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Figure D.35:  A plot of the first and third coefficients by spot for sample 
B3 in the 1800-1200 cm-1 band.  There is significant overlap of all the 
spots in this band in both coefficients. 

 
Figure D.36:  A plot of the second and third coefficients by spot for 
sample B3 in the 1800-1200 cm-1 band.  Spots 1 and 3 appear separable 
from the other spots in the second coefficient, but there is no 
distinguishability between the spots in the third coefficient in this band. 
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D.2.4. 96 Hour Treatment (B4). 

 
Figure D.37:  A plot of the first and third coefficients by spot for sample 
B4 in the 1220-850 cm-1 band.  Spots 2, 4 and 5 are clearly separable in 
the first coefficient, but there is no separation in the third coefficient 
between the spots in this band. 

 
Figure D.38:  A plot of the second and third coefficients by spot for 
sample B4 in the 1220-850 cm-1 band.  There is no separation between 
the spots in either coefficient in this band. 
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Figure D.39:  A plot of the first and third coefficients by spot for sample 
B4 in the 1800-1200 cm-1 band.  As with the 1220-850 cm-1 band, there is 
separation in the first coefficient between spots 2, 4, and 5.  There is no 
separation in the third coefficient in this band. 

 
Figure D.40:  A plot of the second and third coefficients by spot for 
sample B4 in the 1800-1200 cm-1 band.  Spots 4 and 5 are separable in 
the second coefficient, but there is no distinguishability between the 
remainder of the spots.  There is no separation in the third coefficient in 
this band. 
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D.3.  Time-Dependent Behavior 

 Figures D.41-D.56 are plots of the a1 vs. a3 and a2 vs. a3 coefficients for samples 

B1-B4 in the 1220-850 cm-1 (8.2-11.8 μm) and 1800-1200 cm-1 (5.6-8.3 μm) bands.  The 

main discussion about investigating the existence of time-dependent behavior in the 

coating material can be found in Chapter 4.  These figures are included here for 

completeness. 

D.3.1. Untreated Sample (B1). 

 
Figure D.41:  Plot of the first and third coefficients by week in the 1220-
850 cm-1 band for sample B1.  There is no apparent week to week trend. 
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Figure D.42:  A plot of the second and third coefficients by week in the 
1220-850 cm-1 band for sample B1.  There is no week to week trend in 
the second and third coefficients either. 

 
Figure D.43:  A plot of the first and third coefficients by week in the 1800-
1200 cm-1 band for sample B1.  There is no apparent week to week trend 
in this band either. 

-1.5

-1

-0.5

0

0.5

1

1.5

-4 -3 -2 -1 0 1

a 3
 

a2 

Week 1

Week 2

Week 3

Week 4

Week 6

-1

-0.5

0

0.5

1

1.5

2

-10 -5 0 5

a 3
 

a1 

Week 1

Week 2

Week 3

Week 4

Week 6



 

151 
 

 
Figure D.44:  A plot of the second and third coefficients by week in the 
1800-1200 cm-1 band for sample B1.  Week 1 is distinguishable from the 
other weeks, but there is no clear trend for weeks 2-6. 

D.3.2. 24 Hour Treatment (B2). 

 
Figure D.45:  Plot of the first and third coefficients by week in the 1220-
850 cm-1 band for sample B2.  There is no apparent week to week trend 
as there is significant overlap between all the weeks. 
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Figure D.46:  A plot of the second and third coefficients by week in the 
1220-850 cm-1 band for sample B2.  There is no week to week trend in 
the second and third coefficients either. 

 
Figure D.47:  A plot of the first and third coefficients by week in the 1800-
1200 cm-1 band for sample B2.  There is no apparent week to week trend 
in this band either. 
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Figure D.48: A plot of the second and third coefficients by week in the 
1800-1200 cm-1 band for sample B2.  Again, there is no week to week 
trend in the second and third coefficients in this band. 

D.3.3. 48 Hour Treatment (B3). 

 
Figure D.49: Plot of the first and third coefficients by week in the 1220-
850 cm-1 band for sample B3.  There is no apparent week to week trend 
as there is significant overlap between all the weeks. 

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1 1.5

a 3
 

a2 

Week 1

Week 2

Week 3

Week 4

Week 6

-1

-0.5

0

0.5

1

1.5

-6 -4 -2 0 2 4 6

a 3
 

a1 

Week 1

Week 2

Week 3

Week 4

Week 6



 

154 
 

 
Figure D.50: A plot of the second and third coefficients by week in the 
1220-850 cm-1 band for sample B3.  There is no week to week trend in 
the second and third coefficients this band. 

 
Figure D.51: A plot of the first and second coefficients by week in the 
1800-1200 cm-1 band for sample B3.  There is no separation between the 
weeks and no apparent trend in this band. 
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Figure D.52: A plot of the second and third coefficients by week in the 
1800-1200 cm-1 band for sample B3.  There appears to be some 
progression along the third coefficient from week to week, but not along 
the second coefficient. 

D.3.4. 96 Hour Treatment (B4). 

 
Figure D.53: Plot of the first and third coefficients by week in the 1220-
850 cm-1 band for sample B4.  As with the other samples, there is no 
apparent week to week trend as there is significant overlap between all 
the weeks. 
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Figure D.54: A plot of the second and third coefficients by week in the 
1220-850 cm-1 band for sample B4.  There is no week to week trend in 
the second and third coefficients this band. 

 
Figure D.55: A plot of the first and third coefficients by week in the 1800-
1200 cm-1 band for sample B4.  There is no separation between the 
weeks and no apparent trend in this band. 
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Figure D.56: A plot of the second and third coefficients by week in the 
1800-1200 cm-1 band for sample B4.  There is no trend in the second or 
third coefficient for sample B4 in this band.
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Appendix E.  Discriminant Analysis Data 
 

 

Table E.1: Confusion matrix and error rates for the 1150-850 cm-1 band using both the 
first two and first three SVD coefficients to generate the classifier. 
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hr 

48 
hr 

96 
hr 

Resubstitution 
Error  

% 

Number  
of Errors 
(#/300) 

Kfold 
Error  

(10 Fold) 
% 

0 hr 75 0 0 0 3.33 10 3.33 

24 hr 0 70 5 0 
   48 hr 1 4 70 0 
   96 hr 0 0 0 75       

3 
Coefficients 

0hr 73 0 2 0 3.0 9 3.0 

24 hr 1 71 3 0 
   48 hr 0 3 72 0 
   96 hr 0 0 0 75 
    

Table E.2: Confusion matrix and error rates for the 1150-1050 cm-1 band using both the 
first two and first three SVD coefficients to generate the classifier. 
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0 hr 71 0 4 0 5.0 15 5.0 

24 hr 0 71 4 0 
   48 hr 1 6 68 0 
   96 hr 0 0 0 75       

3 
Coefficients 

0hr 75 0 0 0 3.0 9 2.67 

24 hr 0 70 5 0 
   48 hr 0 4 71 0 
   96 hr 0 0 0 75 
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Table E.3: Confusion matrix and error rates for the 1200-800 cm-1 band using both the 
first two and first three SVD coefficients to generate the classifier. 
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0 hr 75 0 0 0 3.33 10 3.33 

24 hr 0 70 5 0 
   48 hr 1 4 70 0 
   96 hr 0 0 0 75       

3 
Coefficients 

0hr 74 0 1 0 2.67 8 2.33 

24 hr 0 72 3 0 
   48 hr 0 4 71 0 
   96 hr 0 0 0 75 
    

Table E.4: Confusion matrix and error rates for the 1800-800 cm-1 band using both the 
first two and first three SVD coefficients to generate the classifier. 
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Coefficients 

0hr 75 0 0 0 2.67 8 3.0 

24 hr 0 71 4 0 
   48 hr 0 4 71 0 
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Table E.5: Confusion matrix and error rates for the 1800-1200 cm-1 band using both the 
first two and first three SVD coefficients to generate the classifier. 
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0 hr 73 2 0 0 8.33 25 8.33 

24 hr 0 71 4 0 
   48 hr 0 14 61 0 
   96 hr 0 4 1 70       

3 
Coefficients 

0hr 73 2 0 0 8.0 24 8.67 

24 hr 0 71 4 0 
   48 hr 0 14 61 0 
   96 hr 0 4 0 71 
    

Table E.6: Confusion matrix and error rates for the 1800-1450 cm-1 band using both the 
first two and first three SVD coefficients to generate the classifier. 
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0 hr 72 2 1 0 8.67 26 9.33 

24 hr 1 71 3 0 
   48 hr 0 13 62 0 
   96 hr 0 4 2 69       

3 
Coefficients 

0hr 74 0 1 0 7.0 21 8.67 

24 hr 0 73 2 0 
   48 hr 0 13 62 0 
   96 hr 0 4 1 70 
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Table E.7: Confusion matrix and error rates for the 1800-1650 cm-1 band using both the 
first two and first three SVD coefficients to generate the classifier. 
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0 hr 72 3 0 0 11.33 34 11.67 

24 hr 0 63 12 0 
   48 hr 0 10 65 0 
   96 hr 0 2 7 66       

3 
Coefficients 

0hr 72 3 0 0 12.0 36 12.0 

24 hr 0 62 13 0 
   48 hr 0 11 64 0 
   96 hr 0 0 9 66 
    

Table E.8: Confusion matrix and error rates for the 1800-800 minus 1500-1200 cm-1 
band using both the first two and first three SVD coefficients to generate the classifier. 
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Appendix F.  Data Normalization and SVD Details 
 

 

F.1.  Effect of Normalization on SVD Coefficient Clustering 

 During the defense of this work, the committee asked that the author investigate 

whether or not the normalization of each spectra, before the SVD analysis was applied, 

would tighten the coefficient clusters.  It was posited that if this normalization tightened 

the clusters, it would reduce or eliminate the overlap between samples, thus increasing 

the accuracy of the discriminant analysis.  The normalization was conducted in LabVIEW 

on the entire spectrum as well as the 1220-850 cm-1 band.  The results of the 

normalization for the 1220-850 cm-1 band are shown in figures F.1 and F.2 below. 

 

Figure F.1:  Plot of the first two SVD coefficients for sample set 
B in the 1220-850 cm-1 band without normalization. 
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Figure F.2:  Plot of the first two SVD coefficients for 
sample set B in the 1220-850 cm-1 band with 
normalization.  The coefficient clusters for the 
untreated and 96 hr samples tightened, but the 
overlap between the 24 and 48 hour samples 
increased. 

Figures F.1 and F.2 are plots of the first two SVD coefficients for sample set B in the 

1220-850 cm-1 band before and after normalization, respectively.  While the untreated 

and 96 hour samples do show a tightening of the coefficient clusters, the overlap 

between the 24 and 48 hour samples increased.  The increased overlap will reduce the 

ability of discriminant analysis to discern the sample degradation levels.  The effect of 

normalization on the entire band was much worse, so the results were not included 

here. 
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F.2.  SVD Details 

 In addition to the investigation into the effects of normalization on the data, 

questions were asked about the basis vectors and relative importance of the basis 

vectors to describing the data.  It is common to present this information during the 

discussion when publishing to give the reader insight into the underlying basis vectors as 

well as how much of the data variance is being captured by each.  As mentioned in 

section 4.3, data with high SNR will often have a primary basis vector that captures 

upwards of 85% of the data variance.  Again, LabVIEW was used to calculate the 

magnitudes of the basis vectors for the 1220-850 cm-1 band and the results are shown in 

figures F.3 and F.4 below.   As expected from the coefficient plots in chapter 4 and 

appendix D, the first basis vector captures significantly more data variance than the rest.  

However, what was unexpected was how low the value was for the first basis vector 

relative to published values for experimental data in the literature.  The general trend 

showing a significant reduction in relative importance for subsequent basis vectors does 

agree with the expected behavior.  This plot confirms that higher order terms (a4 and 

above) can be neglected for classification purposes because they are capturing noise in 

the measurement.   
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Figure F.3:  Plot of the percent of the data variance captured by each basis vector 
generated by SVD for sample set B in the 1220-850 cm-1 band.  While the first basis 
vector is lower than anticipated (31.7%), the significant reduction in magnitude for 
subsequent basis vectors shows that higher order terms (a4 and above) are capturing 
noise and can be neglected for discrimination purposes. 

The first three basis vectors for sample set B in the 1220-850 cm-1 band are plotted in 

figure F.4.  Since a mean subtraction was conducted on the data before the SVD basis 

vectors and coefficients were calculated, the first basis vector is primarily capturing the 

deviation from the mean reflectance for each wavenumber interrogated.  Had the mean 

subtraction not been done first, the first basis vector would have resembled the mean 

reflectance. 
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