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Abstract
We use the Baranger model to compute collisional broadening and shift rates for the D1 and
D2 spectral lines of M + Ng, where M = K, Rb, Cs and Ng = He, Ne, Ar. Scattering matrix
elements are calculated using the channel packet method, and non-adiabatic wavepacket
dynamics are determined using the split-operator method together with a unitary
transformation between adiabatic and diabatic representations. Scattering phase shift
differences are weighted thermally and are integrated over temperatures ranging from 100 K to
800 K. We find that predicted broadening rates compare well with experiment, but shift rates
are predicted poorly by this model because they are extremely sensitive to the near-asymptotic
behavior of the potential energy surfaces.

Keywords: atomic spectra, line broadening, line shift, pressure broadening, collision
broadening, quantum mechanics, computational physics

(Some figures may appear in colour only in the online journal)

1. Introduction

This research uses the Baranger model to simulate colli-
sional line broadening of relevant alkali vapor–noble gas
mixtures under varied conditions (e.g., varying temperature
and pressure). The particular mixtures of interest are those
in typical use in optically pumped alkali laser (OPAL) sys-
tems. The Baranger model builds directly from the work
of Jabloński [1] and is a fully quantum-mechanical model.
Like Anderson–Talman [2–4], Baranger assumes the refer-
ence frame of the emitter/absorber atom. Baranger uses the
impact approximation, which assumes that the duration of a

1 Author to whom any correspondence should be addressed.
Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

collision is much shorter than the time between collisions. The
impact limit forces one to focus more on the core features
of the collision-broadened spectral line than on the wings or
satellite features. The only predictions found in the literature
have calculated broadening and shift under adiabatic potentials
for lighter alkali (Li, Na, K) perturbed by He [5, 6], primarily
for astrophysical application. These calculations are limited by
the semi-classical treatment of collisions [7, 8] and the neglect
of fine structure transitions [6]. Recent interest in the behav-
ior of the non-adiabatic fine structure transitions of atomic
alkali as they collide with noble gases has been generated by
applications in astrophysics and the development of OPALs
[9–15].

This research develops a model for line broadening in
which the time evolution of the alkali vapor–noble gas system
is handled through wavepacket propagation. The quantum-
mechanical time-evolution operator for the system is governed
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by the Hamiltonian, and we will use a fast Fourier trans-
form (FFT) and its inverse to transform the wavefunction of
the system between the momentum and position representa-
tions, as appropriate, in order to operate with the momentum-
dependent and position-dependent portions, respectively, of
the time-evolution operator. The normal method of examin-
ing atomic collisions is to approximate the colliding system of
two atoms as a diatomic molecular system. This allows one to
describe the system using appropriate Hund’s states [16, 17].
It is through this approximation to molecular dynamics that we
will utilize difference potentials in the context of this research.

This research exhibits several new features which set it
apart from the current state of the field. First, the full ab ini-
tio potential energy surfaces are used; these potential energy
surfaces have been calculated through many-body calculations
by Blank [18, 19]. Second, collisions are treated quantum-
mechanically and non-adiabatically and include spin–orbit
and Coriolis coupling. Third, calculations are made with the
only approximations beyond those of the impact limit being
those imposed by the Boltzmann (thermal) distribution of ener-
gies [20]. Finally, this research uses as its foundation the same
potential energy surfaces as the work of Blank [19, 21], which
allows us to compare results from the Anderson–Talman and
Baranger models for the same set of potential energy surfaces.
We can use this approach to deconvolvedifferences in the mod-
els from differences in computational methods which might
yield dissonant results.

2. S-matrix elements

The Baranger model requires that we know the S-matrix (scat-
tering matrix) elements in order either to integrate directly
using or to perform the calculation of phase differences which
are then integrated. Here, we begin by generating initial states
which are then used to generate Moller reactant states. The
Moller reactant states are propagated through an interaction
under the action of the Hamiltonian and back out to calculate
Moller product states and then correlation functions. We then
use the Fourier transform of the correlation function to calcu-
late the S-matrix elements which we can use in the Baranger
model.

2.1. Generation of Moller states

The scattering operator Ŝ identifies how reactants |Ψin〉 in the
infinite past map to products |Ψout〉 in the infinite future,

|Ψout〉 = Ŝ|Ψin〉

The scattering operator can be defined in terms of the channel
Moller operators [22, 23],

Ŝ = Ω†
−Ω+

where, in atomic units,

Ω± = lim
t→∓∞

[exp(+iHt) exp(−iHt)].

We can use completeness to write the incoming reactant (or
outgoing product) state in the form

|Ψin(out)〉 =
∫ ∞

−∞
dkγ |kγγ〉〈kγγ|Ψin(out)〉

=

∫ ∞

−∞
dkγη+(−)|kγγ〉

where the |kγγ〉 are a separable set of reactant and product
states and γ represents the full set of internal quantum states of
the reactants and products [24, 25]. The channel Moller oper-
ators are then used to compute reactant and product Moller
states:

|Ψ±〉 = Ω±|Ψin(out)〉.

The method we use is to begin with a Gaussian wavepacket
at t = 0. We propagate the wavepacket backward as if it were
a free particle for a long enough time that it does not over-
lap significantly with the centrifugal effective potential. We
then propagate this ‘intermediate Moller state’ forward in time
under the full Hamiltonian until t = 0. This effectively gener-
ates an intermediate state (at infinity) that would have evolved
into a pure Gaussian wavepacket under no potential but that
instead evolves into the relevant Moller reactant state under the
full Hamiltonian of the system. Since we calculate the Moller
reactant states in the asymptotic limit of the potential energy
surfaces, they do not depend on the molecular state of the
system but only on J and the reduced mass, μ, of the system.

2.2. Calculation of the correlation function

Having calculated the Moller reactant state, we propagate the
wavepacket through the collision process to determine the
Moller product state. The correlation function is a measure of
the time-dependent overlap between the Moller product state
and the Moller reactant state; that is, the projection of the
Moller product (time-evolved) state onto the Moller reactant
(initial, or t = 0) state or, in our collision process, the projec-
tion of the outbound state (the state after the collision) onto
the inbound state (the state before the collision). The time-
dependent correlation function, C(t), has the form (in atomic
units)

C(t) = 〈Ψ−| exp(−iHt)|Ψ+〉. (1)

We begin our propagation at an interatomic separation of
100 Bohr, and we consider anything farther out than 20 Bohr to
be ‘asymptotic’ with regard to the interaction potential. How-
ever, the centrifugal effective potential reaches farther out for
relevant values of the total angular momentum J, so even if we
place the initial wavepacket at around 100 Bohr we still see a
significant difference with J. We therefore need to generate the
relevant Moller reactant states, one for each value of J, which
we can use in the channel packet method [24]. Given infi-
nite amounts of time and computational resources, the obvi-
ous method of generating a Moller reactant state would be to
generate a Gaussian wavepacket starting an infinite amount of
time before the collision (t = −∞) and then propagate that
wavepacket until t = 0 to form the initial state. Since time and
computational resources are finite, however, we must choose
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a suitably large time for ‘t = −∞’ such that the Moller reac-
tant states can be calculated in a reasonable amount of time
but that the wavepacket at the time we call ‘t = −∞’ does
not overlap so much with the centrifugal effective potentials
for relevant values of J that it misbehaves significantly at low
kinetic energies.

In order to calculate the scattering matrix, or S-matrix, ele-
ments, we first calculate the correlation function. We propa-
gate the Moller reactant states through the collision process
to determine the Moller product states and then calculate the
time-dependent correlation functions using equation (1). The
wavepacket is propagated using the split operator method, in
which the time evolution of wavepackets is given in atomic
units by [26](

Φ1(R, δt)
...

)
= exp

[
−i

(
H11 . . .

...
. . .

)
δt
�

](
Φ1(R, 0)

...

)

≈ exp

[
−i

(
V11 . . .

...
. . .

)
δt
2�

]

× exp

[
−i

(
T11 . . .

...
. . .

)
δt
�

]

× exp

[
−i

(
V11 . . .

...
. . .

)
δt
2�

](
Φ1(R, 0)

...

)
.

We use a unitary transformation between adiabatic and dia-
batic representations to ensure that the potential and kinetic
energy terms operate correctly.

2.3. The Hamiltonian

For the system of A2Π1/2, A2Π3/2, and B2Σ1/2 states, the fully-
coupled Hamiltonian is a 6 × 6 matrix [24]:

H = − 1
2μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d
dR

0 0 0 0 0

0
d

dR
F 0 0 0

0 F
d

dR
0 0 0

0 0 0
d

dR
0 0

0 0 0 0
d

dR
F

0 0 0 0 F
d

dR

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

+ Veffective

(2)
where

Veffective =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Π+
a(R)

2
0 0 0 0 0

0
2Σ+Π

3
+

a(R)
2

−
√

2
3

(Σ−Π) 0 0 0

0 −
√

2
3

(Σ−Π)
Σ+ 2Π

3
+ a(R) 0 0 0

0 0 0 Π+
a(R)

2
0 0

0 0 0 0
2Σ+Π

3
+

a(R)
2

√
2

3
(Σ−Π)

0 0 0 0

√
2

3
(Σ−Π)

Σ+ 2Π
3

+ a(R)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J(J + 1) − 3
4

2μR2
−

[3(J − 1
2 )(J + 3

2 )]1/2

2μR2
0 0 0 0

− [3(J − 1
2 )(J + 3

2 )]1/2

2μR2

J(J + 1) + 13
4

2μR2
0 0 − 2(J + 1)

2μR2
0

0 0
J(J + 1) + 3

4

2μR2
0 0 − J + 1

2μR2

0 0 0
J(J + 1) − 3

4

2μR2
−

[3(J − 1
2 )(J + 3

2 )]1/2

2μR2
0

0 − 2(J + 1)
2μR2

0 −
[3(J − 1

2 )(J + 3
2 )]1/2

2μR2

J(J + 1) + 13
4

2μR2
0

0 0 − J + 1
2μR2

0 0
J(J + 1) + 3

4

2μR2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3)

The omission of the J+1
2μR2 terms in the (2, 5), (3, 6), (5, 2),

and (6, 3) elements of the third matrix has a small effect
on our calculations, but it permits that 6 × 6 matrix to be
approximated in 3 × 3 block-diagonal form. The remainder of
our calculations will use the upper-left 3 × 3 block-diagonal

portion of the Hamiltonian with an associated reduction in
computational effort.

2.3.1. Coupled (3 × 3 matrix). We begin from equation (3),
which we call the fully-coupled 6 × 6 potential energy matrix
in the diabatic representation. The first approximation we
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make is the omission of the J+1
2μR2 terms as discussed above,

which transforms equation (3) into block-diagonal form with
two identical 3 × 3 blocks; we use the top-left 3 × 3 block

with the understanding that each state is two-fold degenerate
in spin. We then have for our 3 × 3 coupled potential energy
matrix

Vcoupled =

⎛⎜⎜⎜⎜⎜⎜⎝
Π+

a(R)
2

+
J(J + 1) − 3

4

2μR2
− [3(J − 1

2 )(J + 3
2 )]1/2

2μR2
0

− [3(J − 1
2 )(J + 3

2 )]1/2

2μR2

2Σ+Π

3
+

a(R)
2

+
J(J + 1) + 13

4

2μR2
−
√

2
3

(Σ +Π)

0 −
√

2
3

(Σ+Π)
2Σ+Π

3
+

a(R)
2

+
J(J + 1) + 3

4

2μR2

⎞⎟⎟⎟⎟⎟⎟⎠ (4)

where Π and Σ are diabatic potentials. We use this effective
potential matrix to generate coupled S-matrix elements for
alkali-metal atoms colliding with noble-gas atoms.

2.3.2. Uncoupled (three 1 × 1 matrices). We generate
uncoupled S-matrix elements by making the further approx-
imation that the off-diagonal Coriolis terms (the (1, 2) and
(2, 1) elements of the 3 × 3 matrix) are zero. This allows us
to diagonalize the potential matrix in terms of the adiabatic
potentials of the three (now uncoupled) excited states:

Vuncoupled =

⎛⎜⎜⎜⎜⎜⎜⎝
V(Π3/2) +

J(J + 1) − 3
4

2μR2
0 0

0 V(Σ1/2) +
J(J + 1) + 13

4

2μR2
0

0 0 V(Π1/2) +
J(J + 1) + 3

4

2μR2

⎞⎟⎟⎟⎟⎟⎟⎠ . (5)

2.3.3. The ground state (1 × 1 matrix). So far we have only
been concerned with excited states, but we also require calcu-
lations for the ground state of the system in order to calculate
scattering phase shift differences, which in turn we need for
integration within the Baranger model. The ground state does
not couple to any of the excited states through collision (only
through radiation), so we can express the ground state poten-
tial as a 1 × 1 matrix that can be placed in block-diagonal
arrangement with the 3 × 3 matrix to form a 4 × 4 matrix.
Such a matrix treatment is not really necessary, however, and
we use it only for the sake of computational efficiency. The
1 × 1 ground state effective potential matrix is:

Vground =

(
V(ground) +

J(J + 1) + 1
4

2μR2

)
. (6)

2.4. Calculation of the S-matrix elements

Once we have the correlation functions from equation (1), we
can calculate the scattering matrix elements, S, by calculating
the FFT of the correlation function and dividing by the channel
packet expansion coefficients:

S =
[|k′‖k|]1/2

2πη∗−η+

∫ ∞

−∞
exp(iHt)C(t) dt. (7)

This yields a scattering matrix element as a function of energy.
Since the total Hamiltonian of the system depends on J, so does
the scattering matrix element. We thus have S-matrix elements
as functions of J and E.

2.5. Calculation of scattering phase shifts

While one use the squared magnitudes of the S-matrix ele-
ments to calculate associated scattering cross sections [24], we
use their real and imaginary parts to calculate a phase shift
corresponding to each S-matrix element:

φ = arctan
Im(S)
Re(S)

. (8)

Since the arctangent function is periodic, we have to check
for the start of a new cycle in phase, and then add 2π to allow
the total phase to accumulate. We then calculate the scattering
phase shift difference between a given excited state and the
ground state:

θJ(E) = φexcitedstate − φgroundstate. (9)

Once we have the scattering phase shift difference for the
entire range (in J and E) over which the collision can be said
to occur, we can subtract an overall constant phase from the
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entire data set; here we determine an arbitrary zero of phase,
in the same way that the zero of potential energy is an arbitrary
choice.

3. Integration of the Baranger equation

Our work with the Baranger model begins with the line profile:

φ(τ ) =
∑

i f

exp(−iωi f τ ) exp[−ng(τ )] (10)

where n is the number density of perturbers (that is, noble gas
atoms) and the function g(τ ) is an integration of the single-
perturber time-evolution operator over the collision phase
space and the distribution of velocities [16, 20, 27–30]:

g(τ ) = α0 + iβ0 + (α1 + iβ1)τ =

∫ ∞

0
f (v) dv

∫ ∞

0
2πbdb

×
∫ ∞

−∞
v dt

[
1 −

(
u−1

f f uii

)
AngularAverage

]
. (11)

With an ideal gas, a Boltzmann distribution, and the Langer
modification [31] for the relation between impact parameter
and angular momentum b = L

�k =
√

l(l+1)
k , we find the broad-

ening and shift coefficients, respectively:

nα1

P
=

√
π

2μ3
�

2(kBT)−5/2
∞∑

E=0

exp(− E
kBT

)ΔE

×
∞∑

J=0.5

(2J + 1)[1 − cos θJ(E)] (12)

nβ1

P
= −

√
π

2μ3
�

2(kBT)−5/2
∞∑

E=0

exp(− E
kBT

)ΔE

×
∞∑

J=0.5

(2J + 1) sin θJ(E). (13)

The left-hand side of each of equations (12) and (13) gives
the broadening and shift, respectively, per unit pressure at a
given temperature. Here we have reinserted � as appropriate
to end up with a calculation of broadening and shift in units of
MHz/torr. These results give half-widths so as to be consistent
with Blank [21].

We can recast these in terms of rates per concentration
rather than rates per pressure. We do this by multiplying
equations (12) and (13) by kBT = P

n (and making sure to
convert units of pressure appropriately). Results of this con-
version have units of MHz

m−3 or ×1012 s−1

cm−3 and further can be
converted to the usual theoretical units of wavenumbers per
concentration ( cm−1

cm−3 ) [21] by converting frequencies to cor-
responding wavenumbers (by dividing by the speed of light,
ν̃ = 1

λ
= ν

c ) so we have the correspondence 1
c · 10−21 MHz

m−3 =

10−9 s−1

cm−3 · 1
c ≈ 10

3 × 10−20 cm−1

cm−3 . The broadening and shift
rates, in wavenumbers per concentration (wpc), are

αwpc
1 =

√
π

2μ3

�
2

c
(kBT)−3/2

∞∑
E=0

exp(− E
kBT

)ΔE

×
∞∑

J=0.5

(2J + 1)[1 − cos θJ(E)] (14)

βwpc
1 = −

√
π

2μ3

�
2

c
(kBT)−3/2

∞∑
E=0

exp(− E
kBT

)ΔE

×
∞∑

J=0.5

(2J + 1) sin θJ(E). (15)

In order to calculate the broadening and shift rates, we
must perform the sums in equations (14) and (15) over kinetic
energy (E) and total angular momentum (J). J is constrained
to be of half-integer quantity, while E is quantized by the same
energy resolution as in the calculation of S-matrix elements
[24]. In this case, our energy resolution is ΔE = 2−13 × 0.01
Hartree.

We use the ab initio potentials developed by L Blank
[18, 19] to calculate scattering matrix (S-matrix) elements by
the channel packet method. We use those S-matrix elements to
calculate the phase shift of a given state during a collision. We
use the phase shifts (and, more importantly, the phase differ-
ence between a given excited state and the ground state) rather
than a more direct calculation using S−1

f f Sii because calcula-
tions of the phase differences provides an intermediate check
of the viability of the calculation (that is, whether the phase
difference vanishes at high values of E and J). We then use
the calculated phase difference θJ(E) to numerically integrate
equations (14) and (15) to find the broadening and shift rates
of the given spectral line.

Figure 1 is a contour plot of [1 − cos θJ(E)] times the Boltz-
mann distribution for the temperature of interest, which gives
us most of what is summed over energies and angular momenta
in equation (12). Figure 2 shows a similar plot of [sin θJ(E)]
times the Boltzmann distribution for the temperature of inter-
est, which gives us most of what is summed over energies and
angular momenta in equation (13). We can see immediately
the effective (E, J) ‘collision phase space’, or region of interest
in which the collision can be expected to broaden or shift the
spectral line at that temperature. Here the Boltzmann distribu-
tion acts as an envelope for the function θJ(E), which does not
itself depend on temperature. We can therefore use the same
phase difference data for calculations in a wide range of tem-
peratures, limited primarily by the cutoff energy defined by the
limits of our phase difference data (which provides an upper
limit for perturber kinetic energy and thus an upper limit for
temperature).

We then sum the results shown in figures 1 and 2, as pre-
scribed by equations (12) and (13), respectively, to find the
broadening and shift coefficients at a given temperature.

Now, we will consider addition schemes to account for
collisional coupling between the excited states.

3.1. No addition (no collisional coupling)

Here, we assume no collisional coupling. For example, if the
system is in the A2Π1/2 state before the collision, it will be
in the A2Π1/2 state after. This is particularly effective for the
A2Π1/2 state, which couples negligibly weakly to the other

5
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Figure 1. Contour plot of [1 − cos θJ(E)]× Boltzmann distribution for the A2Π1/2 state of the uncoupled case of Rb + He, at T = 394 K.

Figure 2. Contour plot of [sin θJ(E)]× Boltzmann distribution for the A2Π1/2 state of the uncoupled case of Rb + He, at T = 394 K.

states during collision, but we will deal with the coupling of
the A2Π3/2, and B2Σ1/2 states in later sections. This allows us
to compare our computational implementation of the Baranger
model with the results of the Anderson–Talman model [2–4,
18, 21].

So far, we have used a Boltzmann distribution of kinetic
energies, whereas the usual implementation of the Ander-
son–Talman model assumes all collisions occur at the ther-
mal average velocity. If we change our implementation of the

Baranger model to use a thermal average kinetic energy, the
broadening and shift rates become

αwpc
1 =

π2

4
�

2

c

√
1

2μ3
Ē1/2

∞∑
J=0.5

(2J + 1)[1 − cos θJ(E)]

βwpc
1 = −π2

4
�

2

c

√
1

2μ3
Ē1/2

∞∑
J=0.5

(2J + 1) sin θJ(E).
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Figure 3. Broadening rates for uncoupled states of Rb + He.

Figure 4. Shift rates for uncoupled states of Rb + He.

Figures 3 and 4 show broadening and shift rates versus tem-

perature for each of the uncoupled states in Rb + He, and we

have calculated the broadening and shift rates for the A2Π1/2,
A2Π3/2, and B2Σ1/2 excited states using the Baranger model

and plotted those results along with equivalent calculations

using the Anderson–Talman model by Blank [21].

3.2. Allard addition

Allard and Kielkopf point out that such a calculation is
‘nontrivial in all but two-level atoms (atoms with only one
potential difference curve, or adiabatic processes) because
of fine-structure transitions between excited states that occur
during the collision’ [16]. That is, fine-structure mixing
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Figure 5. Broadening rates for D1 lines, Allard coupling.

Figure 6. Shift rates for D1 lines, Allard coupling.

produces a set of coupled equations which must be solved
numerically; further, such calculations were prohibitively
computationally-intensive at that time. However, this is a
critical problem in an OPAL because a two-level system
generally will not perform as a laser. Such effects are part
of the physical processes involved in spectral line broaden-
ing. A perturber can, for instance, propagate inward (toward
the emitter atom) along one potential surface, go through
a transition, and then propagate outward (away from the

emitter atom) along a different potential surface [16, 17,
31, 32].

In order to account for coupling in the 2P3/2 manifold dur-
ing collision, we perform what we call ‘Allard addition’ (or
‘Allard coupling’ [16, 20]), which couples the A2Π3/2 and
B2Σ1/2 states by weighting their phase differences equally. As
a result, equations (14) and (15) are changed (only for the D2

line; the D1 line is calculated as in the uncoupled case) in the
following way:
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Figure 7. Broadening rates for D2 lines, Allard coupling.

Figure 8. Shift rates for D2 lines, Allard coupling.

αwpc
1 =

√
π

2μ3

�
2

c
(kBT)−3/2

∞∑
E=0

exp(− E
kBT

)ΔE

×
∞∑

J=0.5

(2J + 1)[1 − 1
2

cos θJ
f 1(E) − 1

2
cos θJ

f 2(E)]

(16)

βwpc
1 = −

√
π

2μ3

�
2

c
(kBT)−3/2

∞∑
E=0

exp(− E
kBT

)ΔE

×
∞∑

J=0.5

(2J + 1)[
1
2

sin θJ
f 1(E) +

1
2

sin θJ
f 2(E)]

(17)
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Figure 9. Broadening rates for D1 lines, Baranger coupling.

Figure 10. Shift rates for D1 lines, Baranger coupling.

θJ
f 1 and θJ

f 2 are the uncoupled scattering phase shift differences
corresponding to the two states on the 2P3/2 manifold (that is,
the A2Π3/2 and B2Σ1/2 states). Figures 5 and 6 show the broad-
ening and shift rates as functions of temperature for the D1

lines for all nine M + Ng pairs, and figures 7 and 8 show the
broadening and shift rates as functions of temperature for the
D2 lines for all nine M + Ng pairs.

3.3. Baranger addition

In the Allard addition case, the states in the 2P3/2 manifold
are coupled in a 50/50 split, as shown by the factors of 1

2 in
equations (16) and (17). We can modify the addition some-
what, to account for a variable coupling during collision; to
do this, we replace the factor of 1

2 with the probability for
being in each corresponding state after the collision, which
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Figure 11. Broadening rates for D2 lines, Baranger coupling.

corresponds to the square of each state’s corresponding S-
matrix element [16, 20, 30]. The broadening and shift coef-
ficients that result are similar to those resulting from Allard
addition, except the factors of 1

2 become variable coupling
coefficients that are based on the S-matrix elements, and the
phase shift differences are calculated using the 3 × 3 coupled
Hamiltonian from equation (4). The broadening and shift rates
using Baranger addition are:

αwpc
1 =

√
π

2μ3

�
2

c
(kBT)−3/2

∞∑
E=0

exp(− E
kBT

)ΔE

×
∞∑

J=0.5

(2J+1)[1− QJ
f 1 cos θJ

f 1(E) − QJ
f 2 cos θJ

f 2(E)]

(18)

βwpc
1 = −

√
π

2μ3

�
2

c
(kBT)−3/2

∞∑
E=0

exp(− E
kBT

)ΔE

×
∞∑

J=0.5

(2J + 1)[QJ
f 1 sin θJ

f 1(E) + QJ
f 2 sin θJ

f 2(E)]

(19)

or

αwpc
1 ≈

√
π

2μ3

�
2

c
(kBT)−3/2

∞∑
E=0

exp(− E
kBT

)ΔE

×
∞∑

J=0.5

(2J + 1)[QJ
f 1(1 − cos θJ

f 1(E)) + QJ
f 2(1 − cos θJ

f 2(E))]

(20)

βwpc
1 ≈ −

√
π

2μ3

�
2

c
(kBT)−3/2

∞∑
E=0

exp(− E
kBT

)ΔE

×
∞∑

J=0.5

(2J + 1)[QJ
f 1 sin θJ

f 1(E) + QJ
f 2 sin θJ

f 2(E)] (21)

where QJ
f 1 = |SJ

f 1(E)|2 = e−ζJ
f 1 and QJ

f 2 = |SJ
f 2(E)|2 = e−ζJ

f 2

are the normalized squares of the scattering matrix elements,

e−ζJ
f 1 and e−ζJ

f 2 are decay coefficients, θJ
f 1(E) and θJ

f 2(E) are
the coupled (3 × 3) scattering phase shift differences, and

QJ
f 1 + QJ

f 2 = e−ζJ
f 1 + e−ζJ

f 2 ≈ 1.
The D1 line broadening and shift coefficients are calcu-

lated using the coupled (3 × 3) scattering phase shift differ-
ences corresponding to the 2P1/2 manifold, and the D2 line
results depend on the two states on the 2P3/2 manifold. Here
we draw a distinction between two different things both called
‘coupling’; we have a coupling of the potential energy sur-
faces through action under the Hamiltonian (which are used
to generate S-matrix elements and phase shifts), and we have
coupling of phase shifts as a way of calculating what we mea-
sure as D1 and D2 lines instead of transitions from individ-
ual surfaces (this coupling we categorize as either ‘Allard’
or ‘Baranger’ coupling or addition). Figures 9 and 10 show
broadening and shift rates as functions of temperature for the
D1 lines of all nine M + Ng pairs in the Baranger addition
case, and figures 11 and 12 show broadening and shift rates as
functions of temperature for the D2 lines of all nine M + Ng
pairs in the Baranger addition case. Because this form of cou-
pling requires data about the behavior of the scattering matrix
elements and not just phase differences, these results cannot
be extended in the energy regime in the same way as the other
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Figure 12. Shift rates for D2 lines, Baranger coupling.

cases. Thus, the broadening and shift coefficients must be lim-
ited to lower temperatures in order to prevent error due to
truncation of the Boltzmann distribution at the maximum
energy. In this work, we limit calculations to a maximum
temperature of 500 K for the Baranger addition, whereas we
extend to 800 K for the Allard addition.

4. Discussion

The shift coefficients are extremely sensitive to the initial
Moller reactant states. This sensitivity is caused by the sine
term in equation (13); for small phase shift differences,
sin θJ(E) ≈ θJ(E) but cos θJ(E) ≈ 1, so small but nonzero
phase shift differences cause the integrand in equation (12) to
vanish but the integrand in equation (13) to remain nonzero.
This nonvanishing term then multiplies the Boltzmann distri-
bution and causes a J-independent ridge. Such a ridge appears
for any nonzero offset phase as well, but a small but nonzero
phase shift difference appears if the Moller reactant state gen-
eration has not propagated far enough into the distant past to
escape the centrifugal effective potential. We also believe that
the broadening is dominated by the close-in behavior of the
potential energy surfaces while the shift is extremely sensi-
tive to the near-asymptotic behavior of the potential energy
surfaces.

To calculate the phase shift differences, phase shifts for
the excited and ground states were extended linearly from
the energy limits of our calculations (E = 0.0075 Hartree) to
a larger energy (E = 0.012 Hartree) in order to accommo-
date calculations at higher temperatures. However, incorpo-
rating higher energy collisions to go to higher temperatures
also requires us to include higher values of J. For example,
the entire collision phase space for Rb + He at 100 K can

be handled with maximum energy of 0.002 Hartree and max-
imum J of 65.5. Increasing the temperature to 394 K requires
us to consider energies up to 0.007 Hartree and a maximum J
of 110.5 to capture the entire collision phase space. Increas-
ing the temperature to 800 K requires a maximum E of 0.012
Hartree and maximum J of 130.5 to capture the entire collision
phase space. In other words, calculating at higher temperatures
requires larger energies and larger values of J. We can extend
phase shifts linearly in energy, but we cannot extend in J with-
out losing critical information about that part of the collision
phase space. Calculations at significantly higher temperatures
will require calculations at higher values of J (and E) to capture
the full collision process. Such work will be necessary to per-
form broadening and shift calculations at higher temperatures
than about 800 K. There is good work ongoing that compares
with this research [33, 34].

Ultimately, agreement among broadening rates is not suffi-
ciently good to identify conclusively which model is ‘correct’
for a given set of ab initio potential energy surfaces, at least
at the temperatures at which experimental data have been
measured. In most cases, the predictions of the Baranger and
Anderson–Talman models diverge at low temperatures, so
low-temperature experiments may provide a needed discrimi-
nator between the models.

A potential source of error in this implementation of the
Baranger model is that the generation of the reactant Moller
states does not include the off-diagonal Coriolis terms for the
Hamiltonian, but include only the diagonal terms (that is, the
centrifugal effective potential). As before, we can examine the
reactant Moller states (at t = 0) and both the diagonal and
off-diagonal Coriolis terms. We find, however, that the off-
diagonal Coriolis terms do not contribute significantly to the
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Hamiltonian at separations as far as where we start the propa-
gation (100 Bohr), and thus ignoring the off-diagonal Coriolis
terms should not introduce a significant source of error.

There is still a great deal of theoretical work to be done in
this area, from the calculation of potential energy surfaces to
refinement of our scattering model and the Baranger model.
Any error in the ab initio potential energy surfaces is reflected
in the final results. In particular, we suspect errors in the sur-
faces for M + Ar because both the Baranger model and the
Anderson–Talman model give results that vary significantly
from experiment for these pairs. It is not clear to what degree
this implementation of the wavepacket propagation technique
and the Baranger model are sensitive to differences in the
potential energy surfaces. It is a theoretically straightforward,
but computationally intensive, process to replace the poten-
tial energy surfaces with new inputs. One could use different
classes of potential, such as the Lennard-Jones (6–12) poten-
tial [35, 36] that is commonly used in the Anderson–Talman
model. Hager has achieved some success with the Ander-
son–Talman model using a 6–8 potential [37], and such a
potential could be tested in the context of the Baranger model.
Testing different sorts of potentials with more localized and
controllable characteristics might give more information and
confirmation about what parts of the potential energy surfaces
give rise to which characteristics in the broadening and shift
rates and intermediate calculations such as the scattering phase
shift differences. There is work ongoing to generate better
potential energy surfaces [38] and to utilize them to simulate
reactions involving the higher manifolds [39].

The primary challenge to extending this model to predict
line shape shift and broadening for other atom–atom collisions
of interest is obtaining the appropriate scattering phase shifts
for the collision. This requires the atom–atom potential energy
curves associated with the spectral feature of interest along
with the governing Hamiltonian, here given for alkali-metal
noble-gas collisions in equation (3).

Another approach to generating Moller states might simply
start with a Gaussian wavepacket at a very large separation
distance, which could ameliorate the problem with generating
reactant Moller states; in essence, the Gaussian wavepacket
becomes our reactant state for which we can generate an ana-
lytic form. However, the improvement of a single problem is
counteracted by the introduction of two additional problems.
First, the reactant state has to be propagated through the colli-
sion process and back out to where it started; this counteracts
any computational savings one might have gleaned from the
lack of Moller state propagation. Second, propagating from a
larger separation requires a larger computational grid in order
to accommodate the space containing the wavepacket and the
origin, which in turn requires FFT code capable of accom-
modating such a large space. This second problem might be
lessened by adopting a moving reference frame that is just
large enough to accommodate the wavepacket as it spreads, but
we have not attempted this and we are unsure to what degree
new error might be introduced through the new propagation
algorithm.

Finally, we see only the distant past (or what we call the
‘infinite’ past) and distant future before and after the collision

[24]. Because we can only look at the distant past and future,
we are stuck with the impact limit of Baranger, which assumes
that the duration of a collision is short compared with the time
between collisions. Any work to take us out of the impact limit
will necessarily involve being able to view events that occur
during a collision, rather than just the distant past and future,
and will require a complete reworking of the computational
algorithm.
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