader have been addressed in [9]–[13]. In the references [14]–[18], cooperative behaviors

within pursuit-evasion games are analyzed in order to protect or rescue teammates in the presence

of adversarial entities.

Several papers have addressed pursuit-evasion scenarios and missile interception problems

posed as differential games, see e.g. [19]–[22]. The Linear Quadratic Differential Game (LQDG)

formulation is a particular instance of differential games and is well suited for maneuverable

target interception using a homing missile and for missile-missile engagements – this due to

its analytical friendliness. In their pioneering work Ho, Bryson, and Baron [23] introduced

the LQDG formulation to specifically address pursuit-evasion problems. The flexibility of the

LQDG formulation for addressing target interception problems by tuning the relevant weights

was highlighted in [24]. The recent work in [25] developed a method for intercepting a moving

target by formulating a linear quadratic differential game. In this vein, an LQDG for intercepting

a missile and protecting a target was addressed in [26]. Turetsky and Shinar [27] compared the

solutions of two differential games for target interception: LQDG and a norm differential game

(NDG); in the latter the cost/payoff is only a function of the miss distance and a hard bound on

the players’ controls is imposed. Several observations were made in [27] including the smaller

control effort required in the LQDG than in the NDG for the same initial conditions and problem

parameters.

The scenario addressed in this paper is a multi-player Border Defense Differential Game

(BDDG). The players are divided into two opposing teams: the pursuer team and the evader team

(or N vs. M , blue team vs. red team). The agents in each team cooperate in order to optimize the

team’s performance. We emphasize that while the members within a given team cooperate among

themselves, the game is non-cooperative since opposing teams do not cooperate. Members of the

pursuer team are tasked to pursue the members of the evader team and capture them before they

can reach the border. Hence, the solution of the game should provide state feedback, optimal

guidance strategies and also the optimal assignments of N pursuers to M evaders, which is a

discrete decision problem with combinatorial overtones. In other words, the players (pursuers

November 12, 2019 DRAFT



3

and evaders) need to dynamically determine their optimal headings/guidance/maneuvers over the

continuum of space and time. Simultaneously, the team has to obtain the optimal assignments

over a discrete space of possibilities.

The evaders aim is to reach the border. In the case where the evaders are captured before

reaching the border, the evaders try to minimize their combined terminal distance from the

border. The pursuers strive to capture the evaders while maximizing the same metric. In this

paper, we provide a team cooperative optimal solution of this problem that can be implemented

in real time and is thus able to exploit non-optimal adversary strategies and maneuvers.

The paper [28] addresses a similar differential game to the BDDG formulated in this paper

but with only one invader and one defender. The work in [29] also addresses the problem of

guarding a line segment and it extends to the case of one intruder and a number of defenders;

however, the defenders are constrained to move only along a straight line. In [30] the authors

propose a similar algorithm to the Rapidly-exploring Random Tree (RRT) and RRT* to compute

solutions of particular pursuit-evasion problems where the evader is only aware of the initial state

of the pursuer, while the pursuer has access to full information about the evader’s trajectory.

The recent papers [31] and [32] present two of the most related scenarios and approaches

to the problem discussed here. In the recent paper [31], the authors address the pursuit-evasion

problem where a set of attackers tries to reach a target while avoiding a set of defenders. In the

game proposed in that reference only open-loop strategies are considered where a given team

is assigned to select its strategy first and the opposing team follows with its response. Such

a scenario becomes a Stackelberg game [33]. Furthermore, due to the open-loop nature of the

solution concept and the decomposition approach, the authors focus on computational approaches

for solving Hamilton-Jacobi-Bellman (HJB) local equations (to avoid the curse of dimensionality)

as an approximation of the HJI equation of the overall game over the high dimensional state

space of all player states. Reference [32] focuses on approximating the solution of the Hamilton-

Jacobi-Isaacs equation and for the players to implement ”semi-open-loop” control strategies. As

stated in [32], Isaacs’ method is the ideal approach to solve differential games, if it is attainable.

A disadvantage of Isaacs’ method is that it does not scale well as the dimension of the state

increases. We will show in this paper that the curse of dimensionality is overcome for the game

under analysis and Isaacs’ method is applicable. The solution presented in this paper is not an

approximation but the optimal solution of the game over the complete state space. In fact, we

are able to obtain the (closed-form) optimal solution of the operationally relevant multi-player

BDDG. We provide the complete solution of the BDDG: we derive state feedback optimal

strategies for each player, the Value function V (x) is obtained, and it is shown that V (x) is C1

and it satisfies the Hamilton-Jacobi-Isaacs (HJI) Partial Differential Equation (PDE).

November 12, 2019 DRAFT
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The paper is organized as follows. The two-team multi-agent BDDG is formally stated in

Section II. Section III addresses the case of two pursuers against two evaders. The more general

case of N pursuers vs. M evaders is considered in Section IV. Examples are shown in Section

V and extensions are discussed in Section VI. Concluding remarks are made in Section VII.

II. THE GAME

We consider a multi-agent pursuit-evasion differential game where each agent belongs to either

one of two opposing teams. This problem presents unique challenges within classical differential

game theory. In addition to computing state feedback optimal strategies, this game also requires

the optimal assignment of pursuers to evaders to determine which pursuer captures which evader.

In other words, we need to co-design the optimal guidance strategies, in the form of state feedback

strategies, and the optimal assignments which are represented by discrete variables. The hybrid

nature of the problem has rarely been addressed within the theory of differential games [31],

[32], [34]

An N vs. M team differential game is considered with N defenders/pursuers and M attack-

ers/evaders. It is assumed that N ≥ M . The players in the pursuer team are denoted by Pi,

i = 1, ..., N and their speeds are vPi
∈ [vPi

, v̄Pi
], where vPi

> 0 and v̄Pi
denote, respectively,

the minimum and maximum speed of player Pi. Similarly, the players in the evader team are

denoted by Ej , j = 1, ...,M and their speeds are denoted by vEj
∈ [vEj

, v̄Ej
]. It can be shown

that optimal strategies demand maximum speed by each player, hence, for simplicity, we denote

vPi
= v∗Pi

= v̄Pi
, for i = 1, ..., N and vEj

= v∗Ej
= v̄Ej

for j = 1, ...,M . It is assumed that

the pursuers are faster than the evaders, so the speed ratios satisfy αij = vEj
/vPi

< 1, for

i = 1, ..., N and j = 1, ...,M . The obtained results can be extended to the case where a subset

of pursuers are slower than a subset of evaders by imposing a constraint on the assignments

where slow pursuers cannot be assigned to intercept faster evaders.

The states of Pi and Ej are given by their Cartesian coordinates xPi
= (xPi

, yPi
) and xEj

=

(xEj
, yEj

). The complete state of the differential game is defined by x := (xPi
, yPi

, xEj
, yEj

) ∈
R

2(N+M).

The players have simple motion, so the control variables of the pursuer team are given by the

cooperative instantaneous heading angles of each player Pi, that is, uP = {ψi} for i = 1, ..., N .

The evader team controls the state of the system by cooperatively choosing the instantaneous

headings of each evader Ej , that is, uE = {φj} for j = 1, ...,M . The dynamics ẋ = f(x, uE, uP )

November 12, 2019 DRAFT
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are specified by the system of 2(N +M) differential equations

ẋPi
= vPi

cosψi, xPi
(0) = xPi0

ẏPi
= vPi

sinψi, yPi
(0) = yPi0

ẋEj
= vEj

cos φj, xEj
(0) = xEj0

ẏEj
= vEj

sin φj, yEj
(0) = yEj0

(1)

where the admissible controls are the players’ headings ψi, φj ∈ [−π, π). The initial state of the

system is defined as x0 := (xPi0
, yPi0

, xEj0
, yEj0

) = x(t0) ∈ R
2(N+M). We consider the specific

scenario of border defense where the border line is given by the x-axis of the Euclidean plane

and the game is played in the half plane y ≥ 0. Define the binary variable µij such that µij = 1 if

pursuer i is assigned to capture evader j and µij = 0 otherwise. For any pursuer-evader pair, i, j,

such that µij = 1, the game will terminate in two possible ways. The first termination criteria

occurs if yEj
= 0, meaning that the evader reaches the border before being captured by the

assigned pursuer. Otherwise the game will terminate when the pursuer captures the evader. We

consider the case where a pursuer can be assigned to at most one evader, that is,
∑M

j=1 µij ≤ 1.

In this paper, we consider point capture and we focus on the Game of Degree in the state space

region RP ⊂ R
2(N+M) where capture of all evaders is guaranteed and thus the pursuers’ team

is the winner. However, the obtained strategies also provide the solution to the Game of Kind;

this is discussed at the end of Section IV-B. We define the state of binary variables µ = {µij},

for i = 1, ..., N and j = 1, ...,M . Also define the augmented state x̄ = [xTµT ]T . In the winning

region of the pursuers, the terminal set is then given by

T :=
{

x̄ |∀j ∈ 1, ...,M, ∃i ∈ 1, ..., N, µij = 1, xPi
= xEj

, yPi
= yEj

}

. (2)

Note that (2) includes the case N > M where more than one pursuer could be assigned to an

evader. In such a case the pursuers assigned to the same evader will also need to determine a

cooperative pursuit strategy. This will be clarified in Section IV-B.

The terminal time tf is defined as the time instant when the state of the system satisfies

(2), that is, the time instant when the last evader is captured. We define the individual terminal

times tfij corresponding to the interception of Ej by Pi. In order to guarantee regularity of the

solutions we define ẋPi
= ẏPi

= ẋEj
= ẏEj

= 0 for t ≥ tfij . These definitions allow for the

game to continue until all evaders are captured.

The terminal cost/payoff functional is

J(uP (t), uE(t); x0) = Φ(xf) (3)
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where

Φ(xf ) :=

M
∑

j=1

yEj
(tf ). (4)

The cost/payoff functional depends only on the terminal state - the BDDG is a terminal cost/Mayer

type game. Its Value is given by

V (x0) := max
uP (·)

min
uE(·)

J(uP (·), uE(·); x0) (5)

subject to (1) and (2), where uP (·) and uE(·) are the teams’ state feedback strategies.

The cost/payoff functional (4) represents an important measure of combat effectiveness; it

represents the potential risk or threat to the strategic asset being defended. This risk is inversely

proportional to the distance between the point of interception and the x-axis, a.k.a., the defended

border. As such, the evaders, knowing that the initial conditions make them unable to reach the

border, wish to be intercepted as close as possible to the border and increase the level of their

threat to the border. In case the pursuers err, a saddle point state feedback strategy for the evaders

will allow them to end up closer to the border and, perhaps, reach it before being captured by

the pursuers. The pursuers aim at intercepting the evaders as far as possible from the border.

Similarly, a saddle point state feedback strategy for the pursuers will provide a robust strategy

to capture the evaders, regardless of what (unknown to the pursuers) guidance law the evaders

implement. Furthermore, the pursuers will only increase the total distance from the border to

the terminal capture points when the evaders do not implement their optimal strategies. These

objectives highlight the importance of saddle point state feedback strategies (the main result

in this paper) which can be implemented on-line and provide robustness against any possible

maneuver by the adversaries.

We will consider a firm commitment to the initial assignment by the pursuers; this means

that µij(t) = µij(t0), that is, the pursuers do not switch assignments during the engagement. In

addition to providing the foundation for a framework to analyze more complex scenarios, which

include switching assignments and capture in succession, the case of commitment is useful by

itself in several applications such as missile interception. When the evaders represent missiles

trying to reach the border, the pursuers are then represented by interceptor missiles. Knowing the

positions of the incoming missiles, the interceptors will solve the differential game and track/lock

on the assigned missile and disregard the other missiles. Since interceptor i is locked on missile

j it will not detonate its warhead until meeting its objective which prevents collisions with other

interceptors near by.

Let the co-state be represented by

λT = (λxP1
, λyP1

, ..., λxPN
, λyPN

, λxE1
, λyE1

, ..., λxEM
, λyEM

) ∈ R
2(N+M). (6)

November 12, 2019 DRAFT
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The Hamiltonian of the differential game is

H =
∑N

i=1 vPi
(λxPi

cosψi + λyPi
sinψi) +

∑M
j=1 vEj

(λxEj
cosφj + λyEj

sinφj). (7)

Theorem 1: Consider the cooperative differential game (1)-(5). The headings of the players

Ej and Pi are constant under optimal play and the optimal trajectories are straight lines.

Proof. The proof follows from the fact that the agents have simple motion and the cost is of

Mayer type. �

Apollonius circle. The Apollonius circle is the locus of points S with a fixed ratio of distances

to two given points which are called foci. Let the instantaneous positions of Ej and Pi be the

foci, where the fixed ratio is αij =
EjS

PiS
. Players Ej and Pi travel at constant speeds and with

constant heading where Pi aims at capturing Ej at a point I = (xI , yI) on the circumference of

the Apollonius circle. The Apollonius circle divides the plane into two dominance regions: The

interior of the circle is Ej’s dominance region: Ej can reach any point inside the circle before

Pi; on the other hand, any point outside the circle can be reached by Pi before Ej does.

At any point on S, the distance traveled by Ej is equal to αij times the distance traveled by

Pi. It is important to note that in a differential game the aimpoint of a player is not guessed by

the adversary but it is determined by the solution of the differential game which provides the

optimal strategies of each player. This means that each player, by solving the differential game,

obtains the optimal strategies for itself and also its opponents. When a state feedback solution

is obtained, actual use of non-optimal strategies is in detriment to the player which does not

implement its optimal strategy, and this benefits the adversary.

III. 2 VS. 2 DIFFERENTIAL GAME

In this section we will address the case of 2 pursuers versus 2 evaders. In the 2 vs. 2 BDDG

the state is given by x := (xE1
, yE1

, xE2
, yE2

, xP1
, yP1

, xP2
, yP2

) ∈ R
8. Let us define in general

y
ij
(x) =

yEj
−α2

ijyPi
−αij

√
(xEj

−xPi
)2+(yEj

−yPi
)2

1−α2

ij

. (8)

For the case of two pursuers and two evaders let

ys1(x) = y
11
(x) + y

22
(x)

ys2(x) = y
12
(x) + y

21
(x).

(9)

The following theorem provides the solution of the 2 vs. 2 differential game: it dictates what

the optimal assignment is and it also provides the state feedback optimal headings for each one

of the four players.

Theorem 2: Consider the 2 vs. 2 BDDG (1)-(5) with αij = vEj
/vPi

< 1, and where x ∈ RP .

The Value function is continuous, continuously differentiable (except at the dispersal surface

November 12, 2019 DRAFT
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ys1 = ys2), and it satisfies the HJI equation. The Value function is explicitly given by V (x) =

ys1(x) if ys1 > ys2 and V (x) = ys2(x) if ys2 > ys1 . The optimal state feedback strategies are

given by

cosφ∗
1 =

x∗

E1
−xE1√

(x∗

E1
−xE1

)2+(y∗
E1

−yE1
)2

sin φ∗
1 =

y∗
E1

−yE1√
(x∗

E1
−xE1

)2+(y∗
E1

−yE1
)2

cosφ∗
2 =

x∗

E2
−xE2√

(x∗

E2
−xE2

)2+(y∗
E2

−yE2
)2

sin φ∗
2 =

y∗E2
−yE2√

(x∗

E2
−xE2

)2+(y∗
E2

−yE2
)2

cosψ∗
1 =

x∗

P1
−xP1√

(x∗

P1
−xP1

)2+(y∗
P1

−yP1
)2

sinψ∗
1 =

y∗P1
−yP1√

(x∗

P1
−xP1

)2+(y∗
P1

−yP1
)2

cosψ∗
2 =

x∗

P2
−xP2√

(x∗

P2
−xP2

)2+(y∗
P2

−yP2
)2

sinψ∗
2 =

y∗
P2

−yP2√
(x∗

P2
−xP2

)2+(y∗
P2

−yP2
)2

(10)

where the players’ optimal aimpoints are

x∗E1
= x∗P1

=
xE1

−α2

11
xP1

1−α2

11

y∗E1
= y∗P1

=
yE1

−α2

11
yP1

−α11d11

1−α2

11

x∗E2
= x∗P2

=
xE2

−α2

22
xP2

1−α2

22

y∗E2
= y∗P2

=
yE2

−α2

22
yP2

−α22d22

1−α2

22

(11)

if ys1 > ys2 , and

x∗E1
= x∗P2

=
xE1

−α2

21
xP2

1−α2

21

y∗E1
= y∗P2

=
yE1

−α2

21
yP2

−α21d21

1−α2

21

x∗E2
= x∗P1

=
xE2

−α2

12
xP1

1−α2

12

y∗E2
= y∗P1

=
yE2

−α2

12
yP1

−α12d12

1−α2

12

(12)

if ys2 > ys1 , where

dij =
√

(xEj
− xPi

)2 + (yEj
− yPi

)2 (13)

for i, j = 1, 2.

Proof. In the 2 vs. 2 engagement, where the pursuers commit to their initial assignment, there

are only two possible options for assignments and they are as follows. A1: µ11 = µ22 = 1, where

P1 is assigned to intercept E1 and P2 is assigned to intercept E2; the cost/payoff is ys1 . A2:

µ12 = µ21 = 1, where P1 is assigned to intercept E2 and P2 is assigned to intercept E1; the

cost/payoff is ys2 .
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Fig. 1. BDDG example: two pursuers vs. two evaders

In order to determine both the optimal assignment and the optimal headings, we look at the

four Apollonius circles which are generated by pairing each pursuer with each evader – see Fig.

1.

The center coordinates of each circle are denoted by (xcij , ycij) and the radius is denoted by

rij , for i, j = 1, 2. For each pair PiEj the optimal interception point is given by the lowest

point on the corresponding Apollonius circle. This point is denoted by y
ij

= ycij − rij; the

corresponding x-coordinate is xij = xcij .

For the assignment A1 the cost/payoff incurred is ys1 = y
11

+ y
22

. For the assignment A2

the cost/payoff incurred is ys2 = y
12

+ y
21

. Both, ys1 and ys2 , can be explicitly written in

terms of the state x; they are given by (8)-(9). Finally, the optimal assignment is given by

ι∗ = argmaxι=1,2 ysι .

In order to show that V (x) = ys1(x) is continuously differentiable, we obtain the partial

November 12, 2019 DRAFT



10

derivatives of the Value function with respect to each element of the state as follows

∂V
∂xE1

= − α11

1−α2

11

· xE1
−xP1

d11
∂V
∂yE1

= 1
1−α2

11

(

1− α11
yE1

−yP1

d11

)

∂V
∂xE2

= − α22

1−α2

22

· xE2
−xP2

d22
∂V
∂yE2

= 1
1−α2

22

(

1− α22
yE2

−yP2

d22

)

∂V
∂xP1

= α11

1−α2

11

· xE1
−xP1

d11
∂V
∂yP1

= α11

1−α2

11

(

− α11 +
yE1

−yP1

d11

)

∂V
∂xP2

= α22

1−α2

22

· xE2
−xP2

d22
∂V
∂yP2

= α22

1−α2

22

(

− α22 +
yE2

−yP2

d22

)

(14)

where the terms in the denominators dij > 0 for t < tfij .

We will now show that the Value function V (x) = ys1(x) satisfies the HJI equation. To do so

we compute the following

x∗E1
− xE1

= −α11d11
∂V
∂xE1

y∗E1
− yE1

= −α11d11
∂V
∂yE1

x∗E2
− xE2

= −α22d22
∂V
∂xE2

y∗E2
− yE2

= −α22d22
∂V
∂yE2

x∗P1
− xP1

= d11
α11

∂V
∂xP1

y∗P1
− yP1

= d11
α11

∂V
∂yP1

x∗P2
− xP2

= d22
α22

∂V
∂xP2

y∗P2
− yP2

= d22
α22

∂V
∂yP2

.

(15)

The HJI equation for regular solutions is given by −∂V
∂t

= ∂V
∂x

· f(x, ψ∗, φ∗)+g(t, x, ψ∗, φ∗). Note

that in this problem ∂V
∂t

= 0 and g(t, x, ψ∗, φ∗) = 0. Using eqs. (1), (10), and (15) we obtain the

following

∂V
∂x

· f(x, φ∗
1, φ

∗
2, ψ

∗
1, ψ

∗
2) = vE1

(

∂V
∂xE1

cosφ∗
1 +

∂V
∂yE1

sin φ∗
1

)

+ vP1

(

∂V
∂xP1

cosψ∗
1 +

∂V
∂yP1

sinψ∗
1

)

+ vE2

(

∂V
∂xE2

cosφ∗
2 +

∂V
∂yE2

sinφ∗
2

)

+ vP2

(

∂V
∂xP2

cosψ∗
2 +

∂V
∂yP2

sinψ∗
2

)

= −α11vP1

√

(

∂V
∂xE1

)2
+
(

∂V
∂yE1

)2
+ vP1

√

(

∂V
∂xP1

)2
+
(

∂V
∂yP1

)2

− α22vP2

√

(

∂V
∂xE2

)2
+
(

∂V
∂yE2

)2
+ vP2

√

(

∂V
∂xP2

)2
+
(

∂V
∂yP2

)2

(16)
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where
√

(

∂V
∂xE1

)2
+
(

∂V
∂yE1

)2
= 1

1−α11

√

1 + α2
11 −

2α11(yE1
−yP1

)

d11
√

(

∂V
∂xP1

)2
+
(

∂V
∂yP1

)2
= α11

1−α11

√

1 + α2
11 −

2α11(yE1
−yP1

)

d11
√

(

∂V
∂xE2

)2
+
(

∂V
∂yE2

)2
= 1

1−α22

√

1 + α2
22 −

2α22(yE2
−yP2

)

d22
√

(

∂V
∂xP2

)2
+
(

∂V
∂yP2

)2
= α22

1−α22

√

1 + α2
22 −

2α22(yE2
−yP2

)

d22
.

(17)

Substituting (17) into (16) we obtain

∂V
∂x

· f(x, φ∗
1, φ

∗
2, ψ

∗
1, ψ

∗
2) = − 1

1−α11

√

1 + α2
11 −

2α11(yE1
−yP1

)

d11

(

α11vP1
−α11vP1

)

− 1
1−α22

√

1 + α2
22 −

2α22(yE2
−yP2

)

d22

(

α22vP2
−α22vP2

)

= 0

and the Value function V (x) = ys1(x) satisfies the HJI equation.

Using V (x) = ys2(x) and the corresponding interception points shown in (12), it is possible

to show that V (x) = ys2(x) is continuous, continuously differentiable, and it satisfies the HJI

equation by following similar steps to (14)-(17).

Finally, the singular surface ys1(x) = ys2(x) corresponds to a dispersal surface where both

assignments A1 and A2 are optimal. Clearly, at the dispersal surface, the Value function is

continuous since V (x) = ys1(x) = ys2(x); however, V (x) is not continuously differentiable. For

instance
∂ys1
∂xE1

= − α11

1−α2

11

· xE1
−xP1

d11
6= − α21

1−α2

21

· xE1
−xP2

d21
=

∂ys2
∂xE1

. Corresponding expressions hold

for the remaining partial derivatives.

Similar to most dispersal surfaces in pursuit-evasion differential games, when presented with

this scenario, the agents choose one of the two equally optimal assignments and the state of the

system leaves the dispersal surface. Oddly, this dispersal surface benefits the pursuers, that is,

the pursuers do not lose any performance by selecting a different assignment than the evaders.

However, the evaders may see (a possibly large) increase in their combined cost if they assume

the wrong assignment (i.e. the one not selected by the pursuers) since they will try to evade

pursuers which are not actually pursuing them. �

Remark 1: Although the pursuers commit to their initial assignment, that is, each one locks

on a given evader and keeps pursuing it until capture occurs, the optimal headings in (10) are

state feedback policies. As such, the pursuers are able to react to non-optimal strategies by the

evaders by continuously recomputing its optimal heading given by (10). When an evader does

not follow its prescribed optimal strategy, not only is captured by the assigned pursuer but the

terminal cost/payoff increases with respect to the Value of the game. This is of benefit to the

pursuers.
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Remark 2: The regular saddle point solution to the 2 vs. 2 differential game can be computed

by each agent individually without need for communication between teammates. Since all agents

are aware of the state of the system, each agent can compute the complete solution: the optimal

assignment and the optimal headings of every player. Then, each player, implements its own

optimal strategy. This is not the case when the state of the system resides on the dispersal

surface ys1(x) = ys2(x). Since both assignments are equally optimal, both pursuers could assign

themselves to intercept the same evader while leaving the remaining evader free to reach the

border. Hence, deconfliction needs to occur through a single communication event, e.g., one

pursuer is given priority and identifies the evader it has chosen to pursue and the second pursuer

assigns itself to the remaining evader.

IV. MULTI-AGENT DIFFERENTIAL GAME

In this section we extend the BDDG to address the case of N pursuers and M evaders,

for N = M and for N > M . The case N = M is presented first in order to introduce the

enumeration of feasible assignments. Next, the more general case N > M is addressed which

involves cooperative guidance between two pursuers in order to intercept an evader.

A. Case: N =M

We start by enumerating all feasible assignments Aι. Feasible assignments mean those as-

signments where all evaders can be potentially captured. For instance, in Fig. 2, the Apollonius

circle between P1 and E3 (shown by the bold dot-dashed line) intersects the x-axis; hence,

any assignment matching P1 with E3 is not feasible. Thus, the feasible assignments in Fig. 2

are A1 : µ11 = µ22 = µ33 = 1; A2 : µ11 = µ23 = µ32 = 1; A3 : µ12 = µ21 = µ33 = 1;

A4 : µ12 = µ23 = µ32 = 1.

In general, the number of feasible assignments is denoted by ῑ so the assignment index ι =

1, ..., ῑ. Define

ysι(x) =
∑M

j=1 µ
ι
ijyij(x) (18)

for ι = 1, ..., ῑ, where the assignment variables µι
ij are specified by the corresponding assignment

Aι. The optimal assignment variables are denoted by µ∗
ij .

Theorem 3: Consider the N vs. M BDDG where N =M , αij = vEj
/vPi

< 1, and x ∈ RP . The

Value function is continuous, continuously differentiable (except at dispersal surfaces ysι = ysι′

for any ι, ι′ = 1, ..., ῑ), and it satisfies the HJI equation. The Value function is explicitly given by

V (x) = maxι ysι(x). The corresponding optimal assignment is ι∗ = argmaxι Aι. The optimal
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Fig. 2. BDDG example: three pursuers vs. three evaders

state feedback strategies are given by

cosφ∗
j =

x∗

Ej
−xEj

√

(x∗

Ej
−xEj

)2+(y∗
Ej

−yEj
)2

sinφ∗
j =

y∗
Ej

−yEj
√

(x∗

Ej
−xEj

)2+(y∗
Ej

−yEj
)2

cosψ∗
i =

x∗

Pi
−xPi√

(x∗

Pi
−xPi

)2+(y∗
Pi

−yPi
)2

sinψ∗
i =

y∗
Pi

−yPi√
(x∗

Pi
−xPi

)2+(y∗
Pi

−yPi
)2

(19)

where the optimal aimpoints are

x∗Ej
= x∗Pi

=
xEj

−α2

ijxPi

1−α2

ij

y∗Ej
= y∗Pi

=
yEj

−α2

ijyPi
−αijdij

1−α2

ij

(20)

for a pair Ej/Pi such that µ∗
ij = 1, where

dij =
√

(xEj
− xPi

)2 + (yEj
− yPi

)2 (21)

for i, j = 1, ..., N .

Proof. The proof follows that of Theorem 2 and it is omitted here for brevity. �

B. Case: N > M

We now consider the multi-agent BDDG with N pursuers and M evaders with N > M . The

number advantage is explicitly exploited by the pursuers by implementing cooperative pursuit

against the evaders. Cooperative pursuit by two pursuers against one evader is beneficial for the
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pursuers because in most cases it will cause capture to occur farther away from the border than in

the non-cooperative single pursuer single evader case [35]. It is also important since it allow us

to consider scenarios where an evader is potentially able to reach the x-axis if only one pursuer

is assigned to it, but it will not reach the x-axis if more than one pursuer cooperatively intercept

it. For instance, consider the two pursuers and one evader game in Fig. 3.a. If only P1 is assigned

to E then, the latter can reach the x-axis since the EP1 Apollonius circle intersects the x-axis.

Similar situation occurs if only P2 is assigned. However, if both P1 and P2 cooperate to capture

E they can significantly decrease the region of dominance of E which is now restricted to be

the lens shaped area of intersection of the two circles (since any point inside the EP2 circle but

outside the EP1 circle can be reached by P1 before E and, similarly, any point inside the EP1

circle but outside the EP2 circle can be reached by P2 before E). In the example shown in Fig.

3.a the point with smallest y-coordinate in the region of dominance of E is now given by point

I – the intersection point of the two Apollonius circles.

We now apply the cooperative guidance concept in order to obtain the saddle point solution to

the multi-agent BDDG: when the pursuers outnumber the evaders, cooperation among a group

of N pursuers entails the best cooperative assignment together with the cooperatively designed

heading strategy in order to maximize the team’s payoff. The best strategy by the outnumbered

evaders in order to minimize their combined cost is for each one to head to the lowest point in

its dominance region which is determined by the optimal assignment of pursuers to evaders. As

expected, the solution of the game provides the optimal strategies for each agent.

In order to address isochronous or simultaneous capture we consider the following. If an

evader Ej can be potentially captured simultaneously by two pursuers Pi and Pi′ we use EjPi

and EjPi′ to denote the corresponding Apollonius circles. They are given, respectively, by

(x− xcij )
2 + (y − ycij)

2 = r2ij

(x− xci′j )
2 + (y − yci′j)

2 = r2i′j
(22)

where xcij =
1

1−α2

ij

(xEj
− α2

ijxPi
), ycij =

1
1−α2

ij

(yEj
− α2

ijyPi
), rij =

αij

1−α2

ij

dij , for i, i′.

Remark 3: By construction of the Apollonius circle, the Evader is always located inside

of both circles specified in eq. (22). If the circles do not intersect, then, one of the circles

is completely located inside the other circle and the evader is captured by only one pursuer.

The constructed Apollonius circles are never mutually exclusive since E has to be inside both

circles. The intersection of the Apollonius circles is a necessary, but not sufficient, condition

for simultaneous capture. Conversely, if, under optimal play, the evader is to be simultaneously

captured by the two pursuers, then the circles intersect each other. Fig. 3.b shows an example

of the former where the circles intersect but the lowest point in the evader dominance region is

still (xc21 , yc21 − r21) = (8.511, 7.642). The lower point of intersection of the circles is given by
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Fig. 3. Cooperative pursuit against one evader. a) Lowest point of evader dominance region is at the intersection of the two

Apollonius circles. b) Lowest point on evader dominance region is located on the arc of the EP2 Apollonius circle
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Fig. 4. Three pursuers and two evaders feasible assignments

(6.078, 7.846) which has a higher value for the y-coordinate than the lowest point on the EP2

Apollonius circle. Hence, under optimal play, the evader is captured only by P2.

In general, the pursuers have different speeds and a third Apollonius circle can be constructed

in terms of the positions of Pi and Pi′ , and in terms of their corresponding speed ratio αi′i.

Without loss of generality, we consider Pi′ to be the faster of the two pursuers and we define

the speed ratio αi′i = vPi
/vPi′

< 1. The Pi′Pi Apollonius circle is given by

(x− xci′i)
2 + (y − yci′i)

2 = r2i′i (23)

where xci′i = 1
1−α2

i′i

(xPi
− α2

i′ixPi′
), yci′i = 1

1−α2

i′i

(yPi
− α2

i′iyPi′
), ri′i =

αi′i

1−α2

i′i

di′i, and di′i =
√

(xPi
− xPi′

)2 + (yPi
− yPi′

)2.

Similar to the case N = M , Aι for ι = 1, ..., ῑ denotes the feasible assignments. In order to
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TABLE I

FEASIBLE ASSIGNMENTS FOR 3P VS. 2E EXAMPLE

Aι Potential match µij

A1 P1P2 ⇒ E1, P3 ⇒ E2 µ11 = µ21 = µ32 = 1

A2 P1 ⇒ E1, P2P3 ⇒ E2 µ11 = µ22 = µ32 = 1

A3 P1P2 ⇒ E2, P3 ⇒ E1 µ22 = µ31 = 1

A4 P1 ⇒ E2, P2P3 ⇒ E1 µ12 = µ21 = 1

A5 P1P3 ⇒ E1, P2 ⇒ E2 µ11 = µ22 = 1

A6 P1P3 ⇒ E2, P2 ⇒ E1 µ12 = µ32 = µ21 = 1

enumerate the feasible assignments we consider the choices where simultaneous capture helps

the pursuers to increase their payoff. In the simple example in Fig. 4, with N = 3,M = 2, the

feasible assignments are shown in Table I. In this table, the first column represents the assignment

index, the second column shows the potential matching to be analyzed in the assignment, and

the third column provides the resulting assignment variables. For example, in A1 we look into

the possible assignment of P1 and P2 to E1, while E2 is assigned to P3. Cooperation between P1

and P2 helps to increase the payoff, that is, it helps to capture E1 farther away from the x-axis

compared to the individual solutions of each P1 and P2. Therefore, both pursuers are assigned

to capture E1 and the resulting assignment variables are µ11 = µ21 = µ32 = 1. On the other

hand, in A3, cooperation between P1 and P2 does not help to increase the payoff compared to

the individual solution where only P2 captures E2. Hence, only P2 is assigned to E2 (and P3 to

E1) and the resulting assignment variables are µ22 = µ31 = 1. Visually, this can be confirmed

from Fig. 4.

We will now provide the solution of the N vs. M BDDG, for the case N > M . Let us define

ysι(x) =
∑M

j=1 µ
ι
ijyij (24)

where y
ij
(x) is given by (8) if, in assignment Aι, µ

ι
ij = 1 holds only for one pursuer i, that is,

Ej is captured by only one pursuer. Also define

y
ij
(x) =

Fij−
√

(xcij
−xc

i′j
)2Gij

Dij
= Vs(x) (25)

if, in assignment Aι, µ
ι
ij = 1 holds for two pursuers i, i′, that is, Ej is captured simultaneously
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by two pursuers where

Fij = yci′i(xcij−xci′j )2 − (ycij−yci′j )
(Rij

2
−xci′i(xci′j−xcij )

)

Gij = r2i′iDij−
(Rij

2
+xci′i(xcij−xci′j) + yci′i(ycij−yci′j )

)2

Dij = (xcij − xci′j )
2 + (ycij − yci′j)

2

Rij = r2ij − r2i′j − x2cij + x2ci′j − y2cij + y2ci′j .

(26)

Theorem 4: Consider the N vs. M BDDG where N > M , αij = vEj
/vPi

< 1, and x ∈ RP . The

Value function is continuous, continuously differentiable (except at dispersal surfaces ysι = ysι′

for any ι, ι′ = 1, ..., ῑ), and it satisfies the HJI equation. The Value function is explicitly given by

V (x) = maxι ysι(x). The corresponding optimal assignment is ι∗ = argmaxι Aι. The optimal

state feedback strategies are given by (19). The optimal aimpoints are given by (20) if Ej is

captured by only one pursuer and they are given by

x∗ = x∗Ej
= x∗Pi

= x∗Pi′
=

Rij−2(yc
i′j

−ycij )Vs(x)

2(xc
i′j

−xcij
) (27)

and y∗ = y∗Ej
= y∗Pi

= y∗Pi′
= Vs(x) as defined in (25) if Ej is captured simultaneously by two

pursuers.

Proof. We focus on the terms Vs(x) of the Value function given by (25) which are associated

with simultaneous capture of an evader by two pursuers. The remaining terms are of the form (8)

which are associated with evaders being captured by a single pursuer and they can be analyzed

as in Theorem 2.

The term Vs(x) is the point with smallest y-coordinate in the region of dominance of Ej ,

where Ej will be captured simultaneously by two pursuers. This point is one of the intersections

of the two Apollonius circles in (22). In order to obtain the intersection points we subtract the

second equation from the first equation in (22) we obtain the linear equation

2(xci′j − xcij )x+ 2(yci′j − ycij)y = Rij. (28)

Equation (28) is used in (23) in order to obtain the quadratic equation in y

Dijy
2−2Fijy + [

Rij

2
−xci′i(xci′j−xcij)]2 + (y2ci′i−r

2
i′i)(xci′j−xcij )2 = 0 (29)

where the applicable solution is given by (25).

We now proceed to obtain the partial derivatives of the term (25) with respect to each element

of the state. In order to simplify the notation we define: F = Fij , G = Gij , D = Dij , R = Rij ,

xi = xcij , yi = ycij , xi′ = xci′j , yi′ = yci′j , x
′ = xci′i , y

′ = yci′i , ri = rij , ri′ = ri′j , r = ri′i,

αi = αij , αi′ = αi′j , and α = αi′i . Then, using the previous definitions, Vs(x) can be written as

follows

Vs(x) =
F−

√
(xi−xi′ )

2G

D
.
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We start by computing the following

∂F
∂xPi

=
α2

i [2y
′(xi′−xi)+(yi−yi′ )(x

′−xPi
)]

1−α2

i

+
(xi′−xi)(yi−yi′)

1−α2

∂F
∂xP

i′
= −α2

i′
[2y′(xi′−xi)+(yi−yi′ )(x

′−xP
i′
)]

1−α2

i′
− α2(xi′−xi)(yi−yi′)

1−α2

∂F
∂xEj

= ( 1
1−α2

i

− 1
1−α2

i′
)[2y′(xi−xi′)+(yi−yi′)(xEj

−x′)]
∂F
∂yPi

=
α2

i [R/2+x′(xi−xi′)−(yi−yi′ )yPi
]

1−α2

i

+
(xi−xi′)

2

1−α2

∂F
∂yP

i′
= −α2

i [R/2+x′(xi−xi′)−(yi−yi′ )yPi
]

1−α2

i

− α2(xi−xi′ )
2

1−α2

∂F
∂yEj

= ( 1
1−α2

i

− 1
1−α2

i′
)[(yi−yi′)yEj

− R
2
+ x′(xi′−xi)].

(30)

Let us also obtain

∂G
∂xPi

= −2α2

i

(

(xi−xi′)r
2+(xPi

−x′)
√
r2D−G

)

1−α2

i

+
2
(

α2

1−α2
(xPi

−xP
i′
)D−(xi−xi′)

√
r2D−G

)

1−α2

∂G
∂xP

i′
=

2α2

i′

(

(xi−xi′)r
2+(xP

i′
−x′)

√
r2D−G

)

1−α2

i′
− 2α2

(xPi
−xP

i′

1−α2
D−(xi−xi′)

√
r2D−G

)

1−α2

∂G
∂xEj

= 2
(

1
1−α2

i

− 1
1−α2

i′

)(

(xi − xi′)r
2 + (xEj

− x′)
√
r2D −G

)

∂G
∂yPi

= −2α2

i

(

(yi−yi′ )r
2+(yPi

−y′)
√
r2D−G

)

1−α2

i

+
2
(

α2

1−α2
(yPi

−yP
i′
)D−(yi−yi′)

√
r2D−G

)

1−α2

∂G
∂yP

i′
=

2α2

i′

(

(yi−yi′ )r
2+(yP

i′
−y′)

√
r2D−G

)

1−α2

i′
− 2α2

(yPi
−yP

i′

1−α2
D−(yi−yi′)

√
r2D−G

)

1−α2

∂G
∂yEj

= 2
(

1
1−α2

i

− 1
1−α2

i′

)(

(yi − yi′)r
2 + (yEj

− y′)
√
r2D −G

)

.

(31)

Additionally, we have that

∂D
∂xPi

= − 2α2

i

1−α2

i

(xi − xi′)

∂D
∂xP

i′
=

2α2

i′

1−α2

i′
(xi − xi′)

∂D
∂xEj

= 2( 1
1−α2

i

− 1
1−α2

′i

)(xi − xi′)

∂D
∂yPi

= − 2α2

i

1−α2

i

(yi − yi′)

∂D
∂yP

i′
=

2α2

i′

1−α2

i′
(yi − yi′)

∂D
∂yEj

= 2( 1
1−α2

i

− 1
1−α2

′i

)(yi − yi′).

(32)

Then, we can write the gradient of Vs(x) as follows

∂Vs

∂xPi

= 1
D

(

∂F
∂xPi

− 1
2

√

(xi−xi′ )
2

G
∂G
∂xPi

+
α2

i (xi−xi′)

1−α2

i

[2Vs +
√

G
(xi−xi′ )

2 ]
)

∂Vs

∂xP
i′
= 1

D

(

∂F
∂xP

i′
− 1

2

√

(xi−xi′)
2

G
∂G

∂xP
i′
− α2

i′
(xi−xi′ )

1−α2

i′
[2Vs +

√

G
(xi−xi′)

2 ]
)

∂Vs

∂xEj

= 1
D

(

∂F
∂xEj

− 1
2

√

(xi−xi′)
2

G
∂G
∂xEj

− ( 1
1−α2

i

− 1
1−α2

i′
)(xi−xi′)[2Vs +

√

G
(xi−xi′)

2 ]
)

∂Vs

∂yPi

= 1
D

(

∂F
∂yPi

− 1
2

√

(xi−xi′)
2

G
∂G
∂yPi

+
2α2

i

1−α2

i

(yi−yi′)Vs
)

∂Vs

∂yP
i′
= 1

D

(

∂F
∂yP

i′
− 1

2

√

(xi−xi′ )
2

G
∂G

∂yP
i′
+

2α2

i′

1−α2

i′
(yi−yi′)Vs

)

∂Vs

∂yEj

= 1
D

(

∂F
∂yEj

− 1
2

√

(xi−xi′)
2

G
∂G
∂yEj

− 2( 1
1−α2

i

− 1
1−α2

i′
)(yi−yi′)Vs

)

.

(33)
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We note that Vs(x) is continuous in RPι∗
(∈ RP ), where in the optimal assignment ι∗ there exists

at least one evader Ej such that µij = µi′j = 1, that is, at least one evader is simultaneously

captured by two pursuers. Consequently, there exist at least one term (25) contributing to the

Value function. From (25) and the definition of D in (26) we conclude that D = 0 only if

xi = xi′ and yi = yi′ , that is, the centers of the EjPi and EjPi′ circles coincide. However, in

such a case, the circles do not intersect (except when ri = ri′)
1 and Ej is captured by only one

pursuer. This means that for any {x|xi = xi′ , yi = yi′}, then the term (25) does not contribute

to the Value function. Thus, D 6= 0 for any RPι∗
. The terms of the form (8) were previously

analyzed, then the Value function is continuous.

The term Vs(x) in (25) is continuously differentiable in RPι∗
. Here, we also need to take into

consideration the term G. Let (xI , yI) and (xI , yI) denote the coordinates of the two intersection

points. From (25) and (29), G = 0 only when the two intersection points of the Apollonius circles

have the same y-coordinate, that is, y
I
= yI . Since Ej is always located inside both, the EjPi

and the EjPi′ circles, then the only case for both y
I
= yI and xI = xI to hold is when the

circles are tangent to each other and one of them is completely contained inside the other; such

a case can be analyzed as a single Pursuer differential game. Now, in the case where y
I
= yI

and xI 6= xI , by convexity of the circles, the point on the reachable region of the Pursuer with

lowest y-coordinate is located in the arc of one of the circles, not on any of the two intersection

points. Then, the optimal strategy is for Ej to be captured by only one pursuer which means that

for any {x|G = 0}, then the term (25) does not contribute to the Value function. Thus, G 6= 0

for any x ∈ RPι∗
.

Finally, we will show that the Value function satisfies the HJI equation. Similar to previous

sections, in the HJI we only need to consider the term ∂V
∂x

· f(x, φ∗
j , ψ

∗
i ), for i = 1, ..., N , j =

1, ...,M . Furthermore, since the terms (8) were already analyzed in Theorem 2, we now only

focus on the terms Vs(x). Using (19) we obtain the following

∂Vs

∂x
· f(x, φ∗

j , ψ
∗
i , ψ

∗
i′) = vPi

∂Vs
∂xPi

(x∗−xPi
)+ ∂Vs

∂yPi

(y∗−yPi
)

√
(x∗−xPi

)2+(y∗−yPi
)2

+ vPi′

∂Vs
∂xP

i′
(x∗−xP

i′
)+ ∂Vs

∂yP
i′
(y∗−yP

i′
)

√
(x∗−xP

i′
)2+(y∗−yP

i′
)2

+ vEj

∂Vs
∂xEj

(x∗−xEj
)+ ∂Vs

∂yEj

(y∗−yEj
)

√
(x∗−xEj

)2+(y∗−yEj
)2

(34)

Let I∗ = (x∗, y∗) and note that I∗Pi′ = 1
α
I∗Pi = 1

αi′
I∗Ej . Hence, we use the common

denominator I∗Pi′ =
√

(x∗ − xPi′
)2 + (y∗ − yPi′

)2 and the speed vPi′
=

vPi

α
=

vEj

αi′
in (34).

1When the centers of both circles coincide and, in addition, ri = ri′ , the circles are identical, the game morphs into a single

pursuer differential game.
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In addition, we substitute (33) into (34) to obtain the following

∂Vs

∂x
· f(x, φ∗

j , ψ
∗
i , ψ

∗
i′) =

vP
i′

D·I∗Pi′
×

(

( ∂F
∂xPi

− 1
2

√

(xi−xi′)
2

G
∂G
∂xPi

+
α2

i (xi−xi′)

1−α2

i

[2Vs +
√

G
(xi−xi′)

2 ])(x
∗ − xPi

)

+ ( ∂F
∂yPi

− 1
2

√

(xi−xi′)
2

G
∂G
∂yPi

+
2α2

i (yi−yi′ )Vs

1−α2

i

)(Vs − yPi
)

+ ( ∂F
∂xP

i′
− 1

2

√

(xi−xi′)
2

G
∂G

∂xP
i′
− α2

i′
(xi−xi′)

1−α2

i′
[2Vs +

√

G
(xi−xi′)

2 ])(x
∗ − xPi′

)

+ ( ∂F
∂yP

i′
− 1

2

√

(xi−xi′ )
2

G
∂G

∂yP
i′
− 2α2

i′
(yi−yi′)Vs

1−α2

i′
)(Vs − yPi′

)

+ ( ∂F
∂xEj

− 1
2

√

(xi−xi′)
2

G
∂G
∂xEj

− [ 1
1−α2

i

− 1
1−α2

i′
][xi − xi′ ][2Vs +

√

G
(xi−xi′)

2 ])(x
∗ − xEj

)

+ ( ∂F
∂yEj

− 1
2

√

(xi−xi′)
2

G
∂G
∂yEj

− 2[ 1
1−α2

i

− 1
1−α2

i′
][yi − yi′]Vs)(Vs − yEj

)
)

.

(35)

Expanding the terms in (35) we have

∂Vs

∂x
· f(x, φ∗

j , ψ
∗
i , ψ

∗
i′) =

vP
i′

D·I∗Pi′
×

(

(xi − xi′)
2[2Vs +

√

G
(xi−xi′)

2 ] + 2(yi−yi′)2Vs + x∗( ∂F
∂xPi

+ ∂F
∂xP

i′
+ ∂F

∂xEj

)

− xPi

∂F
∂xPi

− xPi′

∂F
∂xP

i′
− xEj

∂F
∂xEj

+ Vs(
∂F
∂yPi

+ ∂F
∂yP

i′
+ ∂F

∂yEj

)

− yPi

∂F
∂yPi

− yPi′

∂F
∂yP

i′
− yEj

∂F
∂yEj

− 1
2

√

(xi−xi′)
2

G

[

x∗( ∂G
∂xPi

+ ∂G
∂xP

i′
+ ∂G

∂xEj

)− xPi

∂G
∂xPi

− xPi′

∂G
∂xP

i′
− xEj

∂G
∂xEj

+ Vs(
∂G
∂yPi

+ ∂G
∂yP

i′
+ ∂G

∂yEj

)− yPi

∂G
∂yPi

− yPi′

∂G
∂yP

i′
− yEj

∂G
∂yEj

]

)

.

(36)

It can be shown that
∂F
∂xPi

+ ∂F
∂xP

i′
+ ∂F

∂xEj

= 0

∂F
∂yPi

+ ∂F
∂yP

i′
+ ∂F

∂yEj

= D

∂G
∂xPi

+ ∂G
∂xP

i′
+ ∂G

∂xEj

= 0

∂G
∂yPi

+ ∂G
∂yP

i′
+ ∂G

∂yEj

= 0

(37)

and (36) simplifies to

∂Vs

∂x
· f(x, φ∗

j , ψ
∗
i , ψ

∗
i′) =

vP
i′

D·I∗Pi′
×

(

3VsD+(xi − xi′)
2
√

G
(xi−xi′)

2 − xPi

∂F
∂xPi

− xPi′

∂F
∂xP

i′
− xEj

∂F
∂xEj

− yPi

∂F
∂yPi

− yPi′

∂F
∂yP

i′
− yEj

∂F
∂yEj

+ 1
2

√

(xi−xi′)
2

G

[

xPi

∂G
∂xPi

+ xPi′

∂G
∂xP

i′
+ xEj

∂G
∂xEj

+ yPi

∂G
∂yPi

+ yPi′

∂G
∂yP

i′
+ yEj

∂G
∂yEj

]

)

.

(38)

Using (30)-(33) and performing the corresponding simplifications we obtain the following two

equations

xPi

∂F
∂xPi

+ xPi′

∂F
∂xP

i′
+ xEj

∂F
∂xEj

+ yPi

∂F
∂yPi

+ yPi′

∂F
∂yP

i′
+ yEj

∂F
∂yEj

= 3y′(xi − xi′)
2 − 3(yi − yi′)[

R
2
− x′(xi′ − xi)]

= 3F
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and

xPi

∂G
∂xPi

+ xPi′

∂G
∂xP

i′
+ xEj

∂G
∂xEj

+ yPi

∂G
∂yPi

+ yPi′

∂G
∂yP

i′
+ yEj

∂G
∂yEj

= 4[r2D −
(

R
2
+ x′(xi − xi′) + y′(yi − yi′)

)2
]

= 4G.

Finally, the HJI equation can be written as follows

∂Vs

∂x
· f(x, φ∗

j , ψ
∗
i , ψ

∗
i′)

=
vP

i′

D·I∗Pi′

(

3[F −
√

(xi − xi′)2G]+
√

(xi − xi′)2G− 3F + 2
√

(xi − xi′)2G
)

= 0.

(39)

In conclusion, the Value function V (x) is continuous, continuously differentiable, and it satisfies

the HJI equation. �

Remark 4: We considered the cases N =M and N > M . By formulation of the problem (a

pursuer is eliminated from the game when it intercepts its assigned evader), the case N < M

implies that the evaders can win the game since at least M ′ = M − N evaders can reach the

border. Still, the ideas presented in this paper could be used by the pursuers in order to minimize

the damage. This could be in the form of intercepting as many evaders as possible and/or choose

to maximize the remaining payoff by assuming that M ′ evaders are destined to reach the border.

The latter case will return the choice of the best N evaders to intercept as farther away as

possible from the x-axis. This is directly related to the solution to the Game of Kind, that is,

whether the border can be protected. Complete protection is automatically given by the solution

of the initial assignment if V > 0. In more detail, if each y
ij
> 0 in ys∗ι then all evaders can

be captured before reaching the border. If some y
ij
< 0 then the best assignment is the one that

minimizes the number of evaders reaching the border and the border is only partially protected

in such a case.

Remark 5: The solution of the BDDG derived in this paper scales well with respect to the

number of players since this solution has been obtained in closed-form. As the number of agents

increases the only increase on computations is to determine the feasible assignments Ai which, in

the case of commitment by the pursuers, is only done once, at the beginning of the engagement.

However, the state feedback optimal guidance strategies hold in the form summarized in Theorem

4 for the general case of N > M .

V. EXAMPLES

Example 1. Consider the 2 vs. 2 BDDG where the pursuers initial positions are given by

P1 = (−1.5, 4.2) and P2 = (9.3, 4.5). The initial positions of the evaders are E1 = (4.1, 11) and

E2 = (5.5, 12.2). The speeds of the agents are vP1
= 1, vP2

= 1.04, vE1
= 0.81, and vE2

= 0.77.
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Example 1.1. In order to determine the best assignment, the players need to compute and

compare the terms ys1(x) and ys2(x) which are explicit functions of the state as shown in (9). In

this example we have that ys1(x) = 10.696 and ys2(x) = 8.288; hence, the optimal assignment is

given by µ11 = µ22 = 1 and we have V (x) = ys1(x) = 10.696. The optimal guidance strategies

are given by (10)-(11) where x∗E1
= x∗P1

= 14.784, y∗E1
= y∗P1

= 3.225, x∗E2
= x∗P2

= 0.890,

and y∗E2
= y∗P2

= 7.472. The optimal trajectories are shown in the top left plot of Fig. 5. Note

that the selection of assignments is done only once, at the beginning of the engagement, but the

guidance strategies are computed in closed-loop form. Under optimal play, the optimal aimpoints

are time-invariant: the calculation of the optimal aimpoints along the optimal trajectories provides

the same result and the trajectories are straight lines, as expected.

Example 1.2. The rest of the plots in Fig. 5 show the players with the same initial positions

and the same speeds but with non-optimal choices of strategies by one of the teams. For instance,

in the top right plot of Fig. 5 the evaders implement a non-optimal strategy while the pursuers

lock on the corresponding evader according to their optimal assignment (P1 on E1 and P2 on

E2) and implement their optimal guidance law in a closed-loop manner. Since the evaders’

trajectories are not optimal, the pursuers continuously update their aimpoints (which are now

time-varying) by computing (10)-(11) and react to the non-optimal strategies of the evaders.

The terminal cost/payoff is y11(tf11) + y22(tf22) = 16.632 > V = 10.696 and, as expected,

the evaders are captured farther away from the x-axis since they did not follow their optimal

strategy. This is true for any non-optimal evaders’ strategy. In this example in particular, the

evaders wrongly chose to aim at the lowest points on the E1P2 and E2P1 Apollonius circles;

that is, they assume the wrong pursuer assignment. The pursuers simply follow their combined

optimal assignment/guidance to improve their performance, that is, to increase their payoff by

capturing the evaders farther away from the border as they did in the top right plot of Fig. 5.

Example 1.3. The bottom left plot of Fig. 5 shows an example where the pursuers implement

their optimal assignment but they fail to implement their optimal guidance strategy. In particular

they implement the Pure Pursuit (PP) guidance each one on its assigned evader. In this case P2

is able to intercept E2 but closer to the x−axis. Even worse, P1 is not able to capture E1 before

the latter reaches the border. Clearly, the pursuers performance is significantly degraded by not

using their optimal guidance, even when the assignment was correct. In this case the evaders,

knowing that the pursuers implemented the correct assignment, they only need to implement

the same assignment along with the optimal guidance for that assignment. This means that they

compute their optimal headings according to (10)-(11) and, by implementing this optimal strategy

in closed-loop manner, they are able to react to the pursuers non-optimal guidance and increase

their performance, that is, reduce their combined cost and be captured closer to the border or
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Fig. 5. Example 1. Top left: optimal play. Top right: evaders follow non-optimal assignment. Bottom left: pursuers follows

non-optimal guidance. Bottom right: pursuers follow non-optimal assignment

reach it if possible.

Example 1.4. The bottom right plot of Fig. 5 shows another example where the pursuer

do not follow their optimal strategy. In this case they implement the incorrect assignment

for this example (P1 on E2 and P2 on E1); however they use the optimal guidance for that

particular assignment given by (10) and (12) in this case. The evaders, knowing that the pursuers

implemented the incorrect assignment, respond by implementing their optimal guidance for that

assignment and they also compute their aimpoints using (12). The combined cost/payoff is

ys2 = y12(tf12) + y21(tf21) = 8.288 < V = 10.696 and, as expected, the evaders are captured

closer to the x-axis compared to the case where the pursuers implement their combined optimal

assignment/guidance.

VI. EXTENSIONS

The differential game with two teams and multiple players could be extended to consider addi-

tional facets of combat scenarios: Decoys, players willing to sacrifice to benefit their teammates,

and players with different levels of importance will be analyzed in future research.

An important extension addressed in this section is to analyze the same BDDG but without

the prior commitment restriction. We will focus on the particular case considered in Section III
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of two pursuers versus 2 evaders. The following is a corollary to Theorem 2.

Corollary 1: Consider the 2 vs. 2 BDDG (1)-(5) with αij = vEj
/vPi

< 1, and where x ∈
RP and the pursuers do not commit to their initial assignment. The pursuers’ strategies with

commitment given by

cosψ∗
1 =

x∗

P1
−xP1√

(x∗

P1
−xP1

)2+(y∗
P1

−yP1
)2

sinψ∗
1 =

y∗
P1

−yP1√
(x∗

P1
−xP1

)2+(y∗
P1

−yP1
)2

cosψ∗
2 =

x∗

P2
−xP2√

(x∗

P2
−xP2

)2+(y∗
P2

−yP2
)2

sinψ∗
2 =

y∗P2
−yP2√

(x∗

P2
−xP2

)2+(y∗
P2

−yP2
)2

(40)

are robust state-feedback strategies for the game without commitment, where

x∗P1
=

xE1
−α2

11
xP1

1−α2

11

y∗P1
=

yE1
−α2

11
yP1

−α11d11

1−α2

11

x∗P2
=

xE2
−α2

22
xP2

1−α2

22

y∗P2
=

yE2
−α2

22
yP2

−α22d22

1−α2

22

(41)

if ys1 > ys2 , and

x∗P2
=

xE1
−α2

21
xP2

1−α2

21

y∗P2
=

yE1
−α2

21
yP2

−α21d21

1−α2

21

x∗P1
=

xE2
−α2

12
xP1

1−α2

12

y∗P1
=

yE2
−α2

12
yP1

−α12d12

1−α2

12

(42)

if ys2 > ys1 , where dij is given by (13). The pursuers’ guaranteed payoff is ys(x) = ys1(x) if

ys1 > ys2 and ys(x) = ys2(x) if ys2 > ys1 where ys1 and ys2 are given by (9).

Proof. Note that for a given assignment, the evaders cannot do better but to head to the lowest

point on the corresponding circles. The pursuers attain their best payoff under that assignment

by aiming at the same point. This was proven in Theorem 2. Hence, the pursuers only need to

choose their best possible assignment, and by sticking with this assignment, the evaders cannot

unilaterally improve their performance. By following (40)-(42), the pursuers lowest payoff is ys

regardless of what strategy the evaders implement. �

Remark 6: An important problem is to determine under which conditions the pursuers can

see a benefit by switching assignments. This is related to dispersal surfaces where another

assignment may be better than the current one. The existence of a dispersal surface perhaps may

be predicted from the start and the evaders will look into other choices. Another aspect may

include the existence of curved trajectories where the evaders try to avoid a dispersal surface.
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Also note that ys is not the value of this game but only a lower bound on the achievable payoff

for the pursuers

Remark 7: By relaxing the restriction regarding initial commitment it is also possible to extend

the region RP by cooperation and switch. For example, when initially an evader is able to reach

the border if only one pursuer is assigned to it, then two pursuers cooperate in order to decrease

the region of dominance of the evader so that he is intercepted farther away from the border.

This makes possible for one of them to eventually single handedly capture the evader while the

other one is free to switch its assignment and to pursue a different opponent.

VII. CONCLUSIONS

In this paper large scale pursuit-evasion games were considered and the joint optimal as-

signment of pursuers to evaders and optimal pursuit and evasion strategies in a multiplayer

engagement has been analyzed. The two-team multi-player scenario of border defense was

posed as a differential game. Unlike classical differential games, where only state feedback

strategies are sought, the results of this paper show how to solve this hybrid differential game

and provide the complete solution over the joint set of continuous time state feedback strategies

and discrete (binary) assignment variables. Simulation examples demonstrated the effectiveness

and robustness of the solution under optimal play and also when one or more players do not

follow their optimal strategies and/or optimal assignments. Finally, extensions to this game were

delineated emphasizing the importance of differential game theory to address pursuit-evasion

problems where assignment of pursuers to evaders is required.

VIII. APPENDIX

A. Border defense with 3P and 1E

Consider the scenario shown in Fig. 6.a where three pursuers try to capture an evader and

maximize the distance between the interception point and the closest point to the border. The

evader aims at minimizing the same terminal distance. As before, the border is the x-axis of the

Cartesian frame. In general, the interception point is given by the lowest point of the reachable

region of the evader. Such region is constructed using the corresponding segments of the three

Apollonius circles.

Two cases exist, the evader is captured by only one pursuer or it is captured simultaneously by

two pursuers. In the first case, the lowest point on the evader’s reachable region is given by a point

on an arc of the reachable region. In the second case, the lowest point is given by an intersection

of two Apollonius circles. For instance, in Fig. 6.a the interception point under optimal play is

I1,2 and only P1 and P2 capture the evader. P3 is not needed in this engagement. A particular
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Fig. 6. a) 3P1E scenario. b) Particular case: all three circles share the same intersection point

case is when the lowest point on the evader’s reachable region is given by the intersection of

the three circles. An example of such a case is shown in Fig. 6.b. However, one of the pursuers

is redundant since it can be removed from the scenario (or choose not to participate in pursuing

the evader) and the lowest point on the evader’s reachable region remains the same. In Fig. 6.b

either P1 or P3 can choose not to participate in the game and the interception point remains the

same. Hence, assignment of a third pursuer to a single evader does not improve the payoff for

the pursuer’s group; such assignments do not need to be considered.

In general, the interception point is the lowest point in the evader’s reachable region and such

point is unique. Thus, there are no singular surfaces and saddle point state feedback strategies

exist. The similar problem [36] where the cost/payoff functional is capture time, where it is

possible for the evader to be captured simultaneously by the three pursuers and the interception

point is located inside the reachable region of the evader. In this case, the evader maximizes

capture time by determining the point inside its reachable region that is equidistant (when all

pursuers have the same speed) to all pursuers.

B. Assignment problem

The multi-pursuer multi-evader assignment problem can be cast as a Linear Program (LP).

Consider the case where N =M , then the optimal assignments are obtained by maximizing the

following

J =
N
∑

i=1

N
∑

j=1

y
i,j
µi,j (43)
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subject to the constraints

N
∑

i=1

µi,j = 1, j = 1, . . . , N (44)

N
∑

j=1

µi,j = 1, i = 1, . . . , N (45)

where y
i,j

is given by (8) and µij = 1 if pursuer i is assigned to capture evader j and µij = 0

otherwise. The constraint in (44) requires evader j to be engaged by just one pursuer and (45)

requires pursuer i to be assigned to just one evader. Problem (43)–(45) can be solved using the

Hungarian algorithm [37].

If the pursuers commit to their initial assignment one can obtain saddle point state feedback

strategies and the Value of the game exists. The objective of dynamic reassignment is to take

advantage of evader’s errors but also of trajectories that may hit a dispersal surface. In this case

the Value of the game has not been found. however, evaders have a lower bound J for their

cost. One can also use the assignment algorithm when there are more pursuers than evaders. It

is possible and advantageous to assign up to two (but not more) pursuers to one evader. This

was considered in Section IV-B. The distances from interception points to the border need to be

calculated. If for example, N =M +1, one must calculate M(M +1)M ! distances. In general,

one must calculate
(

N

M

)

M !

(

N

N −M

)

=
M !N !

[(N −M)!]2(2M −N)

If N =M , one must calculate N ! distances, as expected. Now

1 ≤
N
∑

i=1

µi,j ≤ 2, j = 1, . . . , N

N
∑

j=1

µi,j = 1, i = 1, . . . , N
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