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Improvements for Vision-based Navigation of Small, Fixed-wing
Unmanned Aerial Vehicles

Robert C. Leishman1, Jeremy Gray1, John Raquet1, and Adam Rutkowski2

Abstract— Investigating alternative navigation approaches
for use when GPS signals are unavailable is an active area
of research across the globe. In this paper we focus on the
navigation of small, fixed-wing unmanned aerial vehicles (UAVs)
that employ vision-based approaches combined with other
measurements as a replacement for GPS. We demonstrate with
flight test data that vehicle attitude information, derived from
cheap, MEMS-based IMUs is sufficient to improve two different
types of vision processing algorithms. Secondly, we show analyt-
ically and with flight test data that range measurements to one
other vehicle with global pose is sufficient to constrain the global
drift of a visual inertial odometry-based navigation solution.
Further, we demonstrate that such ranging information is not
needed at a fast rate; that bounding can occur using data as
infrequent as 0.01 Hz.

I. INTRODUCTION

Investigating alternative navigation approaches for use
when GPS signals are unavailable is an active area of re-
search across the globe. When multiple sources of precision
navigation and timing (PNT) information are available and
can be fused together, the resulting navigation solution is
more accurate and more robust. There are a variety of
areas where alternative navigation solutions are of interest
and a variety of phenomenologies upon which alternative
navigation estimates can be developed [11], [5], [22]. In
this paper we focus on the navigation of small unmanned
aerial vehicles (UAVs) that employ vision-based approaches
combined with other measurements.

There is a vast array of current and active research on vi-
sion navigation approaches for small UAVs, for example [9],
[19], [15], [2], [16], [4], [20], [7], [10]. Many of these
approaches provide results competitive with or better than
estimates computed using GPS signals, over short (hundreds
of meters) distances.

The work described in this paper, however, takes a slightly
different tack. One current research aim for the ANT Center,
of which this paper is a part, is to demonstrate GPS-denied
or degraded navigation of small, fixed-wing UAV platforms
over longer (tens of kilometers) trajectories. It is clear that
a small UAV with only the core onboard sensors: MEMS
IMU (accelerometer, gyroscope, and magnetometer) and
pressure (barometric altitude and airspeed) cannot maintain
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an adequate navigation solution for any sufficient duration;
and that something like vision is essential. There are two
key questions addressed by this research to further the
capabilities of a designed system. The first is, can MEMS-
grade IMU data, or rather, attitude estimates derived from
that data, be used to benefit vision algorithms? And the
second, what additional information is needed to bound the
drift in a visual inertial odometry (VIO) solution for a fixed
wing UAV? It is known that if there is no loop closure-type
data, essentially creating a SLAM algorithm, the drift of a
VIO system grows without bounds.

The research discussed in this article demonstrates and
details synergies that can be utilized in the development of
small UAVs that can navigate with vision sensors without
the direct availability of GPS information. It is clear that a
small UAV with only the core onboard sensors: MEMS IMU
(accelerometer, gyroscope, and magnetometer) and pressure
(barometric and airspeed) cannot maintain a good navigation
solution for any sufficient duration. As has been discussed,
vision navigation methods have demonstrated good utility in
providing an alternative to GPS. The contributions made is
this article are, first, that MEMS IMU sensors can be utilized
to improve the navigation results of at least two different
types of vision algorithms; second, it is shown that a range
to only one other vehicle with known pose is sufficient to
constrain the drift of a VO-based navigation solution.

The paper is organized as follows. First relevant back-
ground material is discussed, including the GIVINS project,
the two types of vision navigation algorithms, details regard-
ing the autopilots and associated sensors used in the flight
tests, a discussion of why attitude information can provide
a benefit to vision algorithms and finally an explanation of
the ranging concept used in the paper. Section III discusses
the filter framework used to combine IMU, barometric,
VO and ranging data. Section IV derives the analytic non-
linear observability of the filter framework in Section III.
A summary of the relevant details regarding the flight test
data used in the results is in Section V. Results for attitude
aiding of vision algorithms are found in Section VI. Results
demonstrating bounding the drift of a VO-based solution
using the range to only one other vehicle are in Section VII.
Finally, conclusions are offered in Section VIII.

II. BACKGROUND

The material in this section provides some essential back-
ground information to support the development and results
below. Several topics are covered as part of the background:
a major source for the funding of this work, the two types of



vision navigation methods utilized, commercial small-UAV
autopilots and sensors, why attitude aiding for visual navi-
gation algorithms is beneficial, and finally details regarding
the ranging scenario and sensors utilized.

A. GIVINS Project

The objective of the GPS, Inertial, Vision Integrated Navi-
gation System (GIVINS) program is to develop an integrated
navigation system using a vision sensor, a standard Global
Positioning System (GPS) receiver, and a consumer grade
Inertial Measurement Unit (IMU). The GIVINS program is a
4 year international project agreement (PA #AF-PA-13-0001)
with the Singapore Ministry of Defence (SG MINDEF) that
began 30 Oct 2013.

The original plan for the GIVINS program was to imple-
ment the system on a ground vehicle and test in an urban
environment. Also, the original plan was for the US and
SG to develop and use a common set of hardware. However,
due to difficulties associated with hardware being commonly
available in both countries, it was decided to develop separate
harware solutions. Also, rather than test in an active urban
environment, it was decided to shift the focus of the project
to aerial applications. SG chose to develop a solution for a
quad rotor, while the US chose to work with a fixed wing
platform.

The original technical approach was to use zero velocity
updates for vision-aided inertial navigation. A zero velocity
update, as the name suggests, resets the velocity estimate
of the navigation system to zero when it is known that the
system is at rest. Zero velocity updates have been effective
at reducing the drift of an Inertial Navigation System, par-
ticularly for land based systems. Although it is much more
difficult to reach zero velocity (i.e. stop) when suspended in
the air (and impossible for a fixed wind aircraft that can’t
hang on the prop), the direction of vehicle motion can be per-
ceived by an onboard visual system. It can then be deduced
that there is no component of velocity perpendicular to this
direction. In effect, a zero velocity update can be performed
in two directions. It was expected that this approach will
have similar performance to existing solutions. Furthermore,
if GPS is available, then it should be used. If at any time
there are not enough GPS satellites visible to compute a full
GPS position solution (which commonly happens in urban
environments), then it is still possible to use pseudorange
measurements to the visible satellites to aid the navigation
solution.

The first attempt at using vision-based zero velocity up-
dates was performed by Png (2014). He first developed a
simulation environment for GPS pseudoranges, IMU mea-
surements (∆V and ∆θ), and visual features. Rather than
developing a full scene generation capability, the approach
used was to perform feature tracking on images from real
datasets (scenarios 2, 6, and 7 of the ASPN dataset). These
features were then mapped to 3D feature coordinates to
create a 3D map of feature locations. In this way, a more
realistic point cloud that was derived from real data was
achieved rather than using a pseudo-randomly generated

point cloud of features. This enabled trade studies for varying
sensor parameters to simulate different quality sensors and
camera look angles. Camera quality was simulated by adding
noise (with a standard deviation of a certain number of
pixels) to the pixel position of each feature.

For a given normalized translation vector t in East-North-
Up coordinates, as determined from visual odometry, the
two directions of zero velocity are determined from the
full Singular Value Decomposition of t (Png 2014). This
produces a matrix U where the first column is t and the last
two columns are perpendicular to t. The matrix Σ will be
[1 0 0]T and V will be 1. Similarly, a full QR factorization
could be used to compute the perpendicular directions.

IMU measurements were simulated by inverting the PVA
data from the ASPN data sets, then adding FOGM noise
according to the desired sensor quality to be simulated.

Rohde (2015) was the first to apply the visual zero velocity
update technique to real world data.

Given the success of using this visual and inertial sensor
measurements with GPS pseudoranges, the GPS pseudor-
anges were replaced with actual range measurements to a
vehicle in a high flyer / low flyer concept.

B. Absolute Positioning Approach

Two vision navigation approaches are utilized in demon-
strating that attitude estimates derived from MEMS IMU can
add value to vision processing algorithms. The first is an
absolute positioning (AP) algorithm that provides a global
position and attitude measurement, illustrated in Figure 1,
by comparing the current camera image and a known map
of images, e.g. Google Earth. The algorithm used in this
research was developed in the ANT Center and is described
in detail in [17], [22]. We include here a brief summary of
the key points of the algorithm, for reference.

• The algorithm requires a geo-reference database (known
map) as an input. This must be prepared beforehand,
and is critical to the functionality of the algorithm,
see [22] for extensive details.

• The current image and current estimate of global posi-
tion and orientation (pose) of the vehicle are sent to the
algorithm.

• SIFT features are found on the current image.
• A database image tile is retrieved from the map based

on the global pose estimate. This tile contains georef-
erenced SIFT features.

• A brute-force matcher finds the best matching features
between the current image and the image tile.

• At this point there are two possible approaches, depend-
ing on the selection of an attitude aided solution or a
non-attitude aided solution.

– If the attitude aided solution is selected, the attitude
information from the autopilot is used directly to
find the translation estimate between the image
tile and the current image. This is done using a
3 Degree of Freedom (DoF) perspective n point
(PNP) algorithm.



– If a non-attitude aided solution is requested then
the full pose information is recovered from the 6
DoF PNP algorithm.

 

Global 
Origin: 
North, 
East, 
Down 

Camera i 
frame 

Camera i+1 
frame 

Rn
ci 

 ,  Tn
ci

 

Rn
ci+1

 ,  Tn
ci+1

 

Fig. 1. Global measurement and associated coordinate systems.

C. Visual Odometry Approach

The second vision algorithm used is a visual odometry
(VO) algorithm that provides a relative, or incremental, mea-
surement between the previous camera frame and the current
camera frame, see Figure 2 below. Consequently, it is often
utilized as a velocity update when the position information in
a filter state vector is expressed in a global coordinate frame.
This is an important distinction between the VO and the
Absolute Positing Approach described above, as the Absolute
Positioning approach provides global measurements. This
VO algorithm is used in both objectives for this research
outlined above.

 

Global 
Origin: 
North, 
East, 
Down 

Camera i 
frame 

Camera 
i+1 frame 

Rci
cj+1 

 ,  Tci
cj+1

 

Fig. 2. Relative measurement and associated coordinate systems.

The VO approach used in this work is described in detail
in [6]. The algorithm uses detected features, specifically the
AKAZE [1] variety, to compute the relative transformation
between two images. The following is a quick summary of
the algorithm to understand the principle steps.
• The current and just-previous image are sent to the

algorithm, along with camera calibration, the body to
Navigation rotation matrices for each image and other
parameters, like the current barometric height.

• AKAZE features and descriptors are detected on both
images. A a brute force descriptor matcher, using the
Hamming distance, finds the closest matching features
between the two images.

• The RANSAC algorithm in the OpenCV ”findEssen-
tialMat” function robustly computes an essential matrix
and identifies valid matches (inliers) that support the
computation.

• At this point, the choice is made on whether to utilize
the rotation matrix found as part of the essential ma-
trix (non-attitude aided) or to use the rotation matrix
provided by the autopilot (attitude aided). If the non-
attitude aided solution is chosen, the algorithm chooses
the appropriate rotation matrix extracted from the es-
sential matrix.

• Each of the matched, inlier features are expressed in
the navigation frame using the selected rotation matrix.
Inherent in this step is the addition of yaw information
into the measurement. The source of the yaw informa-
tion is a magnetometer.

• A depth estimate is computed for each feature, using
the height information from the barometer.

• All the inlier measurements, from each image, are
averaged together and then the means are subtracted
to find the translation vector.

• The computed/selected rotation and computed trans-
lation are returned as the six DoF solution by the
algorithm.

D. Autopilots

The growth of available low-cost commercial autopilots
over the past decade has provided many new avenues for per-
forming previously difficult or even impossible operations.
These operations are spread across both commercial and
defense domains. Some examples of these operations include
infrastructure inspection, reconnaissance, crop inspection,
and many others. Currently, the cost of these hobby-grade
autopilots range anywhere from $300 to as inexpensive as
$10 with varying capabilities.

In this research, Pixhawk autopilots were used as the flight
controller for each fixed wing as well as a sensor data source.
These autopilots contain redundant accelerometers, gyros,
barometers, and a single magnetometer, and utilize an ex-
ternal GPS, magnetometer, and airspeed sensor. The sensors
contained in the Pixhawk, specifically the accelerometers and
gyros, are of a low consumer grade (cost about $6 for the
IMU boards). During the flight tests for constraining the drift
on the VIO solution, two Pixhawk autopilots were utilized.
The first was connected to GPS and the data from it is used
as truth. The second autopilot was purposely not connected
to GPS; the data from this autopilot is used for evaluating
the filter from a GPS-denied standpoint.

E. Why Attitude Aiding is Helpful

When using vision data for navigation, there is often a
very high correlation between attitude and position. Consider,
for example, the three pictures shown in Figure 3. The left
picture is the original picture, taken approximately 1m from
the bookshelf. The center picture was obtained by keeping
the camera in the same position, but rotating it approximately
1.7◦ to the left, and the right picture was obtained by moving



the camera 3cm to the left (but no rotation). It is clear that the
center and the right pictures are very similar, which indicates
that any vision algorithm which would seek to measure both
rotation and translation will have difficulty distinguishing
between the two.

In this kind of situation, we are taking advantage of the
knowledge of attitude obtained from a Pixhawk autopilot that
is not connected to GPS. As a result, the algorithm only
needs to solve for position (or delta-position in the case of
visual odometry), given a known attitude (or delta-attitude),
which should significantly increase the performance of the
position/delta-position estimation algorithm. The results in
Section VI demonstrate that low-commercial-grade autopilot
attitude information can be used to improve vision navigation
solutions.

Original After 1.7° Rotation After 3cm Translation

Fig. 3. Demonstration showing correlation between translation and rotation,
as demonstrated by similarity between center (rotated) and right (translated)
images.

F. Ranging Measurements

The second objective in this study, as outlined above, is
to investigate the amount of information that is required to
bound the drift of a VIO solution for a UAV. The proposed
method for bounding the drift is to utilize range data obtained
through a ranging radio to another aircraft/UAV that has
global pose information, likely through GPS.

The concept is that one aircraft, the one receiving GPS, is
able to fly higher; above the range of the jamming, out of the
urban canyon, or out of whatever condition that is limiting
the access to GPS signals. The lower vehicle is navigating
using IMU and VO information (VIO approach), without
GPS. The upper vehicle provides, through the same ranging
radio, its position and range to the lower UAV. The concept
is illustrated in Figure 4.

Actual flight test data is used to demonstrate the concepts
proposed in the paper in addition to an analytic observability
analysis in Section IV. Range radios were provided by EN-
SCO Corp. through a cooperative research and development
agreement.

The research builds on initial work in [8]. All the results
in Section VII pertain to estimating the position of the lower
UAV, following the filter framework established in Section III
immediately below.
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Fig. 4. An illustration of the ranging scenario used in the flight test. The
upper plane has access to GPS signals, the lower plane does not. It uses
autopilot sensors plus visual odometry to navigate, and then it fuses in the
range to the upper aircraft. We use a common Navigation frame for both
vehicles. We assume that GPS is available at the beginning of the lower
planes flight to establish the common frame.

III. VO, IMU, PRESSURE AND RANGE DATA FUSION

We first introduce a couple of the coordinate frames
utilized throughout the paper in preparation of the filter
derivation, illustrated in Figure 5. The first coordinate frame
is the body-fixed frame of the lower UAV, which is fixed to
the center of mass of the vehicle with the ı̂b axis out the nose,
the ̂b axis out the right wing, and k̂b axis out of the belly.
The second is the navigation frame, which is a local frame
with the ı̂N axis aligned with magnetic North, the ̂N axis
aligned with East, and the k̂N axis pointing toward the center
of the Earth [21]. The navigation frame sits at a point on the
Earth’s surface near where the flight occurs and for short,
low altitude UAV flights is assumed to be inertial [3]. We
utilize the convention described in [3], Chapter 2, including
the 3-2-1 Euler angle sequence and the wind triangle.

The extended Kalman filter used to demonstrate bounding
of a VIO solution, which fuses IMU, pressure, VO and range
measurements, largely follows the development in Chapter 8
of [3]. We have extended the filter by including states for
altitude and vertical velocity. The states for the filter are
the north position, east position, ground speed, course angle,
wind speed in north direction, wind speed in east direction,
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Fig. 5. Coordinate frames used in the filtering derivations. Body-fixed
frame is in blue, the inertial frame is in orange.

yaw, altitude, and vertical velocity:

x =
[
pn pe Vg χ wn we ψ pa ṗa

]T
. (1)

The north, east and altitude positions are with respect to
the navigation frame. Altitude is simply the negative of the
position in the down direction. The relationship between ψ
and χ is explained using the wind triangle [3]. ψ is the angle
between the ı̂N axis and the ı̂b axis in the horizontal plane. χ
is the angle between the ı̂b axis and the ground speed vector,
in the horizontal plane.

The state x advances according to the nonlinear model
ẋ = f(x,u), where the input u is composed of the airspeed,
pitch rate, yaw rate, roll angle, pitch angle:

u =
[
Va q r φ θ

]T
; (2)

f(x,u) =

Vg cos(χ)
Vg sin(χ)

(Va cos(ψ)+wn)(−Vaψ̇ sin(ψ))+(Va sin(ψ)+we)(Vaψ̇ cos(ψ))
Vg

g
Vg

tan(φ) cos(χ− ψ)

0
0

q sin(φ)
cos(θ) + r cos(φ)

cos(θ)

ṗa
0


(3)

The inputs u for this work were recorded from the Pixhawk
autopilot that was purposely not connected to a GPS receiver.
More details regarding the hardware configuration are pro-
vided in Section V below.

A. Measurement Updates

There are several measurement updates used in the de-
veloped EKF, they include a wind pseudo-measurement, a
velocity update from the visual odometry, an altitude update

from the baro altimeter, and finally the range measurement.
The measurement models are described briefly below.

1) Wind Pseudo-Measurement: The wind pseudo-
measurement update is the same proposed in [3], where
the geometry in the wind triangle is used to equate the
wind, ground and air speeds using the angles χ and ψ. This
measurement is more of a constraint, as the ”measurement”
should always equal zero.

hw(x,u) =

[
0
0

]
=

[
Va cos(ψ) + wn − Vg cos(χ)
Va sin(ψ) + wn − Vg sin(χ)

]
(4)

2) VO Velocity Update: The VO algorithm [6] utilized
for this paper is briefly described above. An important point
to recall is the yaw information, from a magnetometer,
has been infused into the VO measurements. Consequently,
the measurement provides both a ground speed and course
angle update for the filter. A speed update is used since
the position information derived from the VO algorithm is
relative to the image before it and does not provide position
information relative to the navigation frame [13]. However,
the VO algorithm is provided the best estimate of the rotation
between the current body frame and the navigation frame,
allowing it to express the velocity in the navigation frame.
We can then update both the course angle χ and the ground
speed Vg elements of the state with the output of the VO
velocity [Vn, Ve, Va] according to

zvo(x) =

[
tan−1( Ve

Vn
)√

V 2
n + V 2

e + V 2
a

]
. (5)

Consequently, the measurement function is trivially,

hvo(x) =

[
χ
Vg

]
. (6)

3) Altitude Update: The altitude update is quite simple,
the information from the barometer in the autopilot directly
updates the altitude state

ha(x) = pa. (7)

4) Ranging Update: The measurement of range between
the lower vehicle and the upper vehicle includes the actual
range in meters between the two vehicles, as well as the
GPS coordinates in latitude, longitude, and height of the
upper vehicle. We utilize a single GPS measurement of
the lower vehicle, taken at the beginning of the flight, to
define a common navigation frame of reference for both
vehicles, thereafter we only use the lower vehicle GPS
measurements for truth data. We do not address the issue
of obtaining a common navigation reference frame between
two vehicles for the case when GPS is never available for
the lower vehicle; in such an instance, an estimate of the
upper vehicle’s position would likely need to be added to
the filter state and a different coordinate system utilized. The
measurement function used is

hr(x,uu) =
√

(un − pn)2 + (ue − pe)2 + (ud + pa)2,
(8)



where uu = [un, ue, ud]
T are the coordinates of the upper

vehicle in the now-common navigation frame. Recall that ud
and pa point in opposite directions.

B. Filter Implementation

The above methods were implemented in the Scorpion
Estimation Framework, created by the Autonomy and Navi-
gation Technology Center (ANT) at the Air Force Institute of
Technology. The implementation used an Extended Kalman
Filter and the data was run post-process through the filter.
All the results pertain to estimating the states of a lower UAV
using the filter described.

IV. OBSERVABILITY ANALYSIS: VO PLUS RANGING

The observability rank condition for nonlinear systems
outlined in Chapter 7 of [23], which is also summarized quite
well in [12], pertains only to the case where the nonlinear
equations can be expressed linearly in the control:

ẋ = f(x) +

m∑
i=0

ui(t)g[x(t)] (9)

yj = hj(x), for j = 1 : l (10)

Upon examining the models defined in Section III above,
it is apparent that the filter model utilized does not exactly
fit this constraint. The process to find the observability rank
condition for such a system becomes much more arduous,
involving many more uses of the chain rule. We have found
that by neglecting second-order and higher derivatives with
respect to u, whose magnitudes are usually small, the same
result for the observability index may be achieved, namely

O ≈


∂L0

fhj(x,u)

∂x
∂L1

fhj(x,u)

∂x
...

∂Li
fhj(x,u)

∂x

 , (11)

with

L0
fhj(x,u) = hj(x,u)

Li+1
f hj(x,u) =

∂Lifh(x,u)

∂x
f(x,u).

Where the notation Lfhj(x,u) denotes the Lie derivative of
the function hj(x,u) with respect to the vector field f(x,u),
which results in a scalar; and i ∈ n − 1 and j ∈ l. A
Lie derivative describes the information within the function
hj(x,u) that is contained along the vector field f(x,u). Then
gradients of the Lie derivatives are used to assemble the
observability index. The l = 6 measurement equations from
Eqs.4, 6, 7, 8 form the set of hj(x,u) for the system. Note
that assuming partial derivatives with respect to u are zero
is actually a more conservative estimate than computing and
including those terms.

A. Analytic Observability

The first step in assembling O in (11) is to compute the
gradient of the nonlinear measurement functions, (4), (6),
(7), (8), with respect to the state x. For reference, h1 and h2

are from (4), h3 and h4 from (6), h5 from (7) and h6 from
(8) respectively. This is found in (12) below.

(12) provides the first 6 rows to (11); note that the
boldfaced h(x,u) implies that the partials for each hj(x,u)
have been stacked to form a matrix. In (12) there is only
one state, ṗa, that does not receive any information from
the measurements directly. However, the rank of (12) is only
six, thus we require at least three more linearly independent
equations in O to achieve local observability of the system.

The second row of (11) requests the partial of L1
fhj(x,u).

Using the chain rule, this becomes

∂L1
fhj(x)

∂x
=

(
∂2hj(x)

∂x2
f(x)

)T
+
∂hj(x)

∂x

∂f(x)

∂x
(13)

where ∂2hj(x)
∂x2 is the Hessian of hj(x). It is useful to look at

both of the terms in (13) to see what each part contributes
to the observability.

The first half of (13) contains second-order derivatives
and is quite sparse. Only measurement functions (4) and (8)
contain non-zero terms. The second order gradients of these
three measurements, multiplied by f(x)T , results in three
column vectors (14), (15), and (16) respectively.

Equations (14), (15) and (16) are transposed and stacked,
along with three zero row-vectors for measurement func-
tions (6) and (7) to form the matrix representation of(
∂2h(x)
∂x2 f(x)

)T
, which is not shown due to size restrictions.

Note the first two terms in (16) are non-zero. This infor-
mation, though second-order, enables the observability of
the horizontal position [pn, pe]. No second-order information
contributes to the observability of ṗn.

The second half of (13) contains combinations of only
first-order derivatives and is expressed in (17).

(17) below clearly adds observability information to ṗa,
in the final column. However, there is not any additional in-
formation added for the horizontal position [pn, pe], marked
by lack of non-zero terms in the first two columns.

Analytically, by combining the two parts of (13) with (12)
we have a 12 by 9 matrix that is of rank 9. Meaning, we
do not need any higher-order Lie derivatives to form (11).
The reason that the observability matrix is of full rank with
range to only one known landmark is that yaw information is
provided to the filter through the visual odometry method we
have chosen to use. Without the yaw information provided,
the observability grammian would be of rank 8 and we
would need at least one other known landmark to achieve full
observability. Interesting to note, however, is that if we were
to follow a more conservative estimate of the observability
and ignore any second-order and higher partial derivatives
in (11), we would be left with multiples of (17), as shown
in [23], with ∂h(x)

∂x = C and ∂f
∂x = A. (11) then can be



∂L0
fh(x,u)

∂x
=



0 0 − cos (χ) Vg sin (χ) 1 0 −Va sin (ψ) 0 0
0 0 − sin (χ) −Vg cos (χ) 1 0 Va cos (ψ) 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0

pn−un√
σ1

pe−ue√
σ1

0 0 0 0 0 pa+ud√
σ1

0

 , (12)

where

σ1 = (pe − ue)2
+ (pn − un)

2
+ (pa + ud)

2
.

∂2h1(x)

∂x2
f(x) =



0
0

g sin(χ) tan(ϕ) cos(χ−ψ)
Vg

g cos (χ) tan (ϕ) cos (χ− ψ) + Va sin(χ)ψ̇(we cos(ψ)−wn sin(ψ))
Vg

0
0

−Va cos (ψ) ψ̇
0
0


(14)

∂2h2(x)

∂x2
f(x) =



0
0

− g cos(χ) tan(ϕ) cos(χ−ψ)
Vg

g sin (χ) tan (ϕ) cos (χ− ψ)− Va cos(χ)σ2(we cos(ψ)−wn sin(ψ))
Vg

0
0

−Va sin (ψ)σ2

0
0


(15)

∂2h6(x)

∂x2
f(x) =



Vg cos(χ)

2σ
3/2
1

(∆n + 2σ1) +
Vg sin(χ)

σ
3/2
1

(∆n + ∆e) + ṗa

σ
3/2
1

(∆n −∆d)

Vg sin(χ)

2σ
3/2
1

(∆e + 2σ1) +
Vg cos(χ)

σ
3/2
1

(∆n + ∆e) + ṗa

σ
3/2
1

(∆e −∆d)

0
0
0
0
0

ṗa

2σ
3/2
1

(2σ1 −∆d) +
Vg cos(χ)

σ
3/2
1

(∆n −∆d) +
Vg sin(χ)

σ
3/2
1

(∆e −∆d)

0


(16)

where,
∆n = un − pn
∆e = ue − pe.
∆d = ud + pa.

expressed just as a linear system observability index

Ol ≈


C
CA

...
CAn−1

 . (18)

Following this assumption, (11) would never be full rank and
the system would not be observable, even though it should
be. The only information available to the filter for horizontal
position would be a nonlinear combination of pn and pe and



∂hj(x)

∂x

∂f(x)

∂x
= (17)

0 0 Va cos(χ)σ1σ2

Vg
2 − g sin(χ) tan(ϕ) cos(χ−ψ)

Vg
−σ4

Va cos(χ) sin(ψ)ψ̇
Vg

−Va cos(χ) cos(ψ)ψ̇
Vg

σ4 + Va cos(χ)ψ̇σ3

Vg
0 0

0 0 g cos(χ) tan(ϕ) cos(χ−ψ)
Vg

+ Va sin(χ)ψ̇σ2

Vg
2 σ5

Va sin(χ) sin(ψ)ψ̇
Vg

−Va cos(ψ) sin(χ)ψ̇
Vg

Va sin(χ)ψ̇σ3

Vg
− σ5 0 0

0 0 − g tan(ϕ) cos(χ−ψ)
Vg

2 −σ6 0 0 σ6 0 0

0 0 −Vaψ̇σ2

Vg
2 0 −Va sin(ψ)ψ̇

Vg

Va cos(ψ)ψ̇
Vg

−Vaψ̇σ3

Vg
0 0

0 0 0 0 0 0 0 0 1

0 0 −∆n cos(χ)√
σ1

− ∆e sin(χ)√
σ1

−Vg∆e cos(χ)√
σ1

+
Vg∆n sin(χ)√

σ1
0 0 0 0 2pa+2ud√

σ1


,

where

σ2 = we cos (ψ)− wn sin (ψ)

σ3 = wn cos (ψ) + we sin (ψ)

σ4 = g sin (χ− ψ) sin (χ) tan (ϕ)

σ5 = g sin (χ− ψ) cos (χ) tan (ϕ)

σ6 =
g sin (χ− ψ) tan (ϕ)

Vg

it would not be separable. In Section VII we analyze the
rank and condition of the observability index (11) with the
flight data for some additional insights in the observability
question for this problem.

B. Average Normalized Estimation Error Squared

Another metric that proves useful in analyzing estima-
tors is the Average Normalized Estimation Error Squared
(ANEES) [14]. The ANEES metric shows insight into
whether an estimator is credible by demonstrating and quan-
tifying how much the results are optimistic or pessimistic.
ANEES is defined as

ε̄ =
1

M

M∑
i=1

(xi − x̂i)
′P−1

i (xi − x̂i), (19)

where x is the true state, x̂ is the estimated state, and M is
the number of timesteps.

If the ANEES of the filter is significantly greater than n
(the length of x), the filter is optimistic; meaning that the
covariance represented by the filter is too small. When the
ANEES is significantly under n the filter is pessimistic and
the covariance is too large. When an estimator is optimistic,
it is overconfident in the estimate of the covariance bounds,
which can lead to filter divergence.

V. FLIGHT TEST

The two data sets analyzed in this research were collected
from flight tests performed by AFIT in 2015 and 2017. For
each test, a fixed-wing small UAS was flown in either an
autonomous or semi-autonomous mode while simultaneously
collecting sensor measurements and navigation solutions
from an autopilot. Both flights were accomplished at Himsel
Field at Camp Atterbury, IN, which consists of a concrete
parking apron and runway, grass, trees, and various build-
ings. Though each flight was accomplished during different

times of the year, the visual seasonal differences were not
significant, nor did the structures or other permanent visual
cues change in the vicinity of the flight profile.

A. 2015 Flight Test: AP

The flight test conducted in October of 2015 [18] utilized
a 12 foot Telemaster model aircraft. The vehicle contained
a single pixhawk running Ardupilot firmware, located at the
center of gravity (CG). A payload bay approximately one
foot aft of the CG contained a Prosilica camera and an
Intel Next Unit of Computing (NUC). The NUC collected
sensor data and filter solutions from the Pixhawk along with
camera images. An autonomous flight profile was flown at
approximately 250 meters above ground level (AGL) and
resembled a large loop overflying all the available visual
features in the area.

This flight data was used to compute the results of the AP
vision algorithm, found in Section VI.

B. 2017 Flight Test: VO

The flight test conducted in July 2017 utilized two Sig
Rascal 110 model airplanes with 2.8 meter wingspans, driven
by electric motors. Data was collected onboard each plane
and then brought together through post processing. Details
regarding each plane are below.

Data from this flight test was used to compute the results
for the VO algorithms, which are used in the results discussed
in Sections VI and VII.

1) Upper Plane: The upper plane utilized a Pixhawk 2 as
the flight controller and was flown in an autonomous loiter
with a radius of 100 meters, at 18 meters per second, at an
altitude of about 250 meters AGL. The payload consisted of a
small UDOO Quad computer and an ENSCO ranging radio.
The computer logged data from the autopilot at about 4 Hz
and ranging radio at about 20 Hz. The GPS coordinates were



up-converted to 20 Hz using a cubic-spline interpolation for
processing in the filter at maximum ranging rates.

2) Lower Plane: The lower plane was flown in a manual
mode due to complications with the communications equip-
ment right before takeoff. It was flown over an area directly
below the upper plane but within a span of about 500 by
500 meters for about twelve minutes, at a speed of about
22 meters per second, within an altitude band of 75 to 150
meters AGL.

The payload consisted of two Pixhawk autopilots (one
disconnected from the GPS receiver, the Payload Pixhawk),
an ENSCO ranging radio, an Allied Vision Prosilica GT1290
camera, a five-point ethernet switch, and an Intel NUC
computer. Data was logged onboard the NUC computer at
variable rates, which proved a little challenging during post-
processing: 9Hz monochrome camera images, 20Hz ranging
data, 140Hz GPS-denied IMU and altimeter, 5Hz GPS-
denied airspeed, 4Hz GPS data.

VI. RESULTS: ATTITUDE-AIDING VO

The following results are partitioned by the vision al-
gorithms. The AP algorithm is evaluated using the flight
test data from 2015 on both the non-attitude aided and
attitude aided solutions. The VO algorithm is evaluated using
flight test data from July 2017 for both non-attitude aided
and attitude aided solutions. Position data provided by the
autopilots with GPS data are used as truth for evaluating the
results.

A. AP Results

Figures 6 and 7 demonstrate the error in the north position
estimates for the AP approach. Figure 6 demonstrates the
error for the non-attitude aided solution. Figure 7 provides
the results for the attitude-aided solution. Note the differ-
ences in scale of the vertical axis between the two figures.
Comparing the two figures provides insight to the error
results when an attitude solution is provided to the AP
algorithm from the autopilot. The attitude aided results are
significantly improved. Not shown are the errors in the East
and Down directions, however they follow a similar pattern.
A comparison of the overall 3D RMS error values is in the
table below, where it is clearly seen that the RMS is reduced
by a factor of four by including the attitude information from
the autopilot.

TABLE I
COMPARISON OF THE 3D RMS ERRORS OVER THE WHOLE SET OF DATA

(TWO FIGHTS) FOR THE ABSOLUTE POSITIONING VISUAL NAVIGATION

APPROACH.

Absolute Positioning RMS (m)

No Attitude Aiding 3D RMS 69.4

Attitude Aiding 3D RMS 16.2

B. VO Results
After the performance gain was discovered for the AP

vision processing algorithm by simply including attitude
information from the autopilot, we were eager to try the
technique on other vision navigation approaches. The VO
algorithm developed in-house was a natural fit. We investi-
gated the limits of the performance improvement a bit more
with the VO algorithm than the AP algorithm.

Several pertinent facts were learned or confirmed in initial
testing that deserve mentioning, which are not discussed in
the results below. We investigated using different numbers
of features, different rates of attitude information, different
RANSAC tuning parameters and different rates of camera
imagery (over the same distance, so wider/narrower gaps).
We found that the results stayed fairly constant over the
number of features detected, up to a point; the performance
obviously dropped off rapidly when little-to-no features were
detected, as expected. We confirmed in earlier testing that
attitude information must either be time-synchronized with
the imagery or taken at a much higher rate (five-to-ten
times), otherwise the attitude aiding solution is considerably
worse than a vision-only solution. In changing the RANSAC
parameters, we noticed a considerable performance change,
so we found parameters that maximized the performance
without making the solutions brittle and maintained the value
constant for all our results. The largest performance effect
was found by varying the rate of the imagery, results of
which are shown below.

1) 8 Hz VO: Figure 8 shows results in a different format
than Figures 6 and 7 above. Here we show the change in
position measurements between successive images from the
truth in blue ”x”’s; the attitude aided VO outputs, in red
”+”’s; and the vision-only VO solution in black ”o”’s. A
perfect result would be for the black and red marks to overlay
the blue ”x”’s. Note that these change-in-position results will
not show drift, as the GPS truth data was converted to relative
position transformations between the image timesteps.

As is shown in Figure 8, the attitude aiding solution does
well at estimating the correct change in position measure-
ment. Some of the non-attitude aided solutions are also
correct, but many of the non-attitude aided solutions report
a near-zero result. The reason for the binary behavior, where
the solution is either close to correct or near zero, is that the
vision-only solution seems to have ascribed many of these
small position changes to attitude changes, see Section II-E.
This is illustrated by the distinct bias in the change in pitch
angle found by the non-attitude aided solution, compared to
the change in attitude information between images provided
by both the Pixhawk Autopilots, in Figure 9.

Table II reports the RMS errors for the North, East, and
Down directions between the attitude and non-attitude aided
solutions. The attitude aided solution reduces the RMS in the
North and East directions by more than 15 times. The VO
solutions in general, whether attitude or non-attitude aided
did not estimate changes in Down (or height) very well.

2) 2 Hz VO: Figures 10 and 11 are the result of running
the VO at 1/4th the rate. Increasing the change in time



Fig. 6. Error in north position estimates using the Absolute Positioning approach and no attitude aiding, with time. East and Down error plots are similar.
Error points are in black, one standard deviation bounds marked by the red/brown dashed lines, mean at the blue dot-dashed line. The vertical dashed line
marks flight one versus flight two (data was concatenated).

Fig. 7. Error in north position estimates using the Absolute Positioning approach and attitude aiding. East and Down error plots are similar. Note the
difference in scale of the vertical axis as compared to Figure 6. Error points are in black, one standard deviation bounds marked by the red/brown dashed
lines, mean at the blue dot-dashed line. The vertical dashed line marks flight one versus flight two (data was concatenated).

TABLE II
RMS OF THE CHANGES IN POSITION FOR ALL THREE DIMENSIONS,
COMPARING THE NON-ATTITUDE AIDED RESULTS TO THE ATTITUDE

AIDED RESULTS. THE RMS CHANGES BY MORE THAN A FACTOR OF 15.

Visual Odometry - 8Hz RMS (m)

No Attitude Aiding North RMS 136.6

No Attitude Aiding East RMS 77.8

No Attitude Aiding Down RMS 0.25

Attitude Aiding North RMS 5.5

Attitude Aiding East RMS 5.3

Attitude Aiding Down RMS 0.25

between images increases the signal to noise of the position
measurement, allowing the filter to more easily differentiate
between translation and rotation. This is shown in Figure 10
with the Non-Attitude aided solutions holding tighter to the
attitude-aided and truth curves. This is also shown by the

80% decrease in the North and East non-attitude aiding RMS.
Also notice the solutions in both images at about 135 seconds
until the end, where the attitude bias is gone, and all the
solutions are close.

TABLE III
RMS OF THE CHANGES IN POSITION FOR ALL THREE DIMENSIONS,
COMPARING THE NON-ATTITUDE AIDED RESULTS TO THE ATTITUDE

AIDED RESULTS WITH 2HZ CAMERA UPDATES.

Visual Odometry - 2Hz RMS (m)

No Attitude Aiding North RMS 17.2

No Attitude Aiding East RMS 15.7

No Attitude Aiding Down RMS 1.2

Attitude Aiding North RMS 25.3

Attitude Aiding East RMS 24.1

Attitude Aiding Down RMS 1.2

It is observed that the non-attitude aided solution improves



Fig. 8. The change in position in the north direction between images for the truth (GPS) solution, in blue ”x”’s; the attitude aided VO solution, in red
”+”’s; and the VO vision-only solution in black ”o”’s. A perfect result would be for the black and red marks to overlay the blue ”x”’s. The East plot is
similar, changes in down direction were not estimated well by either the attitude aided or non-attitude aided VO algorithms.

Fig. 9. The change in attitude from image to image for the pitch angle from the truth (GPS) Pixhawk, in blue; the Non-GPS Pixhawk, in green, and the
non-attitude aided VO solution, in red ”+”. Note the strong bias of one to two degrees in the red line over time. This bias means that the VO ascribed the
difference between the two images to be a change in attitude, not position.

when the image acquisition rate decreases; found by com-
paring the RMS results in Table II with those in Table III.
Also note that the attitude aided solution decreases in perfor-
mance. The non-attitude aided solution improves due to the
overall signal-to-noise increase with a wider baseline. The
noise on the images stays relatively constant regardless of
the image acquisition rate. However, the signal grows with a
longer baseline. This improved signal-to-noise ratio generally

provides the ”visibility” to the process to allow the algorithm
to extract the differences between translational and rotational
motion, giving the approach improved performance. This
assumption remains true as long as there is still sufficient
overlap to find corresponding features in both images.

The reason for the decrease in performance of the attitude
aided solution is due to the quality of the attitude estimates
and the fact that a slower image acquisition rate means that



Fig. 10. The change in position in the north direction with images at 2Hz for truth (GPS), in blue ”x”’s; the attitude aided outputs, in red ”+”’s; and the
vision-only solution in black ”o”’s. The East plot is similar, changes in down direction were not estimated well by either the attitude aided or non-attitude
aided algorithms.

Fig. 11. The change in attitude estimates from image to image for the pitch angle with images at 2Hz from the truth (GPS) Pixhawk, in blue; the
Non-GPS Pixhawk, in green, and the non-attitude aided VO solution, in red ”+”. Note the occasional bias in the red ”+”’s over time. This bias means that
the VO ascribed the difference between the two images to be a change in attitude, not position.

the attitudes must be accurate over a longer duration. This
can be seen by comparing Figures 9 and 11. In Figure 9
above, the change in attitude for the 8Hz images is estimated
similarly between the ”truth” Pixhawk and the ”payload”
Pixhawk autopilots. The comparison between those two
autopilots is worse over the longer duration, in Figure 11.

Also, observe the overall attitude estimation performance in
Figures 12 and 13. There are dramatic differences over the
length of the flight. The poor performance of the ”payload”
Pixhawk estimates is due to the inability to observe and
estimate the accelerometer biases, as no GPS information
is available. During short interval comparisons, the attitude



Fig. 12. A comparison of the pitch angle estimated from the two autopilots over the flight. Notice that the Payload Pixhawk did not have access to GPS
information, consequently it does not have observability into the accelerometer biases, causing the attitude estimates to drift. In a comparison between this
and Figure 9, the small changes in attitude at 8Hz compare well. However, when the imagery is extracted at 2Hz, the larger change in attitude does not
align as well, noted by the performance decrease in RMS, Table III.

estimates line up, like those in Figure 9. But as the interval
lengthens, the errors in the attitude estimates degrade the
solution of the VO algorithm.

C. Altitude Aiding Summary

We have demonstrated that attitude aiding of two different
types of vision algorithms can be highly beneficial from a
fixed-wing small UAS platform, under 300 meters altitude.
This is possible even when the attitude estimates are derived
from consumer-grade MEMs sensors and are only accurate to
within a few degrees. We found that this relationship is fairly
constant over the number of features found in the images
(for greater than about 40 to 50 features in each image). The
slower the rate that the imagery is acquired, the tighter the
requirements on the accuracy of the attitude estimates, par-
ticularly for lightweight, highly dynamic, small UAVs. Also,
it is critical to either have attitude information acquired much
faster than the imagery, by about an order of magnitude, or
have the attitude and the imagery synchronized. If either of
these conditions is not met, an attitude aided solution will
give much worse results than a non-aided solution.

VII. RESULTS: VO COMBINED WITH RANGING

This section transitions to demonstrate the ability to bound
the covariance of VIO estimates using range measurements
to one other vehicle with known global pose. The same
VO algorithm, with attitude aiding, is utilized throughout
the research in this section. We begin by reviewing high-
level results and then we will descend down into greater
detail. First we will review the filter performance using the
overall root-mean squared (RMS) error in North and East
directions and examine what happens as we change the

update rate for both VO data and Ranging data. Next we
examine some approximated ANEES results (19) for some
of the filter states, which provides some insight into how
consistent the filter is performing. We do not have truth
data for all the filter states and some of this data had to
be approximated, e.g. velocity information obtained through
a dirty-derivative of the position data; nevertheless looking at
ANEES provides insight into the performance of the filter.
Some of the state estimates from the many generated are
next examined in detail to get a better perspective on what
the provided overall RMS and ANEES numbers really mean.
Finally, we provide numerical analysis of the Observability
Index (11) throughout the flight.

A. RMS Results

The filter was run across a wide range of update rates
for the VO and Ranging measurements and the overall RMS
values were extracted for each run. The VO update rate was
varied from 0 to 9 Hz, in integer steps. The Ranging was
varied from 0 to 20 Hz in integer steps and then additionally
at lower rates between 0 and 1Hz: 0.01Hz to 0.09Hz by
0.01Hz steps and 0.1Hz to 0.9Hz by 0.1Hz steps. Running
the filter across this wide swath of measurement update rates
allows visibility into trends in the data. Insight into how the
filter performance varies with the VO and Ranging update
rates is apparent.

We note that the filter was not tuned independently for
each of these iterations and so is not optimal at all points
shown. Tuning was completed using the first 300 seconds of
data from the flight on a few selections of VO and Ranging
update rates, predominately at 3 Hz VO and 4 Hz Ranging.



Fig. 13. A comparison of the roll angle estimated from the two autopilots over the flight. Notice that the Payload Pixhawk did not have access to GPS
information, consequently it does not have observability into the accelerometer biases, causing the attitude estimates to drift.

Then, the entire batch at all ranging and VO update rates
was computed using the same tuning parameters. Again, this
approach is sub-optimal but makes the analysis feasible. The
VO algorithm was not able to compute solutions over the
entire flight for the 1 Hz and 2 Hz settings. The 1 Hz results
are excluded, as the duration was only about 130 seconds.
The 2 Hz so these results are still shown, but the data reach
only 552 seconds into the flight, instead of the full 720. The
lines for 0Hz in the figures below signify that VO information
was not used, only internal autopilot sensors and range data.
The datapoints at 0Hz Ranging correspond to cases where
no range data was utilized, only internal sensors and VO
measurements.

Figure 14 provides a glimpse of the overall RMS error in
the north position of the lower plane. The lines in the figure
correspond to different rates of VO measurements, noted by
the legend. The x-axis refers to the Ranging measurement
update rates. Note how quickly the RMS error drops at
the beginning of the figure; it does not take a high rate of
Ranging data to begin to bound the drift in the filter. This is
shown more clearly in a zoomed-in version of Figure 14 in
Figure 15.

By about 3Hz Ranging, there is minimal improvement by
including Ranging data any faster. A similar story is found
in examining the East RMS error in Figure 16 below.

Figures 14 and 16 also illustrate that there is a significant
difference in the performance of the filter when VO data is
removed, shown by the line labeled “0” and the performance
with some VO data, all the remaining plot lines. This
difference could be made more drastic by a state of the art
VO algorithm; the algorithm we utilize is a basic comparison
of two images and does not do any advanced processing,
such as tracking features over multiple frames or bundle
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Fig. 14. The overall RMS error is shown in the North direction for position,
at different VO update rates (different lines), and for different Ranging
update rates (along X axis). Notice how the RMS error drops dramatically
with the introduction of range data. By about 3Hz or so, there is minimal
improvement for faster range measurement update rates. Note the differences
between not having VO data (0 line) and having range data (the other lines).
The filter was largely tuned on 3Hz VO data.

adjustment. There is also some difference in performance
among the different VO rates, but not by a large margin;
3Hz VO data is a better performer over many range rates in
the two figures. Recall that tuning of the filter was completed
using the first 300 seconds of data from the flight on a few
selections of VO and Ranging update rates, predominately
3 Hz VO and 4 Hz Ranging. Then, the entire batch at all
ranging and VO update rates was computed using the same
tuning parameters. Consequently, the 3Hz line represents a
bounding of the performance of this VO system and any of
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Fig. 15. Zoomed version of Figure 14, showing the steep descent of RMS
error with range rate. It was found that even Ranging data at 0.01 Hz (once
every 100 seconds) was sufficient to bound the covariance of the filter. Also,
for clarity, the line for 0 Hz VO was removed.
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Fig. 16. The overall RMS error in the East direction is shown, at different
VO update rates (lines), and for different Ranging update rates (along x
axis). Notice how the RMS error drops dramatically with the introduction
of range data. By about 3Hz or so, there is minimal improvement for faster
range measurement update rates. Note the differences between not having
VO data (0 line) and having range data. The filter was largely tuned on 3Hz
VO data.

the other VO update rates could be tuned down to close to
this performance.

B. ANEES

Figure 17 displays the ANEES over the whole batch of
VO and Ranging update rates. This computation of ANEES
only considers the 3 position states in the filter pn, pe and
pa and the associated reduced covariance. The ANEES for
all these lines should therefore be at 3 for all permutations
of VO and Ranging updates. On the whole, the filter is
inconsistent and the estimated covariance is smaller than the
true covariance actually is, with the only exception being
the 2 Hz VO results, which are slightly under-confident.
However, this inconsistency is not egregious. Detailed state
estimates will be shown in the next section, and as will be
seen, there are only a few periods of the 12 minute flight that

are responsible for the ANEES to be higher than it ought to
be.
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Fig. 17. This figure shows the ANEES for only the 3D position data
[pn, pe, pa], at different VO update rates (lines), and for different Ranging
update rates (X axis). The line for 0Hz VO is not visible in this figure, as it
was zoomed to show detail on the other lines. The ANEES for a consistent
filter in this scenario would lie at 3, since there are 3 states considered
in this calculation. Only the 2 Hz VO line is below 3, meaning that it is
slightly under-confident (covariance is slightly bigger than it actually is).

C. Detailed State Estimates

Detailed results of the filter performance for the state
estimates are discussed in this section. First we examine
state error estimates for the case of 5 Hz VO and 3 Hz
Ranging, one of the best cases shown in Figures 14 and 16.
Next the filter results at 8 Hz VO and 0.2 Hz Ranging are
shown to demonstrate the results with a slow Ranging update
and more middle of the road performance. Next a quick
review of the position results at 4 Hz VO and 0.01 Hz
Ranging are shown, demonstrating that bounding of the
filter covariance occurs even at that low Ranging rate. The
results for 0 Hz Ranging and then 0 Hz VO are then shown
to demonstrate that the filter performs as expected at the
extremes. Overall, the results will demonstrate a converging
but slightly overconfident filter; and most importantly, a
filter covariance that is bounded by the inclusion of Ranging
information to one other vehicle with known pose.

1) 5 Hz VO and 3 Hz Ranging: Figure 18 shows the errors
in the state estimates of the filter over the whole flight, with
VO updates at 5 Hz and Ranging updates at 3 Hz. Also
shown are 3σ bounds using the estimated covariance. Note
that the filter covariances remain bounded over the trajectory
even though Ranging data is available to only one landmark.
As discussed in Section IV, the complete observability of
the state is due to the combination of the yaw information
provided by the VO algorithm and the range to the one
known vehicle.

2) 8 Hz VO and 0.2 Hz Ranging: The errors in the states
for a different scenario are presented in Figure 19. Here, VO
data is received at 8 Hz and Ranging at 0.2 Hz. Similarities
to the the case in Figure 18 can be seen, including similar
locations in time where the filter estimates are not consistent.
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Fig. 18. This figure displays the error in the states (except wind states - no truth information was available) along with 3σ bounds of the covariances for
the scenario of 5 Hz VO and 3 Hz Ranging. For the most part, the states are well-behaved, meaning they remain bounded by the 3σ bounds, even though
the accuracy is less than desirable. However, there are portions of the trajectory where errors in each state do exceed the bounds; ψ is particularly prone
to overconfidence.

Note the larger scale of the y-axes in Figure 19. The 3σ
bounds are larger and the performance in pe is worse than
before. The key point here is that the horizontal position is
still bounded, even at the low rate of 0.2 Hz Ranging.

3) 0.01 Hz Ranging: Figure 20 demonstrates that the
horizontal position is still bounded at the even lower rate
of 0.01 Hz Ranging for 4 Hz VO; although the performance
is quite worse than those with higher Ranging rates, as ex-
pected from Figure 14. This fact demonstrates that infrequent
ranging data from a single known location is sufficient to
bound the drift of a VIO estimation approach for fixed-wing
UAVs that has access to yaw and pressure information.

4) Range-only Measurements: Figure 21 shows the error
in the states when VO data is not available, but Ranging
data is received at 10 Hz. Figure 21demonstrates that the
divergent-convergent cycle behavior exist even when VO data
is not available. Note the drop in yaw (ψ) performance,
which demonstrates that the χ update from the VO is
providing the yaw information.

5) VO-only Measurements: Figure 22 plots the error in the
state for 5 Hz VO and 0 Hz Ranging. As expected, the pn
and pe estimates grow without bound since those positions
are unobservable without the range. If the VO were not also
providing yaw information through the χ measurement in
(6), ψ would also be unobservable.

D. Numeric Observability

An evaluation of the numerical characteristics of the
observability index can be completed by an inspection of
the rank of the matrix (11) at all timesteps within the flight.
If (11) is not full rank, the system is not observable.

Figure 23 shows the rank of (11) evaluated using the filter
states and inputs at about 4 Hz throughout the entire flight
for the case of 5 Hz VO and 2 Hz Ranging. Note that it is full
rank throughout the flight, as was expected from the analytic
expression. Range to only one known landmark and the yaw
information from the VO are sufficient to fully constrain the
covariance of a VIO plus pressure system onboard a fixed-
wing UAV. We note that the rank of O was also full rank for
every other combination of VO and Ranging update rates,
with the exception of 0 Hz Ranging.

1) Condition Number: The problem with only analyzing
the rank of (11) is that there is no additional information
provided, no ability to see how strong the local observability
condition is. The conjecture we pose, without proof as yet,
is that if the observability index is poorly conditioned then
the flow of information from the measurements to the states
will be sensitive to errors and more fragile.

The condition number of a matrix gives an indication
of the sensitivity of that matrix to changes in input for
a computation like Ax = b. If the matrix A is poorly
conditioned then small changes (or errors) in the input vector
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Fig. 19. The error in the states are shown with the exception of wind states, where truth data was not available, along with 3σ bounds of the covariance
for the scenario of 8 Hz VO and 0.2 Hz Ranging. The results are fairly similar to those in Figure 18 above. Note differences in the scales on the y-axes.
The largest difference from the results in Figure 18 is the performance in pe.
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Fig. 20. The error in the horizontal position states are shown along with
3σ bounds of the covariance for the scenario of 4 Hz VO and 0.01 Hz
Ranging. The position covariance is bounded, even though ranging data is
only received every 100 seconds.

x can result in large changes (or errors) in the output vector
b. The condition number is defined as a ratio of the largest
to the smallest singular values of a matrix. Ideally, it should
be equal, or close to, one for a well-conditioned matrix.

Recall that the observability index O represents how
information from the measurements and the prediction model
flows to the states. If the rank of (11) is deficient it means
that there is insufficient information from the measurements
and model to distinguish the state at one time with the state

at another time.
Analytically, (11) was shown to be full rank in Section IV.

However, there are one or two segments of the flight where
state estimates begin to diverge and then the filter quickly
re-converges. This is clearly seen in the detailed state plots
above as well as the attached video of the 3D plots.

Figure 24 plots the condition number of (11) over the
whole flight, again for 3 Hz VO update rate and 1 Hz
Ranging. The condition is quite poor for some periods of
the flight.

Although a little difficult to see from Figure 24, the
minimum condition number for this scenario is 303, the mean
is 3.1e3 and the mode is 386. There are several times in the
flight when the condition number reaches very high (¿6e4)
and once were it ascends to over 2.2e5, clearly denoting
that the system is approaching being unobservable from a
numerical stability standpoint.

The condition number of (11) throughout the flights of
all the different range and update rates are similar in nature,
denoting that different rates of measurement are not affecting
the quality of the observability of the system. To improve the
condition number, and thus the observability of the system,
more measurements are needed. This result is not surprising,
due to the expectations going into the program. Range
to another landmark would provide this extra information,
changing the condition of O and improving the performance.
However, it is important to realize that range to a single
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Fig. 21. This figure displays the error in the states, again with exception of the wind states, along with 3σ bounds of the covariance for the scenario of
0 Hz VO and 10 Hz Ranging, in other words, VO data was not used for these results. Note differences in the scales on the y-axes.
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Fig. 22. This figure displays the error in the states along with 3σ bounds of the covariance for the scenario of 5 Hz VO and 0 Hz Ranging, in other
words, Ranging data was not used for these results. The horizontal position will grow without bound in this case, as those positions are unobservable
without Ranging information.
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Fig. 23. The rank of (11) for the case of 5 Hz VO and 2 Hz Ranging
updates. Note that the matrix is full rank throughout the flight, length(x) =
9. The O matrix is also full rank for every other combination of VO and
Ranging updates, with the exception of 0 Hz, or no Ranging information.
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Fig. 24. The condition number of (11) for the case of 5 Hz VO and 2 Hz
Ranging updates, note the exponent applied to the y-axis. Even though the
matrix is full rank throughout the flight, the matrix is poorly conditioned
in several periods of the flight. It is not surprising, based on this result
shown here, that there are portions of the trajectory where the filter begins
to diverge and then re-converges.

landmark can drastically improve system performance of a
GPS-denied, visually guided UAV by bounding the drift in
the planar position states.

VIII. CONCLUSIONS

Several key conclusions can be drawn from the results
demonstrated above. The first is that attitude data derived
from cheap, consumer-grade MEMS IMU sensors is suffi-
ciently useful to improve the performance of vision naviga-
tion algorithms. The improvement is useful for both relative
algorithms, such as VO, and global algorithms, such as
PNP, for comparing imagery to known maps. We found
this relationship to be fairly constant over the number of
features found. It was also found that the slower the rate
of imagery, the tighter the requirements on the accuracy of
the attitude estimates are. Also, it is critical to either have
attitude information acquired much faster than the imagery,

by about an order of magnitude, or have the attitude and
the imagery synchronized. If either of these conditions is
not met, an attitude aided solution will provide much worse
results than a non-aided solution.

The second key conclusion is that range to a single vehicle
with known global position provides a tremendous benefit
to a vehicle using a relative vision approach, like VO. The
range information allows the vehicle to constrain the global
drift and make the vision data begin to match up with the
true trajectory, when pressure and magnetometer data are
available. A key take-away is that even though the global
position is observable in this scenario, the solution is poorly
conditioned and can exhibit regions of divergence before the
solution re-converges. It is possible that the solution at those
points becomes multi-modal, with several positions being
near-equally likely. Perhaps the use of a multi-modal filter,
like a particle filter, would alleviate some these issues. In the
future we plan to investigate the use of a particle filter on
this problem, through the Scorpion framework.

The third key conclusion is a follow-on to the second.
Ranging data is not needed at high rates to be effective
at constraining global drift. It was observed that rates of
0.01 Hz, or once every 100 seconds, was sufficient to bound
the filter covariance over the 12 minute flight available for
this data analysis. Granted, faster rates than 0.01 Hz do help
with the accuracy of the solution, but the improvement is
minimal above an update rate of about 3 Hz, for the scenario
investigated.
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