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H I G H L I G H T S

• Major depressive disorder impacted
17.7 million Americans in 2018.

• PM2.5 indoors may impact depression,
potentially 0.07%–6.1% (2.7%) of cases.

• Increasing HVAC filter efficiency has
minor reductions in depressive disor-
ders.

• The model could estimate PM2.5 expo-
sure influence on othermental illnesses.

• The model could be modified for other
pollutants or building factors.
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Recently published exploratory studies based on exposure to outdoorfineparticulates, defined as particleswith a
nominalmean diameter less than or equal to 2.5 μm (PM2.5) indicate that the pollutant may play a role inmental
health conditions, such as major depressive disorder. This paper details a model that can estimate the United
States (US) major depressive disorder burden attributable to indoor PM2.5 exposure, locally modifiable through
input parameter calibrations. By utilizing concentration values in an exposure-response function, alongwith rel-
ative risk values derived from epidemiological studies, the model estimated the prevalence of expected cases of
major depressive disorder inmultiple scenarios.Model results show that exposure to indoor PM2.5might contrib-
ute to 476,000 cases of major depressive disorder in the US (95% confidence interval 11,000–1,100,000), approx-
imately 2.7% of the total number of cases reported annually. Increasing heating, ventilation, and air conditioning
(HVAC) filter efficiency in a residential dwelling results in minor reductions in depressive disorders in rural or
urban locations in the US. Nevertheless, a minimum efficiency reporting value (MERV) 13 filter does have a ben-
efit/cost ratio at or near one when smoking occurs indoors; during wildfires; or in locations with elevated out-
door PM2.5 concentrations. The approach undertaken herein could provide a transparent strategy for
investment into the built environment to improve the mental health of the occupants.

Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The field of mental health research is expanding (ScienceDirect, n.
d.), with good reason, as one in five Americans adults have a diagnosis
ofmental illness (Merikangas et al., 2010). Onemental illness,major de-
pressive disorder, impacted 17.7 million Americans in 2018 (2018
NSDUH Annual National Report | CBHSQ Data, n.d.) and globally was
the third leading cause of disability in 2017 (Global Burden of Disease
Study 2017 (GBD 2017) Burden by Risk 1990–2017 | GHDx, n.d.). Previous
research has identified risk factors for mental health disorders to in-
clude genetics (Silventoinen et al., 2010), environment factors
(Kendler and Baker, 2007), and social determinants (Allen et al.,
2014). Another potential contributor to negative mental health out-
comes might be found in the built environment (Hoisington et al.,
2019). Risk of a negative health outcome is often a function of exposure
time, and in the case of the built environment, Americans spend 93% of
their time indoors (Leech et al., 2002) and 70% of the time in their resi-
dence (Klepeis et al., 2001).

Major depressive disorder, also colloquially known as clinical de-
pression, is characterized by a wide variety of symptoms that cause sig-
nificant distress and impairment that affects individuals for a sustained
period of time (American Psychiatric Association, 2013). Symptoms
may consist of a persistent sad mood, loss of pleasure derived from or
interest in hobbies or routinely pleasurable activities, a poor evaluation
of the past, present, and future and of oneself, decreased energy, sleep,
appetite or weight changes, and reduced functioning (American Psychi-
atric Association, 2013). Depression can co-occur with other mental
health conditions/symptoms, including anxiety and posttraumatic
stress disorder (Hirschfield, 2001; Spinhoven et al., 2014). Depressed
individuals have higher odds of dying by suicide as compared to non-
depressed individuals (Hawton et al., 2013).

Exposure to fine particulates, defined as particles with a nominal
mean diameter less than or equal to 2.5 μm (PM2.5), is a general health
concern, providing the largest contributions to global mortality and
morbidity due to air pollution (Hoek et al., 2013; Chen et al., 2008).
PM2.5 is theorized to influence depression and other mental health out-
comes through two biological mechanisms, chronic inflammation and
oxidative stress (Power et al., 2015). Chronic inflammation is an
established contributor to mental health disorders (Anisman and
Hayley, 2012; Raison et al., 2006; Bakunina et al., 2015; Rohleder,
2014;Miller andRaison, 2016), and PM2.5 is associatedwith aggravation
of chronic inflammation (Block and Calderón-Garcidueñas, 2009;
Calderón-Garcidueñas et al., 2009). Inflammatory cytokines and other
biological indicators of depression aremore prevalent in individuals liv-
ing in proximity to higher outdoor PM2.5 concentrations (Block and
Calderón-Garcidueñas, 2009; Calderón-Garcidueñas et al., 2009). Air
pollutants such as PM2.5 also can increase oxidative stress (Pham-Huy
et al., 2008; Fournier et al., 2017). Specifically, free radicals associated
with oxidative stress are highly reactive, producing harmful by-
products and tissue damage (Conner and Grisham, 1996). Oxidative
stress has previously been connected to mental health outcomes, in-
cluding depression (Black et al., 2015). Exploratory studies between
outdoor PM2.5 concentrations and mental health outcomes, including
depression, have been noted (Power et al., 2015; Pun et al., 2017;
Szyszkowicz et al., 2009; Kim et al., 2010; Yue et al., 2020; Lee et al.,
2019). Specifically, long-term exposure to elevated PM2.5 concentra-
tions outdoors may increase the risk of depression by approximately
10% (95% confidence intervals = 2.3%–18.9%) (Braithwaite et al.,
2019) and contribute to an acute depressive response in select individ-
uals (Szyszkowicz et al., 2009).

Outdoor particles enter into the built environment and become in-
door PM2.5 (MacNeill et al., 2014; Qing et al., 2005; Weisel et al., 2005;
Ji and Zhao, 2015) this concept has been applied in previous prospective
studies that have correlated depression with outdoor concentrations of
PM2.5 measured at central outdoor monitoring stations (Braithwaite
et al., 2019) that do not have spatial resolution (Chambliss et al.,

2020). Central filtration systems can abate indoor PM2.5 concentrations
(Brown et al., 2014; Bräuner et al., 2008; Montgomery et al., 2015; Fisk,
2013; Stephens and Siegel, 2013; Azimi et al., 2014), resulting in
disease-related treatment cost avoidance (Fisk and Chan, 2017a; Zhao
et al., 2015; Azimi and Stephens, 2013). The purpose of this paper was
to develop an epidemiological model, using a mass-balance approach
for PM2.5 concentrations, that estimates the potential magnitude of
the burden of indoor PM2.5 and depression. A secondary focus of this
paper was to determine the influence that different levels of filtration
had upon the estimated cases of major depressive disorder. This is the
first known use of an exposure-responsemodel to estimate cases of de-
pression resulting from indoor PM2.5 exposure.

2. Methodology

This paper combines an epidemiological exposure-response func-
tion and indoor mass balance models to estimate the potential major
depressive disorder impacts of indoor PM2.5 exposure within a residen-
tial setting. To account for spatial variability of model input parameters
in the US, Monte Carlo simulation was used to sample from known dis-
tributions of residential housing characteristics. Calculated indoor con-
centrations inform an exposure-response model to estimate the
number of cases of major depressive disorder. Furthermore, an eco-
nomic analysis was performed to identify the tradeoffs between the
cost of various minimum efficiency reporting value (MERV) filter tech-
nologies, and major depressive disorder treatment cost avoidance. A
summary schematic of the process used in the present paper is shown
in Fig. 1. The modeling process includes eight different scenarios, repre-
sentative of a range of outdoor PM2.5 concentrations and indoor emis-
sions: (1) US average; (2) New York City; (3) Cincinnati;
(4) Sacramento; (5) homes with indoor smokers; (6) homes near wild-
fires; (7) extreme case 1; and (8) extreme case 2. No parameters were
changed between model runs, other than the outdoor PM2.5 concentra-
tions and the indoor emissions in the smoking scenario. That is, all other
model parameters are characteristic of nationally averaged US housing
parameters. Therefore, these different scenarios represent the esti-
mated depressive outcomes to occur if those conditions were present
in the US.

2.1. Indoor air modeling

Amass balance approach was utilized to calculate the concentration
of PM2.5 within a typical US residence (Fisk and Chan, 2017a), as shown
in Eqs. (1) and (2). Airwithin the homeswas assumed to bewell-mixed,
and PM2.5 concentrations were assumed to be steady state. All homes
were assumed to utilize a forced-air heating, ventilation, and air condi-
tioning (HVAC) system, as this is currently themost widely used system
in the US (Residential Energy Consumption Survey (RECS) - Analysis and
Projections, n.d.).

C ¼ Co
P λV

λV þ λD þ λF
þ E

λV þ λD þ λFð ÞV ð1Þ

where:

C = resulting concentration of PM2.5 (μg/m3)
Co = the ambient air concentration of PM2.5 (μg/m3)
P = penetration factor (unitless)
λV = infiltration ventilation rate (h−1)
λD = rate of particle removal by deposition (h−1)
λF = rate of particle removal by filtration (h−1)
E = total emissions of PM2.5 from indoor sources (μg/h)
V = building volume (m3).
Discrete values for the factors in Eqs. (1) and (2) are summarized

in Table 1. Ambient air concentrations were fit to lognormal distri-
butions, calculated from mean and percentile values from 2018

W.L. Taylor, S.J. Schuldt, J.D. Delorit et al. Science of the Total Environment 756 (2021) 143858

2



(US EPA O, n.d.-a). The US scenarios all utilize data collected by the En-
vironmental Protection Agency; this information aswell as that about the
other scenarios is referenced in the supplemental information. Cooking
and smoking were the only sources of indoor emissions considered in
the analysis. Cooking emissions were averaged over the course of a day
in a normal distribution (Ozkaynak et al., 1996). Smoking was only con-
sidered in one of the eight case studies. Home volumewas assumed to be
normally distributed (Fisk and Chan, 2017a). Infiltration ventilation rate
was fit to a lognormal distribution (Murray and Burmaster, 1995). Pene-
tration factor and rate of particle removal by depositionwere determined
from residential studies (Ozkaynak et al., 1996; Williams et al., 2003).
Penetration factor was determined using a cropped normal distribution,
with an upper bound of one. The rate of particle removal by deposition
was assumed to be normally distributed.

The rate of particle removal by filtration (λF) in the HVAC system
was calculated using Eq. (2) (Fisk and Chan, 2017a). Duty cycle was a
cropped normal distribution, with a minimum bound of zero (Fazli
and Stephens, 2018). The flow rate through the residential HVAC

system was represented by a lognormal distribution, with distribution
parameters obtained from two studies of residential housing character-
istics (Jumpet al., 2011; Stephens et al., 2011). Filter particle removal ef-
ficiency was assumed constant for each MERV rating (Brown et al.,
2014), ignoring efficiency changes with increased dust buildup over
time (Stephens and Siegel, 2011).

λF ¼ DHεL ð2Þ

where:

D = duty cycle (unitless)
H = airflow rate through HVAC system, divided by indoor volume
(h−1)
εL = particle removal efficiency of filter in use (unitless).
Monte Carlo simulation methods were utilized to calculate concen-

tration values and account for variability in the parameters used in
Eqs. (1) and (2). First, distributions were created from the mean and

Fig. 1. Description of modeling process with input and output parameters. Blue boxes are for each major calculation, gray arrows are primary outputs.

Table 1
Input parameter values and reference sources for Eqs. (1), (2), and (3).

Parameter (variable, units) Values (mean, SD) Source

Outdoor air (Co, μg/m3) Varies by scenario (US EPA O, n.d.-b; Henderson et al., 2012; Sharma and Mandal, 2017; Zíková et al., 2016)
Emissions (E, μg/m3) 2.62, 1.11 (Ozkaynak et al., 1996)
Building volume (V, m3) 482, 28.68 (Fisk and Chan, 2017a)
Penetration Factor (P, unitless) 0.97, 0.06b (Ozkaynak et al., 1996; Williams et al., 2003)
Infiltration ventilation rate (λV, h−1) 0.53, 2.3a (Murray and Burmaster, 1995)
Rate of particle removal by deposition (λD, h−1) 0.39, 0.08 (Ozkaynak et al., 1996; Williams et al., 2003)
Rate of particle removal by filtration (λF, h−1) Variable (Fisk and Chan, 2017a)
Duty cycle (D, unitless) 0.153, 0.051c (Fazli and Stephens, 2018)
Airflow through residential HVAC system (Q, m3/s) 4.36, 1.44a (Jump et al., 2011; Stephens et al., 2011)
Particle removal efficiency of filter in use (εL, unitless) Variable (Brown et al., 2014)
Percent of day spent within residence (F, unitless) 0.70 (Klepeis et al., 2001)
Annual number of major depressive disorder cases (m0) 17,700,000 (2018 NSDUH Annual National Report | CBHSQ Data, n.d.)
Coefficient of exposure-response function (β, unitless) 0.009691 (Gu et al., 2019)
Median PM2.5 concentration of residence (Δx, μg/m3) Varied by scenario Eq. (1)

Abbreviations: HVAC, heating, ventilation, and air conditioning; PM2.5, particulate matter2.5, defined as particles with a nominal mean diameter less than or equal to 2.5 μm.
a Geometric mean and standard deviation.
b Maximum of 1.
c Minimum of 0.
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standard deviation values for each parameter. Next, 100,000 concentra-
tions were calculated using Eqs. (1) and (2), with random values se-
lected from the distributions of each variable. Finally, the calculated
concentrations were used to estimate major depressive disorder out-
comes in the exposure-response function, detailed below. This process
was replicated for each filtration system and each scenario, to under-
stand the influence that filtration has on the estimated prevalence of
major depressive disorder.

2.2. Exposure-response model

To quantify the number of major depressive disorder cases that can
be attributed to indoor PM2.5 exposure, an exposure-response function
was utilized, Eq. (3) (Boulanger et al., 2017).

Δy ¼ F mo 1−e −β∗Cð Þ
� �

ð3Þ

where:

Δy= number of adults diagnosed with a major depressive disorder
as a result of indoor PM2.5 exposure (incidences year−1)
F=average percent of day that the population spends in a residence
(unitless)
m0 = the number of adults diagnosed with major depressive disor-
der (incidences year−1)
β= coefficient of exposure-response function, selected from differ-
ent epidemiology study results. β= log(RR10)/10, with RR10 describ-
ing the relative risk for an increase of 10 μg/m3 in PM2.5

concentration (unitless)
C = the median PM2.5 concentration of the residence, calculated
using the results of Eqs. (1) and (2) (μg/m3).
It was assumed that US adults spend 70% of their day within their

residence (Klepeis et al., 2001). The number of episodes of depression
in the US was based on reports for adults (over 18 years old) in 2018
(Results From the 2017 National Survey on Drug Use and Health:
Detailed Tables, n.d.). Beta values were converted from odds ratio values
developed from epidemiological studies, summarized in a meta-
analysis (Braithwaite et al., 2019), which included long-term odds
ratio of 1.102 for depression cases associated with PM2.5, with a 95%
confidence interval of 1.023–1.189. Many applications of an exposure-
response function utilize a relative risk instead of an odds ratio. Herein
the relative risk and odds ratio can be considered equivalent since the
baseline prevalence for depression is low (Braithwaite et al., 2019).
The median PM2.5 concentrations were calculated based on
Eqs. (1) and (2). Some exposure-response studies utilize a baseline ex-
posure value for concentrations, assuming that no adverse health effects
occur below a select concentration (Boulanger et al., 2017; Cohen et al.,
2017). However, the present analysis assumes a baseline exposure
value of zero, practically meaning that any concentration could have
an adverse health effect (Crouse et al., 2012; Pinault et al., 2016;
Roman et al., 2008).

2.3. Economic analysis

To determine the value of indoor air filtration as amethod to remove
PM2.5 for a health benefit, major depressive disorder treatment cost
avoidance was estimated. Downscaling the estimated direct and indi-
rect cost of depressive disorders in the US to individual cases resulted
in an average annual cost of $14,926 (2017 dollars) per incidence of
major depressive disorder (Greenberg et al., 2015). Multiplying the
per-case cost by the estimatednumber of cases for each scenario yielded
a total scenario cost. To determine the value of filtration, particulate
matter filtration costs for filters with different efficiencies were com-
pared to the potential cost avoidance of the reduced numbers of major
depressive disorder cases, using Eq. (4). Hereafter, cost avoidance is

referred to as benefits, to conform with benefit-to-cost ratio (BCR)
methodology, and to avoid confusion between costs of filtration and
cost avoidance.

FC ¼ Fi
S

ð4Þ

where:

FC= annual cost of filter implementation (US dollars/capita)
Fi = annual operating cost of filter (US dollars)
S = average household occupancy (1.98 people over 18 years old/
household) (Bureau UC, n.d.)
The total cost of filtration assumes every house in the US has the

same filter. Filter operating costs were taken from (Brown et al.,
2014). The treatment cost avoidance was calculated with Eq. (5).

B ¼ $MDD−$MDDið Þ
N

ð5Þ

where:

B = benefit of filtration implementation, per person
$MDD = baseline cost of major depressive disorder attributable to
indoor PM2.5 exposure
$MDDi = cost of major depressive disorder attributable to indoor
PM2.5 exposure with different filtration implementations
N = US population over 18 years old (255,190,602)
Calculating both costs and benefits of filtration allows a BCR to be

calculated. The baseline cost of major depressive disorder attributable
to indoor PM2.5 exposure ($MDD) assumes that the home has no filter
on the HVAC system, allowing any PM2.5 to recirculate within the
home without reduction. The baseline cost value is calculated using
Eqs. (1) and (2), with the particle removal efficiency (εL) set to zero.
The resulting concentration is entered into Eq. (3) to estimate the num-
ber of major depressive disorder cases, and then multiplied by the cost
of each case of depression ($14,926), ultimately representing the base-
line cost ofmajor depressive disorder attributable to indoor PM2.5 expo-
sure ($MDD). Repeating this process for each individual MERV rating
resulted in the cost of major depressive disorder attributable to indoor
PM2.5 exposure with different filtration implementations ($MDDi). The
difference between each value and the baseline value, divided by the
adult US population (N), results in a benefit value per person. All analy-
sis was conducted in R (version 3.6.0) (R Development Core Team,
2011) and visualization was completed with the ggplot2 package
(Wickham, 2011). R code used for the models and figures is provided
in the supplemental information to enable further work by others in
this field.

3. Results

The modeled residential PM2.5 concentrations were calculated using
Eqs. (1) and (2), in scenarios of different MERV filter use across the US
and in specific US cities (Fig. 2A). Resulting concentrations (see Supple-
mental Figs. 1–8) and the median levels in the present model were
lower than estimated values in other studies modeling indoor PM2.5

(Fisk and Chan, 2017a; Azimi and Stephens, 2018), and measured con-
centrations in US residential environments (Qing et al., 2005; Walker
et al., 2019).

The modeled concentrations for alternate scenarios (indoor
smoking, wildfires, and extreme scenarios) of different MERV filters
are shown in Fig. 2B. The wildfire scenario shows the highest indoor
concentrations of any scenario. Measurements of PM2.5 emissions
from wildfires vary (Henderson et al., 2012; Rittmaster et al., 2006;
Van Donkelaar et al., 2011), and, notably, the selected concentrations
are high. Wildfires aside from the incident modeled in this analysis
may not have the same concentration levels and impact on indoor
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PM2.5 and, subsequently, health effects. The extreme case scenarios, as
expected, show modeled indoor concentrations substantially higher
than any of the other scenarios aside from thewildfire scenario. The ex-
treme case scenarios use ambient PM2.5 concentrations from large inter-
national cities, and as such are unlikely to be representative of
conditions in the US. Certain locations close to high industrial activity
or vehicular traffic may experience these levels of ambient PM2.5.

The use of HVACfilters reduced the indoor concentrations of PM2.5 in
the US city scenarios from a no-filter condition by an average of approx-
imately 8%, 18%, 24%, 31%, and 34%, for MERV 7, MERV 8A, MERV 8B,
MERV 12, and MERV 13, respectively (Fig. 2A). Similar results were ob-
served in the alternate scenarios; namely, filters reduced the modeled
concentrations of PM2.5 in alternate scenarios by an average of approx-
imately 9%, 18%, 22%, 26%, and 32%, for MERV 7, MERV 8A, MERV 8B,
MERV 12, and MERV 13, respectively (Fig. 2B). Studies of filtration effi-
ciency vary in estimates of PM2.5 removedwhen passing through the fil-
ter of the HVAC system (Azimi et al., 2014; Azimi et al., 2016), but they
are consistent in the determination that increasingMERV ratings lowers
indoor concentrations of PM2.5.

Fig. 3A and B display the estimated incidences of major depressive
disorder per million people, attributable to residential PM2.5 exposure.
The estimated cases of major depressive disorder in the model of the
US average scenario are approximately 2.7% of the total number of
major depressive disorder cases in the US, annually. Fig. 4 highlights
the results of BCR calculations for implementation of different filtration
systems in each scenario. BCR was generally higher in scenarios with
higher indoor PM2.5 values. Moreover, the filter with MERV rating 8B
had the highest BCR among all scenarios, due to the balance of low
price and relatively high removal efficiency.

For a direct comparison of the use offilters to impact the incidence of
major depressive disorder, the same model parameters were used for
each scenario. A comparison was made on the percent reduction in es-
timated incidence of major depressive disorder between no filter rela-
tive to MERV 7 in the US (Fig. 5A), and alternate scenarios (Fig. 5C),
and then again fromMERV 7 relative toMERV 13 in US (Fig. 5B), and al-
ternate scenarios (Fig. 5D). The percent reduction in estimated inci-
dence of major depressive disorder in the US cities scenario from zero
filtration relative to a MERV 7 was independent of the outdoor concen-
tration of PM2.5 in the model and the 90th percentile was at 25.7% re-
duction in cases of major depressive disorder. In contrast, reduction
fromMERV 7 toMERV 13 in US scenarios has a less skewed distribution
in the percent reduction, with the 90th percentile at 68.0% reduction in
cases of major depressive disorder. The alternate scenario with elevated
outdoor PM2.5 concentrations (i.e. wildfires) did have some differences
due to outdoor concentration levels.

4. Discussion

Indoor PM2.5 concentrations were estimated using a mass balance
approach, varying building parameters with Monte Carlo simulations.
The resultant concentrations then provided an estimate of expected
cases of major depressive disorder in an epidemiological exposure-
response function. The BCR was based on a comparison of expected
treatment costs avoided and the cost of residentialfilters, in order to de-
terminewhichfilter provided the best return on investment. Finally, the
percent reduction inmajor depressive disorder was estimated based on
increased filter efficiency. The analysis provides a framework for re-
searchers to include major depressive disorder and other mental

Fig. 2.Modeled indoor PM2.5 concentrations across filters for A) United States cities and B) indoor smoking, wildfires, and extreme cases. Abbreviations: Avg, average; MERV, minimum
reporting efficiency reporting values; NYC, New York City; US, United States.
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illnesses in burden of disease studies for indoor air pollutants such as
PM2.5 or other indoor air pollutants with established odds ratios.

The model estimates for concentrations of indoor PM2.5 might be
lower than previously reported, providing a conservative estimate for
the incidence of major depressive disorder due to indoor pollutants in
the present study. For example, the model estimates for the US average
indoor PM2.5 scenario with a MERV 7 filter calculated an indoor to out-
door (I/O) ratio of 0.37. This was lower than values reported in a meta-
analysis of IO ratios (Chen and Zhao, 2011) (mean 0.92). The smoking
scenario with a MERV 7 filter installed resulted in a median indoor
PM2.5 concentration of 10.33 μg/m3. Two studies measuring indoor
PM2.5 concentrations in smoking households found median concentra-
tions of 31 μg/m3 (Semple et al., 2015) and 27.7 μg/m3 (Wallace et al.,
2003). However, the estimated outdoor concentrations of PM2.5 in the
US have been declining since 2000, which might have some influence
on the comparisons (US EPA O, n.d.-b).

The impact of filter efficiency on the incidence of major depressive
disorder was dependent on indoor emissions. It was observed that in-
creases in filter efficiency had a higher impact on PM2.5 concentrations
in the smoking scenario compared to other scenarios, due to the emis-
sion of indoor PM2.5 as opposed to contamination of indoor air by out-
door air, which is reduced by the build envelope. The American
Society of Heating, Refrigeration, and Air Conditioning Engineers
(ASHRAE) recommends at least a MERV 7 filter in residential buildings
(American Society of Heating Refrigerating and Air Conditioning Engi-
neers, 2019). However, in 2015 ASHRAE published new recommenda-
tions for residential units to install MERV 13 filters or higher in
guideline 24-2015. The model estimates presented here reinforce that
guidance, suggesting a change from a MERV 7 to a MERV 13 filter

could create a meaningful difference in reducing the incidence of
major depressive disorder due to elevated PM2.5 levels in indoor air.

While it does not appear there are any other studies estimating the
impact that indoor PM2.5 has upon depressive outcomes, comparisons
tomorbidity andmortality studies show similar trends to what was ob-
served in this study. Specifically, a positive relationship exists between
PM2.5 concentrations and health outcomes (Cohen et al., 2017). A re-
cently published meta-analysis of PM2.5 exposure and mental illness
(Braithwaite et al., 2019) included a population attributable fraction
(PAF) model. The model estimated that the United Kingdom's rate of
depression could be reduced by 2.5%, if the ambient PM2.5 concentration
dropped from 12.8 μg/m3 to the World Health Organization's recom-
mended limit of 10 μg/m3 (Krzyzanowski and Cohen, 2008). However,
the PAFmodel does not account for the lower levels of PM2.5 concentra-
tions experienced in indoor environments, as shown in this analysis,
suggesting that the 2.5% reduction could be an overestimate. The caveat
to that statement is when indoor emissions of PM2.5 are present at
meaningful levels (e.g., smoking).

Although the BCRs are below 1.0 for all of the US city scenarios, this
analysis does not include the benefit of filtration for the purposes of
avoiding any physical diseases associated with PM2.5, such as asthma
(Brown et al., 2014), lung cancer (Zhao et al., 2015), or chronic obstruc-
tive pulmonary disease (MacIntosh et al., 2010), suggesting that these
are again conservative estimates. Since these BCRs are calculated
based on median concentration values, variation in actual scenarios
exist, with higher BCRs in some homes, and lower BCRs in others. For
sensitive individuals, alternative means of filtration, used in addition
to HVAC filters, may be an effective solution. Alternativemeans of filtra-
tion include portable air cleaners (Fisk, 2013; Spilak et al., 2014; Cox

Fig. 3. Incidences per million people of major depressive disorder attributable to indoor PM2.5 exposure across filter systems for A) United States cities and B) alternate scenarios. Abbre-
viations: Avg, average; MDD, major depressive disorder; MERV, minimum reporting efficiency reporting values; NYC, New York City; US, United States.
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et al., 2018), activated carbon filters (Kabrein et al., 2017; Yang et al.,
2017), or even green walls (Perini et al., 2017; Pettit et al., 2017). An
economic analysis of filtration methods for reducing PM2.5 found that
portable air filters had a mean BCR between 7.7 and 13, and provided
more of a reduction in expected mortality rates than just HVAC filters
alone (Fisk and Chan, 2017b).

Chronic inflammation and oxidative stress are both thought to con-
tribute to depression and other mental health outcomes, and air pollut-
ants other than PM2.5, such as volatile organic compounds andmold, are
associated with both of these mechanisms (Hope, 2013; Ratnaseelan
et al., 2018; Kim et al., 2011; Grešner et al., 2016). PM2.5 is also shown
to influence gutmicrobiome profiles (Fitch et al., 2020), which some lit-
erature proposes are connected to mental health outcomes (Lowry
et al., 2016; Hoisington et al., 2015). This introduces the possibility
that poor indoor air quality could be contributing to more cases of de-
pression than were estimated with this model. Although PM2.5 com-
prises the bulk of disease research due to poor air quality (Chen et al.,
2008), it cannot be ruled out that other pollutantsmay increase the bur-
den of disease. Future models estimating depressive risk due to indoor
pollutants should seek to include other pollutants in addition to PM2.5.

Sensitivity analysis was performed on the odds ratio, the variable
parameter in themodel thatwas not considered in theMonte Carlo sim-
ulations. Maintaining the other parameters in the exposure-response
function constant, the odds ratio has a strong influence on the predicted
incidence of major depressive disorder in themodel. The confidence in-
terval bounds from the odds ratio (1.023, 1.189) in average US

concentrations with a MERV 7 filter produced an estimated number of
major depressive disorder cases of 122,791 and 904,718, respectively.
A difference of thatmagnitude in themodel estimates highlights the ur-
gent need to refine the relationship between PM2.5 and depression in
large population studies.

Themodel described in this paperwas created to be adaptable to es-
timate major depressive disorder outcomes within other populations.
To be as accurate as possible, mass balance input parameter distribu-
tions would need to be created for the population set to be analyzed.
That is, estimates would need to be considered on parameters in
Table 1 that are specific to the population of interest. Additionally, the
total number of major depressive disorder cases within the region
would replace the value used in this paper (17,700,000), and the popu-
lation of the region would replace the value used in this paper
(255,190,602). Finally, costs of residential air filters could be sourced
for the area in order to create accurate BCR results.

4.1. Limitations

As this is the first known epidemiological model connecting indoor
PM2.5 concentrations and depression,we acknowledge there are several
limitations in the present study. First, the relationship between PM2.5

exposure and depressive outcomes is not clearly defined yet. A limited
number of meta analyses of the relationship between PM2.5 and depres-
sion are currently published, yet have similar results in their pooling of
odds ratios from the available epidemiological studies, with values of

Fig. 4.Benefit/cost ratios (BCRs) forfilter implementation inA)US Scenarios and B) Alternate Scenarios. Abbreviations: Avg, average;MDD,major depressive disorder;MERV=minimum
reporting efficiency reporting values; NYC, New York City; US, United States.
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1.10 (Braithwaite et al., 2019) and 1.12 (Fan et al., 2020). The mean
number of studies analyzed in these meta analyses was 8.5. In compar-
ison, a brief search of the more well-researched relationship between
PM2.5 and lung cancermortality yielded fourmeta analyses, with values
of 1.11 (RR) (Cui et al., 2015), 1.11 (RR) (Huang et al., 2017), 1.14 (OR)
(Chen et al., 2015), and 1.09 (RR) (Hamra et al., 2014). The mean num-
ber of studies analyzed in those meta analyses was 12.25. Furthermore,
differences in physiology between populations could influence the rela-
tionship between PM2.5 and depression. At the time of this writing, no
studies exist that attempted to quantify this relationship in the US pop-
ulation. As ORs become more established, the methods used in this
paper (and code provide in the Supplementary Material) could be
reanalyzed for PM2.5 and depression, or other conditions as desired.

While the relationship between PM2.5 andmajor depressive disorder
may not be as robust as that between PM2.5 and physical health, it is be-
coming increasingly clear there exists a relationship between the two
variables. Establishing a causal relationship between PM2.5 exposure
and depressive outcomes via an exposure-response function can be
accomplished through additional epidemiological studies. All PM2.5 ex-
posure was assumed to result in the samemagnitude of depressive out-
comes, regardless of source-specific PM2.5 and evidence exists to
suggest that this is a reasonable assumption (Cohen et al., 2017).

PM2.5 levels were assumed as a snapshot in time, but it is acknowl-
edged that while PM2.5 concentrations have been decreasing across
the US since 2000, they are increasing worldwide (Butt et al., 2017),
and may remain elevated in the US due to scenarios such as proximity

to wildfires or environmental regulation changes. Approximately 90%
of new homes in the US are constructed with central forced air systems,
but the total number of homeswith central forced air systems are lower
across the entire nation (Agency UEI, 2018). The model for calculating
indoor PM2.5 concentrations will not be accurate for homes without
central forced air systems, addingmore uncertainty to the final estimate
of the calculated depression cases. In addition, other models of indoor
air quality calculate duty cycle based on site location and typical heating
and cooling loads. This analysis forgoes this method and represents the
variability in duty cycle values with the Monte Carlo sampling. Due to
the analysis being applied to an annual period, the duty cycle was
more accurately represented as a distribution. Cooking and smoking
were the only sources of indoor PM2.5 considered in this analysis, due
to their well-documented emission values (Ozkaynak et al., 1996;
Semple et al., 2015;Wallace et al., 2003; Hu et al., 2012). Other activities
may also contribute to indoor PM2.5 concentrations, such as cleaning or
occupant movement (Ferro et al., 2004). However, these activities were
considered too variable to include in this analysis. As a result, the calcu-
lated PM2.5 concentrations and major depressive disorder estimates
may be a conservative estimate, and not representative of all PM2.5

sources potentially present in the indoor environment.
PM2.5 composition may vary based on source apportionment (Titos

et al., 2014; Mazzei et al., 2008; Pey et al., 2009), and estimates of mor-
bidity and mortality assume that all PM2.5 provides the same level of
toxicity (Cohen et al., 2017). Themodel described in this paper assumes
that the ambient PM2.5 and the indoor generated PM2.5 influence

Fig. 5. Percent reduction in estimated incidence of major depressive disorder due to PM2.5 in A) US cities, based on PM2.5 concentrations in householdswith no filter relative to households
using a MERV 7 filter, B) US cities, based on PM2.5 concentrations in households with a MERV 7 filter relative to households with a MERV 13 filter, C) alternate scenarios based on PM2.5

concentrations levels from households with no filter relative to households with a MERV 7 filter, D) alternate scenarios based on PM2.5 concentrations in households with a MERV 7 filter
relative to a MERV 13 filter. The y-axis “Count” indicates how many values of the results fall into each corresponding bin. Abbreviations: Avg, average; MDD, major depressive disorder;
MERV, minimum reporting efficiency reporting values; NYC, New York City; US, United States.
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human physiology in the samemanner. Current literature suggests that
there is no relationship between PM2.5 composition and toxicity (Stanek
et al., 2011), and that magnitude of exposure is the sole predictor for
health effects. However, it is possible that composition of PM2.5 may af-
fect major depressive disorder outcomes in a manner different from
physical mortality and morbidity, changing the estimation of the inci-
dence of major depressive disorder described within this analysis. Mi-
crobial components and endotoxins are present in some sources of
PM2.5 (Jalava et al., 2016), and are potentially a source of influence on
major depressive disorder outcomes (De La Garza, 2005) through in-
flammatory mechanisms (Tonelli et al., 2008; Tonelli and Postolache,
2010). PM2.5 retained in the nasal passage can bypass the blood brain
barrier (Tonelli and Postolache, 2010) and lead to worse depressive
like behavior, brain expression of cytokines, and corticosteroid produc-
tion compared to intraperitoneal transmission (Tonelli et al., 2008).

Finally, indoor PM2.5 concentrations were assumed to occur in a
well-mixed environment. In reality, residential homes can be poorly
mixed, and some areas of the home will experience higher concentra-
tions of PM2.5, while others will have lower concentrations. This vari-
ability is accounted for in the Monte Carlo simulations, via random
sampling of the distributed parameters. However, select indoor activi-
ties may cause a spike in PM2.5 concentrations and exposure, such as
cooking or resuspension of PM2.5 due to cleaning. These spikes in
PM2.5 concentration may increase risk of acute depressive symptoms,
but the epidemiological data do not exist to accurately model that im-
pact. Specifically, the model described in this paper was not applied to
analyze acute depressive symptoms due to indoor PM2.5 exposure, but
evidence exists to suggest that effect may occur (Semple et al., 2015;
Hiscock et al., 2012).

5. Conclusions

The results of this analysis highlight the role that PM2.5 has upon de-
pressive outcome. The model described herein could be used to esti-
mate the influence that PM2.5 exposure has upon other mental
illnesses, provided those illnesses have established relationships (ORs
or RRs) with PM2.5. These results raise the question of how impactful
other indoor air pollutants are on mental health outcomes. While
PM2.5 has the highest contribution to mortality estimates of air quality
(Hoek et al., 2013; Chen et al., 2008), other pollutantsmay have a higher
degree of impact onmental health outcomes. Future researchmaywant
to include socioeconomic status, as it may represent a potential con-
founding factor in linking analysis of particulate matter with major de-
pressive disorder. For example, people of lower socioeconomic status
are more likely to live in areas of higher air pollution (Evans and
Kantrowitz, 2002), have poor quality homes that potentially lead to
higher rates of pollutant exposure (Adamkiewicz et al., 2011), and
higher rates of depression (Everson et al., 2002). Moreover, smoking is
a more popular activity among less affluent groups (Hiscock et al.,
2012), and is associated with depression (Glassman et al., 1990;
Brown et al., 1996; Fergusson et al., 2003). Additionally, socioeconomic
status has an established relationship with physical morbidity (Luepker
et al., 1993; Connolly et al., 2000; Ward et al., 2004), itself a risk factor
for mental illness (Geerlings et al., 2000). Yet not all confounders are
negative. For instance, household size is larger in areas of lower socio-
economic status (Espenshade et al., 1983), whichwould result in shared
benefit of a higher quality filter for additional people at reduced per
capita cost.
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