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Because only two mode pairs are observed, we designate the impu-
rity mode pair index as i = “imp” and the main mode pair index as
null (i = “”). We find that there is limited sensitivity to the parame-
ters ωTO,imp and ωLO,imp; therefore, they were set equal in the model
analysis (ωimp ¼ ωTO,imp ¼ ωLO,imp), as was done in Ref. 36 for
impurity-like modes detected in α-GaN thin films. In Fig. 4, the
impurity mode resonant frequency is labeled as ωimp and the main
mode as ωTO and ωLO. The occasional spike-like features in Ψ and
Δ (Fig. 4) are due to noise in low-reflectivity spectral ranges. For
the ThO2, the small silver contact area was found to be approxi-
mately 1% surface coverage of the sample. The analysis verifies that
both crystals are optically isotropic for the given temperature and
spectral range. No significant contribution from free charge carriers
is detected.

Step (ii): shown in Fig. 5 is the wavelength-by-wavelength
extracted Im{ε(ω)} [panel (a)] and Im{ε�1(ω)} [panel (b)] for
ThO2 (green dashed lines) and UO2 (blue dotted lines). The result-
ing best-match calculated ellipsometry data are virtually indistin-
guishable from the measured data and are, therefore, not included
in Fig. 4.

Step (iii): shown in Fig. 5 is the best-match model dielectric
function obtained using the FPSQ model (black solid lines),
obtained by direct comparison with the wavelength-by-wavelength

extracted dielectric function. Shown in Table I are the resulting fit
parameters for the main mode pair, DFT calculated parameters,
and previous results from reflectance spectroscopy. Our results are
similar to previous characterizations and our DFT calculations
(Fig. 6). For the experiments that report values of γTO and γLO,
it holds true that γTO , γLO. The anharmonicity indicated
by γTO = γLO is thought to arise from anharmonic coupling
between different phonon modes.13,14,37 The impurity mode pair
also exhibits anharmonicity since γTO,imp . γLO,imp. Best-match
model results for the impurity mode parameters in both crystals
are given in Table II. The anharmonic DFT calculations on ThO2

show γTO , γLO as well (Fig. 3). Since our DFT calculations do
not consider any impurity modes, this establishes that the anhar-
monicity in the main phonon mode pair in ThO2 is intrinsic to the
material and does not depend on the existence of an impurity-like
mode pair. However, the existence of impurities could of course
influence the phonon properties.

B. ThO2 variable temperature characterization

To further investigate ThO2, we performed ellipsometric mea-
surements as a function of temperature from 294 K to 648 K. The
spectra acquired at each temperature increment are analyzed

FIG. 4. Experimental (dashed lines) and best-match model calculated (black solid lines) ellipsometric data (Ψ, Δ) for single-crystal ThO2 [panel (a)] and UO2 [panel (b)].
The optical model parameters ωTO (solid vertical lines) and ωLO (dashed vertical lines) are the TO and LO frequencies, respectively, that correspond to the main IR-active
phonon modes. The parameter ωimp (¼ ωTO,imp ¼ ωLO,imp) (dashed-dotted vertical lines) corresponds to the small-amplitude IR-active impurity-like mode pair within the
reststrahlen band. Data are taken at three angles of incidence (Φa = 50�, 60�, and 70�) and at room temperature.
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calculations only include third order anharmonicity, while fourth
order contributions, if present, can in principle be of the same order
of magnitude as the third order one, and not necessarily with the
same sign, further complicating the picture. For ωimp(T), the trend is
not perfectly linear, contrary to what Eq. (3) predicts. This also indi-
cates other mechanisms besides the volume change (Fig. 8).

To investigate the mechanism of anharmonic phonon–phonon
scattering, we implement the Bose–Einstein based model for γ j(T)
employed in Ref. 13. Since γTO(T) and γLO(T) are reasonably linear
within our temperature range, the only term in the equation needed
is the one that corresponds to decay via cubic anharmonicities,16

γ j(T) ¼ aj

"
n

�
ωj(T)

2

�
þ 1
2

#
, (4)

where n(~ω) ¼ (e�h~ω=kBT � 1)
�1

is the phonon occupation number
evaluated at the average frequency ~ω ¼ (ωj(T)=2). The parameters
�h, kB, and aj are the reduced Planck constant, the Boltzmann
constant, and the cubic anharmonic parameter, respectively.

TABLE I. Best-match model results for the room temperature IR-active phonon mode parameters in single-crystal ThO2 and UO2. Error bars shown for this work correspond
to the 90% confidence interval within the best-match model data analysis. The low-frequency (static) dielectric constant εDC is calculated using the Lyddane–Sachs–Teller
(LST) relation.38

DFT
(this work) Ellipsometry (this work) Axe and Pettita Cherniab Schoenesc DeVetter et al.d Dolling et al.e

Parameter ThO2 UO2 ThO2 UO2 ThO2 UO2 UO2 UO2 UO2

ωTO (cm−1) 260 (282.8 ± 0.2) (280.5 ± 0.1) (278 ± 2) (279 ± 2) 283.4 (280 ± 2) (277 ± 3) (284 ± 4)
ωLO (cm−1) 554.8 (573.3 ± 0.5) (587.5 ± 0.2) (556 ± 4) (568 ± 4) 574.0 (578 ± 2) (571 ± 1) (557 ± 20)
γTO (cm−1) 9.0f (14.8 ± 0.5) (8.2 ± 0.2) 18.5 16.2 29.4 7.5 … …
γLO (cm−1) 18.4f (20.1 ± 1.1) (16.1 ± 0.5) … … 30.4 14 … …
ε∞ 4.79 (5.2 ± 0.2) (4.7 ± 0.1) 5.51 4.86 5.46 5.0 … …
εDC 21.9 21.1 20.4 21.31 19.71 22.36 21.5 … …

aReference 7: ωTO and ωLO from Kramers–Kronig analysis. γTO, ε∞, and εDC from best-match model parameter results using a Lorentz oscillator to render
the dielectric function behavior.
bReference 8.
cReference 9.
dReference 10.
eReference 39.
fFrom the anharmonic calculation at 300 K.

TABLE II. Best-match model results for the room temperature IR-active impurity-like
phonon mode parameters in single-crystal ThO2 and UO2. Error bars shown corre-
spond to the 90% confidence interval within the best-match model data analysis.

Ellipsometry (this work)

Parameter UO2 ThO2

ωimp (cm
−1) (394.3 ± 20.3) (419.6 ± 11.4)

γTO,imp (cm
−1) (143.5 ± 85.5) (511.9 ± 68.6)

γLO,imp (cm
−1) (133.8 ± 80.2) (443.7 ± 59.5)

FIG. 6. Resulting optical constants n and k for the room temperature analysis
of ThO2 and UO2 compared with other n and k values from previous UO2 char-
acterizations. Optical constants determined in this work [ThO2 (green lines) and
UO2 (blue lines)] were converted from the best-match model calculated dielec-
tric function shown in Fig. 5. For comparison, dispersion model-calculated
optical constants from Axe and Pettit7 (red lines) were included, as well as
values calculated from experimental reflectance spectra by DeVetter et al.10

(black lines). Dotted lines were chosen for n and dashed lines for k.
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Fitting Eq. (4) to γTO(T) and γLO(T) gives aTO ¼ (4:8 + 0:2) cm�1

and aLO ¼ (20:2 + 0:4) cm�1. Our anharmonic DFT calculated
results for γTO(T) and γLO(T) (Fig. 3) give similar fit parameter
results of aTO ¼ (5:7 + 0:1) cm�1 and aLO ¼ (21:3 + 0:6) cm�1.
A larger temperature range is used when fitting the DFT results
(0 K–800 K) than for our ellipsometry results (293 K–648 K).
However, the aTO and aLO for DFT are nearly identical when only
including data within the range of 293 K–648 K. We can then
conclude that the dominant decay mechanism can be described
as phonon–phonon interactions via cubic anharmoncities.17 It is
worth noting that Eq. (4) was introduced in Ref. 13 to describe the
decay of optical phonons into pairs of acoustic phonons via cubic
anharmonicities, while the anharmonic DFT code considers a more

complex decay mechanism involving triplets of phonons at arbitrary
wavevectors over a fine grid of q-points within the Brillouin zone (in
our case on a grid of 200� 200� 200 points). Equation (4),
however, describes thermal occupations of phonon states within the
Bose–Einstein statistics and hence should be applicable in either case.

Interestingly, γTO,imp(T) and γLO,imp(T) decrease with increas-
ing temperature. This dependence cannot be fit by the model in
Ref. 13 and is not typical for IR-active phonon modes in pure crys-
tals.40 However, the temperature-dependence of impurity-like
modes is not well understood. While the exact nature of the impu-
rity mode is unclear, it may be a result of subtle anharmonic
phonon–phonon interactions, as reported for MgO.43 This,
however, falls outside the scope of our current study.

FIG. 7. Results for ThO2 variable temperature characterization. Wavelength-by-wavelength extracted (broken lines) and best-match model calculated (solid black lines)
Im{ε(ω)} [ panel (a)] and Im{ε�1(ω)} [panel (b)] for single-crystal ThO2 at 293 K (green) and 648 K (red). To make the impurity mode features visible, Im{ε(ω)} and
Im{ε�1(ω)} are also shown on a logarithmic scale [inset plots in panels (a) and (b)]. The solid black lines in panels (a) and (b) show the best-match model results of
Eq. (2) to the wavelength-by-wavelength extracted Im{ε(ω)} and Im{ε�1(ω)}. The resulting FPSQ model parameters for all measured temperatures are shown in panels
(c)–(e). The low-frequency (static) dielectric constant εDC is calculated using the Lyddane–Sachs–Teller (LST) relation.38 The solid black lines in panel (c) show the best-
match model results using Eq. (3) to match ωj (T ). The solid black lines in panel (d) show the best-match model using Eq. (4) for γ j (T ).
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V. CONCLUSION

In summary, IRSE experiments and DFT calculations were
used to study the IR-active phonon modes in ThO2 and UO2.
Their dielectric functions are extracted from the ellipsometric data
in order to determine the phonon mode resonant frequency and
broadening parameters. In agreement with previous results, we find
γTO , γLO for both crystals, which is indicative of lattice anharmo-
nicity due to anharmonic interactions between phonon modes. For
ThO2, additional ellipsometric measurements were performed at
elevated temperatures. For the main TO resonance, our experimen-
tally determined results for the mode Grüneisen parameter are in
excellent agreement with previous DFT calculations, which suggests
that the temperature-induced change in the TO resonant frequency
is due to volume expansion of the crystal lattice. However, the
mode Grüneisen parameter for the main LO resonance does not
exactly match the DFT predictions. This indicates that the
temperature-dependence of the LO resonant frequency is deter-
mined by additional factors besides just a volume change. By
implementing the Bose–Einstein based model in Ref. 13 to describe
the broadening’s temperature-dependence, we find that the decay
mechanism of the main mode’s IR-active phonons can be described
as cubic anharmonicity. For the detected impurity-like mode pair,
the broadening parameters decrease with increasing temperature.
This behavior is not predicted by the Bose–Einstein model, and
more investigation is needed to understand temperature-
dependence of the impurity-like modes.
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