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RESEARCH ARTICLE
10.1002/2014WR016073

Semianalytical solutions for transport in aquifer and fractured
clay matrix system
Junqi Huang1 and Mark N. Goltz2

1Ground Water and Ecosystems Restoration Division, National Risk Management Research Laboratory, U.S. Environmental
Protection Agency, Ada, Oklahoma, USA, 2Department of Systems Engineering and Management, Air Force Institute of
Technology, Dayton, Ohio, USA

Abstract A three-dimensional mathematical model that describes transport of contaminant in a
horizontal aquifer with simultaneous diffusion into a fractured clay formation is proposed. A group of
semianalytical solutions is derived based on specific initial and boundary conditions as well as various
source functions. The analytical model solutions are evaluated by numerical Laplace inverse transfor-
mation and analytical Fourier inverse transformation. The model solutions can be used to study the
fate and transport in a three-dimensional spatial domain in which a nonaqueous phase liquid exists
as a pool atop a fractured low-permeability clay layer. The nonaqueous phase liquid gradually dis-
solves into the groundwater flowing past the pool, while simultaneously diffusing into the fractured
clay formation below the aquifer. Mass transfer of the contaminant into the clay formation is demon-
strated to be significantly enhanced by the existence of the fractures, even though the volume of
fractures is relatively small compared to the volume of the clay matrix. The model solution is a useful
tool in assessing contaminant attenuation processes in a confined aquifer underlain by a fractured
clay formation.

1. Introduction

Efforts to remediate groundwater contaminated with dense nonaqueous phase liquids (DNAPLs) con-
tinue to fail [AFCEE, 2007]. These failures have, at least in some cases, been attributed to diffusion of
dissolved DNAPL into low-permeability layers, with subsequent back diffusion of the dissolved DNAPL
after DNAPL in the accessible high-permeability zones has been remediated [Wilson, 1997; Ball et al.,
1997; Liu and Ball, 2002; Sale et al., 2008; Parker et al., 2008]. The conventional approach to modeling
back diffusion is to assume diffusion into and out of a competent low-permeability zone [Feenstra
et al., 1996; Chapman and Parker, 2005; Seyedabbasi et al., 2012]. In reality, however, it is quite possi-
ble that the low-permeability zone will not be competent. Cracks, which occur naturally in clay layers,
can be caused by releases of pressure due to erosion, excavation, or changes in water table levels
[McKay et al., 1993]. It has also been demonstrated that the presence of pooled DNAPL atop low-
permeability clay may result in fracturing of the clay [Ayral et al., 2014]. Clearly, modeling diffusion
and back diffusion into competent low-permeability zones is a simplification that may not be appro-
priate at many sites. The goal of this study is to develop and apply a model that can be used to sim-
ulate the effect of fractures in a low-permeability zone on back diffusion, and subsequently, on the
evolution of a dissolved contaminant plume. To achieve this goal, we present an analytical solution
of a model that simulates advection-dispersion-adsorption transport of a dissolved contaminant in a
high-permeability layer originating from a DNAPL source zone, coupled to a model that simulates dif-
fusion in the fractures of a low-permeability layer along with diffusive exchange of contaminant
between the fractures and the low-permeability matrix (see Figure 1). While an analytical solution
requires a number of simplifications that may make it unsuitable for specific field applications [Javan-
del et al., 1984], such solutions have been found to be quite useful in: (1) analysis of solute transport
behavior by means of the model [Goltz and Roberts, 1987], (2) verifying more complex numerical
models [e.g., Oreskes et al., 1994], and (3) efficiently and simply obtaining order of magnitude esti-
mates [Javandel et al., 1984].
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2. Model Equations

2.1. Transport in Aquifer
The transport of a reacting and
absorbing dissolved compound
in a horizontal aquifer can be
described by the following equa-
tions [Goltz and Roberts, 1986]:

h
@C
@t

1qb
@S
@t

5Dx
@2C
@x2 2v

@C
@x

1Dy
@2C
@y2

1Dz
@2C
@z2

2kwhC

2ksqbS1q

(1a)

@S
@t

5aðkd C2SÞ2ksS (1b)

where, C is the dissolved contaminant concentration (mg/L); S is the absorbed contaminant concentration
(mg/kg); h is the porosity of the aquifer; qb is the bulk density of the aquifer solids (kg/L); Dx , Dy , and Dz are
the dispersion coefficients in the x, y, and z directions, respectively (m2/day); v is the groundwater velocity
in the x direction (m/day); kw is a first-order decay constant of dissolved contaminant (1/day); ks is a first-
order decay constant of absorbed contaminant (1/day); a is a first-order rate coefficient describing mass
transfer between dissolved and solid phases (1/day); kd is a distribution coefficient describing equilibrium
partitioning between absorbed and dissolved phases (L/kg); q is a source term (mg/(L-day)); t is time (day);
x; y; z are spatial coordinates (m).

2.2. Transport in Fractured Clay Formation
We simulate transport in the fractured clay formation assuming vertical diffusion in the fractures coupled
with slower diffusion within the clay matrix.

Equations (2a) and (2b) model diffusion/sorption/degradation in the fracture and matrix system, respec-
tively, with the last term on the right-hand side of both equations describing the rate of mass exchange
between the fracture and the matrix [Bear, 1979; Chen, 1986]. Equation (2c) describes rate-limited sorption
and sorbed phase degradation of contaminant in the matrix.

hf
@Cf

@t
5Df

@2Cf

@z2 2hf kf Cf 2jðCf 2CmÞ (2a)

hm
@Cm

@t
1qm

@Sm

@t
5Dm

@2Cm

@z2
2hmkmCm2qmksmSm1jðCf 2CmÞ (2b)

@Sm

@t
5amðkmCm2SmÞ2ksmSm (2c)

where, Cf is the dissolved contaminant concentration in the fracture (mg/L); Cm is the dissolved contaminant
concentration in the matrix (mg/L); Sm is the absorbed contaminant concentration in the matrix (mg/kg); hf and
hm are respectively the porosity of the fracture and matrix; Df and Dm are respectively the effective diffusion
coefficients in the fracture and matrix (m2/day); qm is the bulk density of the matrix solids (kg/L); kf is a first-
order decay constant of dissolved contaminant in fractures (1/day); km is a first-order decay constant of dis-
solved contaminant in the matrix (1/day); ksm is a first-order decay constant of absorbed contaminant in the
matrix (1/day); am is the rate-limited adsorption coefficient in the matrix (1/day); km is a distribution coefficient
describing equilibrium partitioning between absorbed and dissolved phases in the matrix (L/kg); and j is a first-
order mass transfer rate coefficient describing the mass exchange between the fracture and the matrix (1/day).

2.3. Initial Conditions
Initially, due to the presence of the DNAPL, we assume there is a distribution of dissolved DNAPL in the
aquifer described by a function f ðx; y; zÞ:

Figure 1. Conceptual model of NAPL transport in an aquifer underlain by a fractured clay
formation.
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C5f ðx; y; zÞ; t50; 21 � x; y <1; 0 � z � B (3a)

where B is the thickness of the aquifer.

Initial equilibrium condition requires S5kdC, which leads to:

S5kd f ðx; y; zÞ; t50; 21 � x; y <1; 0 � z � B (3b)

In the fractured clay layer, we assume there is no initial contaminant distribution:

Cf 50; t50; 21 � x; y <1; 21 � z < 0 (3c)

Cm50; t50; 21 � x; y <1; 21 � z < 0 (3d)

Sm50; t50; 21 � x; y <1; 21 � z < 0 (3e)

2.4. Boundary Conditions
Equation (4a) specifies no vertical flux at the top of the aquifer:

@C
@z

50; z5B; 21 < x; y <1; t > 0 (4a)

Equations (4b), (4c), and (4d) specify that far from the source, contaminant concentration is assumed to be
zero:

C50; x; y ! 61; 0 � z � B; t > 0 (4b)

Cf 50; z ! 21; 21 < x; y <1; t > 0 (4c)

Cm50; z ! 21; 21 < x; y <1; t > 0 (4d)

Equations (4e) and (4f) couple equations (1) and (2), specifying that concentration and flux, respectively, at
the interface between the aquifer and the underlying low-permeability layer, are equal:

C5Cf 5Cm; z50; 21 < x; y <1; t > 0 (4e)

Dz
@C
@z

5Df
@Cf

@z
1Dm

@Cm

@z
; z50; 21 < x; y <1; t > 0 (4f)

2.5. Source Functions
Only linear source functions are amenable to analytical solution. Two common source functions are consid-
ered in the model.
2.5.1. Slug Mass Loading
The mass loading rate in a source area Xs is mathematically defined by a source function:

q5q0½12uðt2tpÞ� gðx; y; zÞ (5)

where q0 is a constant rate of contaminant introduced into the aquifer [(mg/(L-d)], gðx; y; zÞ is a switch func-
tion defined as:

gðx; y; zÞ5
1; x; y; z 2 Xs

0 x; y; z 62 Xs

(

uð�Þ is the Heaviside function for a pulse input of duration tp (day).
2.5.2. Dissolution Mass Loading
Most models describe the dissolution of DNAPL with a first-order rate law [Imhoff and Miller, 1996; Imhoff
et al. 2003; Clement et al., 2004]

qN
@sN

@t
52kNsr

NðCs2CÞ (6)

where, qN is the density of DNAPL (mg/L), sN is the saturation of DNAPL, kN is the mass transfer rate coeffi-
cient (1/day) in the porous media, r is a constant (�0), Cs is the solubility of DNAPL, C is the concentration
in bulk water. Considering C � Cs, neglecting C may simplify (6):
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qN
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N (7)

The similar expression for describing the time-dependent discharge of contaminant from a DNAPL source
zone can be found in the works of Parker and Park [2004], Zhu and Sykes [2004], and Falta et al. [2005]. Inte-
grating (7) subject to an initial condition gives

qN
@sN

@t
5

2kNCssN0exp ð2g tÞ; r51

2kNCs½ðr21Þg t1s12r
N0 �

r=ð12rÞ; r 6¼ 1

(
(8)

where, g5kNCs=qN , sN0 is the initial saturation of DNAPL.

The source function in the aquifer will be:

qðx; y; z; tÞ52hqN
@sN

@t
gðx; y; zÞ5

h kNCssN0exp ð2g tÞgðx; y; zÞ; r51

h kNCs ½ðr21Þg t1s12r
N0 �

r=ð12rÞgðx; y; zÞ; r 6¼ 1

(
(9)

For the case r < 1, the dissolution process is finite, i.e., when t5s12r
N0 =ð12rÞg, the mass would be totally

released and the source area cleaned up. For the case r � 1, dissolution continues forever.

3. Model Solutions

3.1. Laplace Domain Solutions for Concentration
Applying the Laplace transform with respect to t, the Fourier transform with respect to x and y, and Fourier
Sine transform with respect to z, equations (1) and (2) subject to the initial conditions (3) and boundary con-
ditions (4) may be solved to obtain the solutions (see Appendix A):

�Cðx; y; z; pÞ5 1
4p2

ð1
21

ð1
21

~�C ðx̂ ; ŷ ; z; pÞexp ½iðx̂ x1ŷ yÞ�dx̂ dŷ (10a)

�C f 5½F1exp ð
ffiffiffiffi
r1
p

zÞ1F2exp ð
ffiffiffiffi
r2
p

zÞ��Cðx; y; 0; pÞ (10b)
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zÞ��Cðx; y; 0; pÞ (10c)

~�C ðx̂ ; ŷ ; z; pÞ5d1exp ð2rzÞ1d2exp ðrzÞ1uðzÞ (11a)

uðzÞ521=ð2Dz rÞ
�ðz

0
exp ½rðz’2zÞ�Hðx̂ ; ŷ ; z’; pÞdz’ 1

ðB

z
exp ½rðz2z’Þ�Hðx̂ ; ŷ ; z’; pÞdz’

�
(11b)

Hðx̂ ; ŷ ; z; pÞ52wðpÞ~f ðx̂ ; ŷ ; zÞ2/ðpÞ~gðx̂ ; ŷ ; zÞ (11c)

where the variables with the bar indicate the Laplace transform, and the variables with the tilde indicate
the Fourier transform; p is the Laplace transform parameter; x̂ and ŷ are the Fourier transform parameters;
F1, F2, M1, M2, r1 and r2, d1, d2, r, w, and / are dependent variables of p defined in Appendix A.

3.2. Laplace Domain Solutions for Mass
The rate of mass transfer through a horizontal plane (z5const) may be calculated as:

�r mass5

ð1
21

ð1
21
½2Dz@�Cðx; y; z; pÞ=@z�dxdy; 0 � z � B (12a)

�r mass5

ð1
21

ð1
21
½2Df@�C f ðx; y; z; pÞ=@z2Dm@�C mðx; y; z; pÞ=@z�dxdy; 21 < z � 0 (12b)

Based on the theory of Fourier transform [Arfken, 1985], the central ordinate value is represented as:

~�C ð0; 0; z; pÞ5
ð1

21

ð1
21

�Cðx; y; z; pÞdxdy (13)

Using (13), (12) becomes:
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�r mass52Dz
@

@z
~�C ð0; 0; z; pÞ; 0 � z � B (14a)

�r mass52X~�C ð0; 0; z; pÞ; 21 � z � 0 (14b)

where,
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For a given time t, the accumulated mass that has passed through the plane is:

�Ap
mass5�r mass=p (15)

For the plane at the bottom of the aquifer (z 5 0), (14) has the form:

�r mass5b0

ðB

0

ð1
21

ð1
21

cosh ½r0ðB2zÞ�½w f ðx; y; zÞ1/ gðx; y; zÞ� dxdydz

b05ðR11Þ=½exp ð2r0BÞR1exp ðr0BÞ�

r05½lðpÞ=Dz�1=2

(16)

Equations (16) and (15) can be used, respectively, to evaluate the rate of mass transfer into the fractured
clay from the aquifer, and the total mass that has entered the fractured clay at time t.

When t !1, according to the final value theorem of Laplace transform, the total mass that passed through
the bottom plane of the aquifer would be calculated as

A1mass5 lim
p!0
ðp�Ap

massÞ5�r massjp50 (17)

For the case of no decay, i.e., kw , ks , kf , and km are zero, consequently r050, (17) would be

A1mass5w0

ðB

0

ð1
21

ð1
21

fdxdydz1/0

ðB

0

ð1
21

ð1
21

gdxdydz 5w0CT 1/0VT (18)

where,

w0511qbkd=h

/05

q0tp; slug mass loading source

hqNsN0; linear dissolution source

8<
:

CT is the dissolved mass initially in the aquifer at t50 and VT is the total volume of the source zone in the
aquifer.

If we include degradation, subtracting (17) from (18) would give the total mass that has degraded

A1deg 5w0CT 1/0VT 2�r massjp50 (19)

4. Evaluation of Model Solutions

Numerical Laplace inverse transform of (10) can be used to evaluate the solutions in time. One algorithm
that is described by de Hoog et al. [1982] and has been implemented in MATLAB by Hollenbeck [1998] is
employed in this study.

4.1. Inverse Fourier Transform
Theoretically, direct evaluation of the integrals in (A43) may be used to obtain the solutions in the Laplace
domain. However, because of the oscillation of integrands, the numerical integration generally becomes
inefficient. Analytical integration may be implemented in a grid system of space (x̂ ; ŷ ) on which ~�C is
expected to be represented by a simple interpolant in a grid cell. It is noticed that the major factor of oscilla-
tion is attributed to ~f and ~g, which suggests that the separation of these oscillation factors from the solu-
tions may improve the algorithm. Specifically, (A43) may be rewritten as:
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~�C 5

ðB

0
Gðx̂ ; ŷ ; z; z’; pÞHðx̂ ; ŷ ; z’; pÞdz’ (20)

where,

Gðx̂ ; ŷ ; z; z’; pÞ5ð2Dz rÞ21fUðzÞexp ð2rz’Þ1VðzÞexp ½2rðB2z’Þ�2Fðz; z’Þg

UðzÞ5Rfexp ½2rðB2zÞ�1exp ½rðB2zÞ�g=½exp ð2rBÞR1exp ðrBÞ�

VðzÞ5½exp ð2rzÞR2exp ðrzÞ�=½exp ð2rBÞR1exp ðrBÞ�

Fðz; z’Þ5
exp ½2rðz2z’Þ�; 0 � z’ � z

exp ½2rðz’2zÞ�; z � z’ � B

(

Generally, the function G has much less oscillations in the frequency domain (x̂ ; ŷ ) than ~�C , and may be
inversely transformed without high-resolution sampling. Defining Cðx; y; z; z’; pÞ as the inverse Fourier trans-
form of Gðx̂ ; ŷ ; z; z’; pÞ and hðx; y; z’; pÞ as the inverse Fourier transform of Hðx̂ ; ŷ ; z’; pÞ, according to the
convolution principle of Fourier transform, the inverse Fourier transform of (20) is:

�C5

ðB

0
Cðx; y; z; z’; pÞ � hðx; y; z’; pÞdz’ (21)

where the operator � indicates a 2-D convolution.

Because G has the characteristic of an exponential function, it is significantly distributed in a limited region:
x̂ min < x̂ < x̂ max and ŷ min < ŷ < ŷ max beyond which the function vanishes. Based upon these characteris-
tics, the inverse Fourier transform of G becomes:

Cðx; y; z; z’; pÞ5 1
2p2

XN

n51

ð ŷ n2

ŷ n1

ð x̂ n2

x̂ n1

Gðx̂ ; ŷ ; z; z’; pÞexp ðix̂ xÞcos ðŷ yÞdx̂ dŷ (22)

where, n is the subdomain number, N is the total number of subdomains in the region x̂ min < x̂ < x̂ max

and 0 < ŷ < ŷ max , x̂ nk and ŷ nk (k 5 1,2) are the coordinates of indices of the grid cell n. In (22), the fact that
G is an even function of ŷ is considered, so by symmetry it is only necessary to evaluate over the half inter-
val (0; ŷ max ). In a regular subdomain n (e.g., a rectangular grid cell), the function G can be expressed with a
bilinear interpolant [Chang, 2009]:

Gðx̂ ; ŷ ; z; z’; pÞ5½Gðx̂ n1; ŷ n1; z; z’; pÞðx̂ n22x̂Þðŷ n22ŷÞ1

Gðx̂ n2; ŷ n1; z; z’; pÞ ðx̂2x̂ n1Þðŷ n22ŷÞ1

Gðx̂ n1; ŷ n2; z; z’; pÞðx̂ n22x̂Þðŷ2ŷ n1Þ1

Gðx̂ n2; ŷ n2; z; z’; pÞðx̂2x̂ n1Þðŷ2ŷ n1Þ�=½ðx̂ n22x̂ n1Þðŷ n22ŷ n1Þ�

(23)

Using (23), the integration operation in (22) can be analytically performed in a grid cell. According to the
definition of convolution,

Cðx; y; z; z’; pÞ � hðx; y; z’; pÞ5 1
2p2

XN

n51

ð ŷ n2

ŷ n1

ð x̂ n2

x̂ n1

Gðx̂ ; ŷ ; z; z’; pÞTðx̂ ; ŷ ; z’; x; yÞdx̂ dŷ (24)

Tðx̂ ; ŷ ; z’; x; yÞ5
ð11

21

ð11

21
exp ½ix̂ðx2x’Þ�cos ½ŷðy2y’Þ�hðx’; y’; z’; pÞdx’dy’ (25)

Function h contains the initial concentration f ðx; y; zÞ and source function gðx; y; zÞ. If h is approximated
with a bilinear interpolant represented by (23), then (25) can be analytically integrated (see Appendix B).
Consequently, by substituting (25) into (24), the integrations included in (24) also can be performed
analytically.

4.2. Model Solution Verification
The three-dimensional analytical solutions developed here were verified by using two numerical code
benchmarks, AT123D [Yeh, 1981] and MT3DMS [Zheng and Wang, 1999]. Because of limitations in the
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numerical codes, the model scenarios were simplified, as specified below. In addition, the complete analyti-
cal solution (without simplification) is further verified by application of a newly developed numerical model.

The solution with simplified conditions is compared with an existing solution provided in AT123D [Yeh, 1981].
The modified AT123D code, AT123D-AT [Burnell et al. 2012] was used to evaluate the model subject to the
appropriate initial and boundary conditions, as well as source function. Using parameter values given in Tables
1 and 2 while setting Df , a, kw , ks to zero, and using the values for q0 and tp given in Table 3 (assuming the
source function takes the form of slug mass loading as described by equation (5)), the model solution would
be simplified to represent transport in a three-dimensional aquifer with finite thickness and uniform ground-
water velocity. This solution would be available in AT123D-AT. The comparison for concentration break-
through at two down gradient receptors is depicted in Figure 2a. The excellent match with the accepted
solution gives confidence in the correctness of the analytical solution subject to the specified simplifications.

The solution is further compared with
a numerical model, MT3DMS [Zheng
and Wang, 1999]. To permit compari-
son of the two models, a simplification
for the analytical solution is required;
specifically, setting Df and j to zero to
disable transport through the frac-
tures, i.e., transport in the clay forma-
tion occurs only in the matrix system.
Also, in consideration of the fact that
diffusion only occurs in the vertical
direction in the clay formation,
MT3DMS is modified to disable molec-
ular diffusion in the horizontal direc-
tion in the clay. The modified
MT3DMS would appropriately simu-
late transport in a three-dimensional
aquifer underlain by a competent clay
formation. The specific settings for the
numerical model include: (1) establish-
ing horizontal (x direction) ground-
water flow in the aquifer, no flow in

Table 1. Model Parameter Values Used for Simulations

Parameter h qb (kg/L) a (1/day) kd (L/kg) kw (1/day) ks (1/day) v (m/d)

Value 0.3 1.76 0.05 1.8 3E-4 4E-4 0.5

Parameter Dx (m2/day) Dy (m2/day) Dz (m2/day) hf Df (m2/day) kf (1/day) hm

Value 1.0 0.2 0.1 0.05 7.8E-5 2E-4 0.4

Parameter Dm (m2/day) km (1/day) am (1/day) km (m) qm (kg/L) ksm (1/day) j (1/day)

Value 2.6E-5 2E-4 0.03 2.3 2.0 1E-4 0.006

Table 2. Parameters Used to Define Initial Condition

Parameter C0 (mg/L) B (m) xa (m) xb (m) ya (m) yb (m) za (m) zb (m)

Value 100 5 24 0 22 2 1 3

Table 3. Parameters for Source Function

Parameter q0 (mg/(L-day)) tp (day) kN (1/day) Cs (mg/L) r sN0 qN (kg/L)

Value 50 300 9 1100 1.0 0.034 1.46

Figure 2a. Concentration breakthrough curves comparing the three-dimensional
analytical solution and an existing solution (AT123D-AT) at down gradient observa-
tion points in the high-permeability zone for a slug mass loading source function
and simplifications described in the text, The numbers in parentheses (x, y, z) rep-
resent the coordinates (in meters) of the down gradient observation points.
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the clay formation, (2) specifying the nonequilibrium sorption model parameters qb, b, and kd defined in
MT3DMS, where the equivalence between these parameters and the analytical model parameters are: qb 	
qb in the aquifer and qb 	 qm in the clay formation; b 	 qbkda in the aquifer and b 	 qmkdam in the clay for-
mation; kd 	 kd in the aquifer and kd 	 km in the clay formation, (3) setting the model geometric domain as
220 m� x� 100 m, 0 m� y� 30 m, 210 m� z� 3 m, with a grid size of Dx 5 0.5 m, Dy 5 0.5 m,
Dz 5 0.5 m in the aquifer and Dz 5 0.1 m in the clay formation, with 240 rows (x direction), 60 columns (y
direction) and 40 layers (10 in the aquifer and 30 in the clay formation). Using parameter values given in
Tables 1 and 2 subject to the initial conditions described by equation (3), the modified MT3DMS was run to
simulate 20,000 days of transport. The comparison for concentration breakthrough with two different diffu-
sion coefficients (Dm) at four down gradient observation points is depicted in Figure 2b. It is observed that
the match between the analytical solution and the numerical solution is excellent for two locations in the
high-permeability zone for both small and large Dm (Figures 2b(a) and 2b(c)), is reasonable for two locations
in the low-permeability zone for large Dm (Figure 2b(d)), and has some error in the two low-permeability
zone locations for small Dm (Figure 2b(b)). As indicated in the supporting information (see supporting infor-
mation), the error shown in Figure 2b(b) is caused by the linear interpolation for the diffusion coefficient
between grid cells in MT3DMS which generally overestimates the parameter value in the highly heteroge-
neous media (the parameter value change from Dz 5 0.1 m2/d in the aquifer to Dm 5 2.6 3 1025 m2/d in
the clay formation). The goodness of the comparisons depicted in Figure 2b gives us further confidence in
the correctness of the analytical solution presented here.

In addition to the above verifications of simplified scenarios, a numerical model is developed to verify the
complete analytical solution (without simplification). The details regarding the implementation of the
numerical model are presented in the supporting information (see supporting information). Prior to its use

Figure 2b. Concentration breakthrough curves comparing the three-dimensional analytical solution without fractures and MT3DMS at two down gradient observation points in the
high-permeability zone for (a) low and (c) high values of the diffusion coefficient (Dm), and comparing the three-dimensional analytical solution without fractures and MT3DMS at two
down gradient observation points in the low-permeability zone for (b) low and (d) high values of the diffusion coefficient (Dm). The initial concentration distributes in a regular domain
(simple initial condition). The numbers in parentheses (x, y, z) represent the coordinates (in meters) of the down gradient observation points.
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in verifying the unsimplified, complete, analytical solution, the new numerical model is verified by both
MT3DMS and the already verified analytical solution for the simplified model scenarios with diffusion in the
fractures disabled (see supporting information). The comparison for concentration breakthroughs with two
different mass transfer rate coefficients (j) at two down gradient observation points located in the fracture

and clay matrix systems is depicted in
Figure 2c. The excellent match with
the verified numerical model gives
additional confidence in the correct-
ness of the semianalytical solution.

4.3. Initial Concentration
Distributed Within a Regular
Domain
This study characterizes the model sol-
utions for the case in which a DNAPL
source does not exist and an initial
dissolved concentration is distributed
in a specific regular area. The model
parameter values used for the simula-
tions are listed in Table 1.

The initial concentration distribution
in the aquifer is described by the fol-
lowing functions:
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Figure 3. Concentration breakthrough at selected observation locations for the
parameters and initial conditions defined in Tables 1 and 2.

Figure 2c. Concentration breakthrough curves comparing the three-dimensional analytical solution and the numerical model at two down gradient observation points in the fracture
system for (a) high and (c) low values of the mass transfer rate coefficient (j), and comparing the three-dimensional analytical solution and the numerical model at two down gradient
observation points in the clay matrix system for (b) high and (d) low values of the mass transfer rate coefficient (j). The initial concentration distributes in a regular domain (simple initial
condition). The numbers in parentheses (x, y, z) represent the coordinates (in meters) of the down gradient observation points.
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f ðx; y; zÞ5
C0; xa � x � xb; ya � y � yb; za � z � zb

0; otherwise

(
(26)

The geometric parameters used to define the space domain of the initial concentration distribution are
listed in Table 2.

Figure 3 shows the concentration breakthrough at several selected observation points for the parame-
ters and initial conditions described above. The concentration displacement was characterized by an
initial rapid breakthrough followed by extended tailing at late times due to rate-limited sorption/
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Figure 4. Concentration contours after 100 days of transport at a selected (a) horizontal plane (z 5 2 m) and (b) vertical cross section
(y 5 0 m) for the parameters and initial conditions defined in Tables 1 and 2.
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tions defined in Tables 1 and 2.
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desorption and back diffusion from the fractured clay formation. Figure 4 shows the concentration
contours in selected horizontal and vertical planes after 100 days. The concentration plume develops
with groundwater flow in the aquifer spanning the top 5 m shown in Figure 4b, while simultaneously
migrating into the underlying fractured clay formation (z< 0 m) where the concentration contours are
deformed reflecting the dual-layer system. Figure 5 shows the rate of mass (rmass) passing through the
bottom plane of the aquifer (Figure 5a) and accumulated mass (Amass) that passed through the plane
at z 5 0 (Figure 5b). At early times (t< 3387 days), rmass is negative, indicating that mass is moving
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from the aquifer to the clay, as there is no mass in the clay initially. At later times (t> 3387 days), rmass

is slightly positive, indicating that net mass is being slowly released from the clay formation into the
aquifer (back diffusion). During the early time period, Amass increases with time, while during back dif-
fusion, Amass decreases with time. Eventually, steady state is attained, when rmass becomes zero, and
Amass levels off.

4.4. Nonuniform Initial Concentration Distribution
This section demonstrates the application of the model solution for a more general initial condition. A
selected geometric morphology representing the initial distribution of dissolved DNAPL in the aquifer is
depicted in Figure 6a, where the rectangles outline the subregions of the source zone in a horizontal plane
with thickness 2.0 m (1 m � z � 3 m), and the color scale on the rectangles indicate the concentration val-
ues (mg/L). Figure 6 shows the contours of concentration on the selected horizontal plane at day (b) 20, (c)
100, and (d) 300. At early time (day 20), the irregular initial concentration distribution is reflected by some
nonsmooth contours near the source area (Figure 6b) while after some time, dispersion smoothes the con-
centration contours (Figures 6c and 6d).
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4.5. Time-Dependent Source Function
In this case, it is assumed that there is no initial distribution of contaminant in the aquifer and a time-
dependent source exits. The two different types of source functions, a slug mass loading source defined by
equation (5) and a dissolving source defined by equation (9), are investigated. The source area switch func-
tion g is expressed as:

gðx; y; zÞ5
1; xa � x � xb; ya � y � yb; za � z � zb

0; otherwise

(
(27)

The source function parameter values used for simulations are listed in Table 3.

Figure 7 shows the mass loading rate (a) and the concentration breakthrough at a specified observation
point (b) for two different source functions, slug loading, and dissolution loading. The initial mass input into
the aquifer is equal for the two source functions, i.e., q0tpVT 5hqNsN0VT . The breakthrough curves reflect the

source characteristics. The break-
through curve for the slug source has a
higher peak and exhibits less tailing
than the breakthrough curve resulting
from the dissolving source. Figure 8
shows the impact of source type on (a)
the mass discharge rate through the
bottom plane of the aquifer as a func-
tion of time (negative values indicate
mass discharge downward from the
aquifer to the clay), (b) the cumulative
mass that passed downward through
the plane at the aquifer bottom as a
function of time, Amass, (c) the time-
averaged difference of rmass calculated
with the two source types versus the
dissolution rate coefficient kN , and (d)
the time-averaged difference of Amass

calculated with the two source types
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versus kN . At early times (before the Amass versus time curve peaks, Figure 8b), rmass is negative (mass mov-
ing downward from the aquifer to the clay) and Amass is increasing, which indicates net mass moving into
the fractured clay formation. At later times, rmass is slightly positive (back diffusion in an upward direction)
and Amass is decreasing. Because the underlying fractured clay is infinite, the contaminant migrates down-
ward (driven by the diffusion process), so Amass remains positive as rmass becomes zero when time
approaches infinity (Figure 8b). The time-averaged difference of rmass (Figure 8c) and Amass (Figure 8d) calcu-
lated at long times for the two source functions (slug versus dissolving) reveals that at kN 
 9 day21, both
sources generate the same values of rmass and Amass.
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4.6. Effect of Clay Matrix
Properties
For the slug mass loading source,
the effect of clay matrix properties
on the concentration break-
through is investigated. Figure 9
compares the concentration
breakthrough at an observation
point for two different fracture
effective diffusion coefficients (Df )
and matrix effective diffusion
coefficients (Dm). The effect of Df

and Dm becomes obvious at late
times (t> 1000 days) with the sys-
tem having the higher diffusion
coefficient exhibiting more ‘‘tail-
ing’’ (higher concentrations at late
times). This increased tailing is the
result of increased ‘‘back diffusion’’
out of the clay formation due to
the higher value of Df and Dm.

Figure 10 compares the concentration breakthrough at an observation point in the aquifer for three dif-
ferent rate coefficients of mass transfer between the fractures and the matrix (j). While all the j values
predict similar concentration breakthrough behavior at early times (t< 1000 days), the larger j value pre-
dicts more late time tailing due to more mass being transferred into the clay matrix, resulting in more
back diffusion.

Figure 11 compares the effect of the fracture effective diffusion coefficient (Df ) on Amass when there is deg-
radation in the aquifer system (kw , ks , kf , km and ksm have their Table 1 values) and when there is no degra-
dation (kw , ks, kf , km, and ksm set to zero). We see from Figure 11a that when there is degradation, at all
times there is more mass in the fractured clay at the higher Df . This makes sense, as the higher value of Df

allows more mass to move out of the aquifer, where degradation is occurring. In the case where
there is no degradation in the aquifer, we see from Figure 11b that the long-time value of Amass is
independent of the fracture effective diffusion coefficient, and is equal to the mass released into the

aquifer (q0tpVsource 5 480 kg for the
Tables 2 and 3 parameter values).
We also see from Figure 11b that at
early times, when there is no decay
in the aquifer, Amass is larger for
larger values of Df , as would be
expected.

Figure 12a compares the effect of the
rate of mass transfer between the frac-
ture and the matrix (j) on Amass. We
see there are considerable differences
in the value of Amass at different values
of j. As expected, larger j values pre-
dict larger values of Amass since as
more mass is transferred into the
matrix as j increases. Figure 12b dif-
ferentiates, for j50:06 day21, whether
the mass that passed through the
aquifer bottom (z 5 0) subsequently
passed through a fracture, or entered
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the matrix directly from the aquifer. We observe the majority of mass passed through the fractures. Figure
12c depicts the difference in Amass over time for systems with and without fractures. Looking at Figures
12b and 12c, it becomes apparent that fracturing has a substantial impact on how much mass resides in
the low-permeability zone. In essence, the fractures serve as a shortcut which allows more mass to access
the matrix. Without fractures, mass moves into the matrix only by diffusion, which is slowed due to
sorption of the contaminant onto matrix solids, as well as the tortuosity of the matrix solids. In contrast, if
fractures are present, mass diffuses unhindered through the fractures, and then diffuses into the matrix.
Thus, even though the volume of fractures is much smaller than the volume of matrix in the low-
permeability zone, the impact of the fractures is large. Clearly, the value of j, the first-order coefficient
quantifying the rate of mass transfer between the fracture and matrix, is important in determining the
effect of the fractures. The value of j used in the Figure 12 simulations is 0.06 day21. This value is rela-
tively low in comparison to values which have been experimentally estimated. Polak et al. [2003] used a
model to analyze CT scans of a sodium iodide tracer diffusing from a fracture into a chalk matrix and esti-
mated values for j that ranged from 4.8 to 7.0 day21. At these larger values of j, the effect of the frac-
tures on mass transport would be even greater than observed in the simulations shown here.

4.7. Evolution of Back-Diffusion Zones

For the slug mass loading source, equation (10a), by inverting into the real time domain, can be applied to
determine the mass flux (2Dz@Cðx; y; z; tÞ=@z) across the bottom plane of the aquifer (z 5 0). Figure 13 shows
mass flux contours across the bottom plane of the aquifer at two selected times, where positive values represent
back diffusion (upward) and negative values represent downward diffusion from the aquifer into the fractured
clay. From the figure, we see how the back-diffusion zones follow the downward-diffusion zones as the plume
migrates down gradient. We also observe that back diffusion from the fractured clay in the source zone persists
long after the slug mass source is no longer being introduced (recall from Table 3 that the duration of the slug
source is 300 days). To assess the overall mass transfer rate out of and into the fractured clay formation, the
back-diffusion and downward-diffusion flux are integrated over the area on the plane (z 5 0), respectively. Fig-
ure 14 shows the overall mass transfer rate in grams per day out of (back diffusion) and into (downward diffu-
sion) the fractured clay as a function of time. At early times (200 days), there is minimal back diffusion, as the
slug source ensures a downward concentration gradient. As time goes on, and the source input ends at 300
days, we see back diffusion appears and increases gradually, although over the 1000 day period simulated by
the model, downward diffusion dominates. Ultimately, however, back diffusion will dominate.

5. Conclusion

Analytical solutions in the Laplace domain and in real three-dimensional space have been presented for a
model that simulates advective, dispersive, and adsorptive transport of a decaying solute in an aquifer under-
lain by a fractured clay formation. The fractured clay system is conceptualized as a medium characterized by
diffusion in the fractures and in the clay matrix, each with a different diffusion coefficient. Mass transfer of the
contaminant into the clay formation is demonstrated to be significantly enhanced by the existence of the frac-
tures, even though the volume of fractures is relatively small compared to the volume of the clay matrix. The
analytical solutions presented here can be used to analyze contaminant fate and transport in a dual-layer
aquifer system with various source zone architectures. The solutions can also be used to assess the mass flux
through the aquifer/fractured clay formation interface. Exact analytical solutions such as the ones presented
here are valuable tools that can be used to verify numerical codes as well as to enhance understanding of the
effect of complex, interacting processes on subsurface transport behavior.

Appendix A: Derivation of Analytical Solutions

Taking the Laplace transform to (2a), (2b), and (2c) with respect to t subject to the initial conditions (3c),
(3d), and (3e), we have:

Df
d2�C f

dz2
2lf

�C f 2jð�C f 2�C mÞ50 (A1)

Water Resources Research 10.1002/2014WR016073

HUANG AND GOLTZ SEMIANALYTICAL SOLUTIONS FOR TRANSPORT 7233



Dm
d2�C m

dz2
2hmðp1kmÞ�C m2qmðp1ksmÞ�Sm1jð�C f 2�C mÞ50 (A2)

amðkm
�C m2�SmÞ2ðp1ksmÞ�Sm50 (A3)

where the variables with the bar indicate the Laplace transform, p is the Laplace transform parameter, and

lf ðpÞ5hf ðp1kf Þ (A4)

Substituting (A3) into (A2),

Dm
d2 �C m

dz2
2lm

�C m1jð�C f 2�C mÞ50 (A5)

where,

lmðpÞ5hmðp1kmÞ1qmkmamðp1ksmÞ=ðp1ksm1amÞ (A6)

Note that z is defined in the interval (0; 21), substituting z with z’52z would not alter the form in the
equations (A1) and (A5). Using the Fourier Sine transform to (A1) and (A5) with respect to z’ subject to the
boundary conditions (4c), (4d), and (4e), we have a group of algebra equations:

ðDf 1
21lf 1jÞ�̂C f 2j�̂C m5Df 1�C f 0 (A7)

2j�̂C f 1ðDm121lm1jÞ�̂C m5Dm1�C m0 (A8)

where the variables with the hat indicate the Fourier Sine transform, 1 is the Fourier Sine transform parame-
ter, �C f 05�C m05�Cðx; y; 0; pÞ.

Directly Solving (A7) and (A8), we have

�̂C f 5
Df 1ðDm121lm1jÞ1Dm1j

ðDf 121lf 1jÞðDm121lm1jÞ2j2
�Cðx; y; 0; pÞ (A9)

�̂C m5
Dm1ðDf 121lf 1jÞ1Df 1j

ðDf 121lf 1jÞðDm121lm1jÞ2j2
�Cðx; y; 0; pÞ (A10)

Alternatively, (A9) and (A10) can be written as:

�̂C f 5½
F11
ð121r1Þ

1
F21
ð121r2Þ

��Cðx; y; 0; pÞ (A11)

�̂C m5½ M11
ð121r1Þ

1
M21
ð121r2Þ

��Cðx; y; 0; pÞ (A12)

where

F15½Df ðlm1jÞ1Dmj2Df Dmr1�=d (A13)

F252½Df ðlm1jÞ1Dmj2Df Dmr2�=d (A14)

M15½Dmðlf 1jÞ1Df j2Df Dmr1�=d (A15)

M252½Dmðlf 1jÞ1Df j2Df Dmr2�=d (A16)

r15ðb2dÞ=ð2Df DmÞ (A17)

r25ðb1dÞ=ð2Df DmÞ (A18)

b5Df ðlm1jÞ1Dmðlf 1jÞ (A19)

d5fb224DmDf ½lf lm1ðlf 1lmÞj�g
1=2

(A20)

Note that z’ is replaced back to z, the Fourier inverse transforms of (A11) and (A12) are:

�C f 5½F1exp ð
ffiffiffiffi
r1
p

zÞ1F2exp ð
ffiffiffiffi
r2
p

zÞ��Cðx; y; 0; pÞ (A21)
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�C m5½M1exp ð
ffiffiffiffi
r1
p

zÞ1M2exp ð
ffiffiffiffi
r2
p

zÞ��Cðx; y; 0; pÞ (A22)

Applying the Laplace transform with respect to t, equations (1a) and (1b) become:

Dx
@2 �C
@x2

2v
@�C
@x

1Dy
@2�C
@y2

1Dz
@2�C
@z2

2hðp1kwÞ�C2qbðp1ksÞ�S52ðh1qbkdÞf 2�q (A23)

�S5akdðp1ks1aÞ21 �C1kdðp1ks1aÞ21f (A24)

Substituting (A24) into (A23),

Dx
@2 �C
@x2

2v
@�C
@x

1Dy
@2�C
@y2

1Dz
@2 �C
@z2

2l �C52wf 2/ g (A25)

lðpÞ5hðp1kwÞ1qbkdaðp1ksÞ=ðp1ks1aÞ (A26)

wðpÞ5h1qbkda=ðp1ks1aÞ (A27)

/ðpÞ is a function associated with the mass loading rate in the source area. For the slug mass loading,

/ðpÞ5q0½12exp ð2ptpÞ�=p (A28)

For the dissolution mass loading,

/ðpÞ5
h kNCssN0=ðp1gÞ; r51

h kNCs

ð1
0
½ðr21Þg t1s12r

N0 �
r=ð12rÞexp ð2ptÞdt; r 6¼ 1

8><
>: (A29)

In the Laplace domain, the boundary conditions (4a) and (4f) would be

@�C
@z

50; z5B; 21 < x; y <1 (A30)

@�C
@z

2DðpÞ�C50; z50; 21 < x; y <1 (A31)

where

DðpÞ5½Df ðF1
ffiffiffiffi
r1
p

1F2
ffiffiffiffi
r2
p
Þ1DmðM1

ffiffiffiffi
r1
p

1M2
ffiffiffiffi
r2
p
Þ�=Dz (A32)

Taking the double Fourier transform to (A25) with respect to x and y, we have

Dz
@2 ~�C
@z2

2½lðpÞ1ivx̂1Dx x̂ 2
1Dy ŷ 2� ~�C 5Hðx̂ ; ŷ ; z; pÞ (A33)

where

Hðx̂ ; ŷ ; z; pÞ52wðpÞ~f ðx̂ ; ŷ ; zÞ2/ðpÞ~gðx̂ ; ŷ ; zÞ (A34)

The variables with tilde represents Fourier transform, x̂ and ŷ are the Fourier transform parameters.

Nonhomogeneous differential equation (A33) has the general solution:

~�C ðx̂ ; ŷ ; z; pÞ5d1exp ð2rzÞ1d2exp ðrzÞ1uðzÞ (A35)

where d1 and d2 are the constants of integration, and uðzÞ is the particular solution of the nonhomogene-
ous equation represented as

uðzÞ521=ð2Dz rÞ
�ðz

0
exp ½rðz’2zÞ�Hðx̂ ; ŷ ; z’; pÞdz’ 1

ðB

z
exp ½rðz2z’Þ�Hðx̂ ; ŷ ; z’; pÞdz’

�
(A36)

r5ðDzÞ21=2½lðpÞ1ivx̂1Dx x̂ 2
1Dy ŷ 2�1=2 (A37)

Applying boundary conditions (A30) and (A31), d1 and d2 can be determined,

d15R½exp ðrBÞw11w2�=½exp ð2rBÞR1exp ðrBÞ� (A38)
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d25½exp ð2rBÞRw12w2�=½exp ð2rBÞR1exp ðrBÞ� (A39)

w151=ð2Dz rÞ
ðB

0
exp ð2rz’ÞHðx̂ ; ŷ ; z’; pÞdz’ (A40)

w251=ð2Dz rÞ
ðB

0
exp ½rðz’2BÞ�Hðx̂ ; ŷ ; z’; pÞdz’ (A41)

R5ðD2rÞ=ðD1rÞ (A42)

Taking the inverse Fourier transform to (A35), the solution in the Laplace domain can be written as:

�Cðx; y; z; pÞ5 1
4p2

ð1
21

ð1
21

~�C ðx̂ ; ŷ ; z; pÞexp ½iðx̂ x1ŷ yÞ�dx̂ dŷ (A43)

Appendix B: Calculation of Function Tðx̂ ; ŷ ; z’; x; yÞ
Function Tðx̂ ; ŷ ; z’; x; yÞ is represented as

Tðx̂ ; ŷ ; z’; x; yÞ5
ð11

21

ð11

21
exp ½ix̂ðx2x’Þ�cos ½ŷðy2y’Þ�hðx’; y’; z’; pÞdx’dy’ (B1)

Function h contains the initial concentration f ðx; y; zÞ and source function gðx; y; zÞ. Approximated h with a
piecewise function which is constant in a space element, we may have,

hðz; y; z; pÞ5
XK

k51

bk hk (B2)

where K is the total number of space elements, hk contains the initial concentration value, and source func-
tion in the element k, bk is the basis function defined as:

bk5
1; x; y; z 2 ek

0; x; y; z 62 ek

(

ek is the space element k. For the interpolation scheme, (B1) can be further written as:

Tðx̂ ; ŷ ; z’; x; yÞ5
ð11

21

ð11

21
eix̂ ðx2x’Þcos ½ŷðy2y’Þ�

XK

k51

bk hk dx’dy’

5
1
i

XK

k51

1
x̂
½eix̂ ðx2xk;2Þ2eix̂ ðx2xk;1Þ� 1

ŷ
fsin ½ŷðy2yk;2Þ�2sin ½ŷðy2yk;1Þ�ghk

(B3)

where xk;j and yk;j indicate the coordinates of edge j of element k. Substituting (B3) into (31), the analytical
convolution can be implemented, which includes simple integration.ðx̂ 2

x̂ 1

1
x̂
½eix̂ðx2xk;2Þ2eix̂ ðx2xk;1Þ�dx̂ 5 E1½2ix̂ 1ðx2xk;2Þ�2E1½2ix̂ 2ðx2xk;2Þ�2fE1½2ix̂ 1ðx2xk;1Þ�2E1½2ix̂ 2ðx2xk;1Þ�g

(B4)

ð ŷ 2

ŷ 1

1
ŷ
fsin ½ŷðy2yk;2Þ�2sin ½ŷðy2yk;1Þ�gdŷ 5 Si½ŷ 2ðy2yk;2Þ�2Si½ŷ 1ðy2yk;2Þ�2fSi½ŷ 2ðy2yk;1Þ�2Si½ŷ 1ðy2yk;1Þ�g (B5)

where E1ð�Þ is the exponential integral function and Sið�Þ is the sine integral function [Abramowitz and
Stegun, 1970].
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