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Abstract 

This research develops a mathematical formulation and an analytical solution to 

frictional heat partitioning in a high speed sliding system.  Frictional heating at the 

interface of sliding materials impacts temperature and the wear mechanisms.  The heat 

partition fraction for a sliding system is an important parameter in calculating the 

distribution of frictional heat flux between the contacting surfaces 

Lacking an analytical solution, a constant heat partitioning coefficient was typically 

used, particularly with the slipper-rail contact surface at the Holoman High Speed Test 

Track.  This assumption was non-physical as frictional heat partitioning is influenced by 

the slipper velocity and the contact pressure profile as well as the material properties.  

The solution presented in this dissertation considers the characteristics of the slipper’s 

frictional heat partition values along with the experimental loading data.  

 With a physics based, rather than a phenomenological approach, this solution 

improves the estimate for the slipper’s heat partition function.  Moreover, this analytical 

solution is practical in calculating the average surface temperature and estimating the 

total melt wear volume. The heat partition function compares favorably with existing 

experimental and analytical data.   Using the Strang’s Splitting and ADI methods, a 

numerical method for surface temperature and corresponding wear percentage under 

dynamic bounce conditions was extensively developed.  
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ANALYSIS OF HEAT PARTITIONING DURING SLIDING CONTACT 

AT HIGH SPEED AND PRESSURE  

1. Introduction 

The very rapid friction of two thick bodies produces fire. 

Leonardo Da Vinci 

Tribology is the study of interactions between a material’s surface and other 

materials or environments in relative motion.  Because the subject is vague and 

complicated, numerous moderately successful attempts with different numerical, 

analytical, and experimental solving techniques have been examined to better understand 

the connection among friction, lubrication and wear in various fields of study.  Current 

interest and knowledge on tribology is substantial, and many applications of tribology are 

beneficial to our daily life.  The core of the tribological discipline is the development of 

practical design algorithms needed by engineers to overcome the failure of tribological 

components.   

The major branches of tribology are mechanical engineering, material science, 

and chemistry.  In addition, the mathematics of frictional heat partition fractions (the ratio 

describing how much frictional heat energy flows into one sliding surface and the other) 

and surface temperatures at the interface due to sliding, the mathematics of liquid 

lubricant behavior for various shapes of sliding surfaces, the mathematics of the atomic 

and micro-scale wear mechanisms whereby solid surface degradation or alterations 
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occurs during sliding, and the reactivity between lubricants and solid surfaces 

respectively are essential to understanding and demonstrating tribological problems. 

1.1 Experimental Background 

The Holloman High Speed Test Track (HHSTT), located at Holloman Air Force 

Base (AFB), NM, is a U.S. Air Force rocket powered sled track facility used for 

investigating hypersonic environments, aircraft munitions, egress systems, and 

aerodynamic related effects.  The HHSTT performs the hypervelocity aerospace testing 

using rocket-propelled sleds that travel on steel rail tracks at speeds approaching 3,000 

m/s.(1)(2)(3) To date, the fastest sled on record reached a velocity of 2,885 m/s in April 

2003 on a newly developed dual rail sled system.   

 

Figure 1. World Land Speed Record : 30 April 2003 (2,885m/s) (1) 

While performing the high velocity test, the high-energy impact creates gouging 

at the interface of a slipper/rail boundary brought about by contact of the test sled on the 

track.  These gouges typically are a result of a high pressure core developing at the 

slipper/rail interface and high viscoplasticity that leads to material mixing. (4)(5)(6)   
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Irregularities in the rail and varying aerodynamic loads cause a dynamic bounce.  

Two contact-driven hypervelocity phenomena that limit sled velocity are slipper wear 

and rail/slipper gouging, both of which have been known to cause catastrophic failure of 

the system.  The development of these phenomena is affected by a combination of 

conditions, temperature, oxidation, loading pressure, etc.   

In particular, this research into wear and gouging focuses on surface temperature 

of the slipper and thus requires consideration of the thermal state.  While in sliding 

contact with the rail, the slipper is subject to intense frictional heating.  The slipper 

quickly reaches a state of elevated temperature.  As the slipper travels along the rail, the 

rail is subjected to near instantaneous frictional heating.  The major task in this research 

is to understand how the thermal distributions of rail and slippers are characterized due to 

sliding at high speeds with a dynamic bounce, and to investigate its thermal effects on the 

slipper.  To describe these physical phenomena, a mathematical model needs to 

characterize the heat transfer from the hypervelocity contact surface into the rail and 

slippers. 

A simple model of the thermal transport caused by a moving source at high 

speeds along an infinite half-space was developed in one dimension and used the steady-

state solution to determine the effects of source velocity on the effective thermal 

penetration depth.(7) 
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1.2 Wear and Friction 

The existing literature reveals many different definitions of wear.  Bayer 

(8)(9)(10) lists some of the more general aspects of wear behavior.  “Wear is a system 

property, not a material property.  Materials can wear by a variety of mechanisms and 

combinations of mechanisms, depending on the tribosystem in which it is used.  Wear 

behavior is frequently nonlinear.  Transitions can occur in wear behavior as a function of 

a wide variety of parameters.”   

Slipper wear at the Holloman High Speed Test Track can be seen as melt wear 

because slipper melted material at the sliding interface is removed due to induced 

temperatures that surpass the material’s melting temperature.  It may be considered dry 

sliding wear (two solid sliding surfaces in contact) because no intentional lubricant or 

moisture is introduced into the slipper/rail contact area with a relative sliding velocity.  

Or, it may be considered compound impact wear as a result of the slipper’s combined 

effect of both sliding on and impacting the rail during the bouncing or skipping motion.  

According to Kato, the mechanisms of wear can be grouped into three types of wear: 

thermal, mechanical, and chemical.  The various mechanisms of wear contribute to the 

overall coefficient of frictionµ . (11)    

Several of the wear mechanisms were briefly described in Chad Hale’s 

Dissertation. (1)(8)(11)  Abrasive wear occurs when hard particles or asperities are forced 

against and move along a solid surface.  Adhesive wear occurs when the contacting 

asperities from two different sliding surfaces bond or adhere together.  Melt wear occurs 
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when the conditions at the interface are sufficient to cause localized melting of the sliding 

material.  Typically, these conditions are high normal load coupled with high sliding 

velocity.  The melting temperature meltT  of the material also plays a role.  In the case of 

metals, as the sliding velocity increases, a film of liquid or molten metal forms at the 

interface which provides melt layer and a lower coefficient of friction.  This study will 

primarily focus on melt wear, caused by high sliding velocity and high pressure to the 

total slipper wear. 

“Friction” is the force resisting the relative tangential/lateral motion (slipping or 

smooth sliding) of solid surfaces, fluid layers, or material elements in contact, and there 

are several subdivided categories; (12) 

1. Dry friction : The force resisting relative lateral motion of two solid surfaces in 

contact, and also subdivided into static friction between non-moving surfaces, and 

kinetic friction (also called sliding friction) between moving surfaces 

2. Lubricated friction : the force resisting relative lateral motion of two solid 

surfaces separated by a layer of gas or liquid 

3. Fluid friction : the friction between layers within a fluid that are moving relative 

to each other 

4. Internal friction : the force resisting motion between the elements making up a 

solid material while it undergoes deformation 

 The magnitude of friction is expressed in terms of the coefficient of friction,(13) 

which is the force to slide divided by the force or load pressing the two solid bodies 
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together.(14)(15)  In other words, the coefficient of friction is the ratio of the frictional 

resistance force to the normal force pressing the surfaces together. 
 
 

1.3 Thermal Effects on Melt Wear and Frictional Energy 

Solid friction occurs whenever two solid bodies slide against each other 

generating a mechanical deformation, which is transformed into internal energy.  Heat 

produced upon the sliding of two solid materials, called frictional heat, is among the most 

important contributors to of wear.  Solid friction and resulting frictional heating is 

concentrated within the real contact area between two materials in sliding.  In a micro-

scale interaction, these mechanisms occur at the asperities on the contacting surfaces.  In 

a macro-scale interaction, most heat energy dissipates into the contact surfaces of a solid 

by heat conduction and deformation processes.  Experimental work has shown that at 

least 95 percent of the energy dissipation occurs within the top 5 μm of the contacting 

bodies(16)(17) and most tribologists agree that nearly all of the energy dissipated in 

frictional contact is transformed into heat.(18)  This frictional heat raises the temperature 

of the sliding surfaces.  The ability to predict the surface temperatures of contacting 

bodies is important to avoid a failure of tribological components.  In addition, frictional 

heating has such an important influence on the tribological behavior of so many sliding 

systems that all tribotests (physical tests of friction, lubrication and wear) must be 

designed with thermal considerations in mind and frictional heating must be considered 

in interpreting the results of tribotests.  For the purposes of our discussion, it is assumed 

that all frictional energy is dissipated as heat. 
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With the agreement that most frictional energy is transformed into heat at contact 

surface areas, frictional heating and contact temperatures of sliding materials produce a 

strong effect on the tribological behavior and failure of sliding materials.  This in turn 

means high surface temperatures and leads the cause of changes in the friction and wear 

behavior of the materials, such as changes in the structure and properties of the sliding 

materials and melting of the contacting solids. 

During tribological processes, frictional heating produces the following 

outcomes;(19) 

1. Due to the high sliding velocities, sliding frictional heat of metallic components 

can increase contact temperatures high enough to melt the sliding face.  This 

results in a thin layer of molten material which lowers the friction significantly 

but at the cost of increased wear.  Such a condition can occur with rocket sleds or 

with projectiles traveling in gun barrels. 

2. Frictional heating can cause surface temperatures to reach the melting or 

softening temperature of thermoplastic polymers. The combination of contact 

pressure and sliding velocity causes the surface temperature to reach the critical 

temperature of the material. 

3. Contact temperatures and the resulting thermal stresses can play an important role 

in the wear of sliding metallic components. The fact that temperature gradients at 

and near the contact surface are very large can be responsible for the softening 

and shear failure of the near-surface layer of the material in many situations.  The 
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thermo-mechanical stress field around a sliding contact can be responsible for 

wear of the contacting materials. 

1.4 Heat Transfer Mechanisms  

Heat is transferred between any two particles which are at different temperatures.  

These two particles may be part of the same solid body, of two different solids, or of a 

mass of fluid.  There are three distinct methods by which heat transfers: Conduction, 

Radiation and Convection.  The mechanism of heat transfer depends on the nature of the 

system and on the character of the material state surrounding the two particles. 

Conduction: Between two particles of a solid body which are at different 

temperatures, heat is transferred by conduction.  Consider a solid plate of thickness d  

with surface area A  and upper and lower surface temperatures, higher lowerT T> .  Since a 

temperature difference ( )higher lowerT T− exists between the surfaces, heat flows from the 

upper surface higherT  to the lower one lowerT  through the plate.  Intuitively, the greater 

temperature difference and surface area yield the greater heat flow rate and the shorter the 

distance (in a homogenous solid) between surfaces yields a faster heat flow rate.  

Therefore, the rate of heat flow q is 

  higher lowerT T
q kA

d
−

=  (1.1) 
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where q is heat flux, the positive constant k is thermal conductivity of the solid, A is 

surface area, higherT  is higher surface temperature, lowerT  is lower surface temperature, and 

d  is thickness of a solid plate. 

 

Figure 2. One-Dimensional Heat Conduction Through a Flat Plate (20) 

  Consider the same solid plate with the temperatures ( )T x  at x and ( )T x x+ ∆  at 

x x+ ∆ , then 

 ( ) ( )T x T x
x

q k xA − +
=

∆
∆

 . (1.2) 

Since the limit is the derivative of temperature with respect to x  

0 0

( ) ( )lim lim
x x

q T x T x xkA
x∆ → ∆ →

− + + ∆
−

∆
= ,    (1.3) 

the expression of the rate of heat flow above reduces to 

 q kA dT
dx

= −   (1.4) 
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where k  is defined as the thermal conductivity of the solid, known as Fourier's law of 

heat conduction for a one-dimensional steady system.(20) 

The heat flux is the quantity of heat transferred per unit time across a unit area, 

and using Equation (1.4) the heat flux in one dimension can be written as 

  𝑞′′ = 𝑞
𝐴

= −𝑘 𝑑𝑇
𝑑𝑛

= −𝑘 𝑑𝑇
𝑑𝑥

 (1.5) 

where ''q  is the heat flux in the direction of n  at a point P of a solid.(20)  In Equation 

(1.5), n is the normal vector of the surface at a given point P, so the direction of n is only 

𝑥 direction and n= 𝒊̂. 

Radiation: If two particles at different temperature are separated by a vacuum, 

then heat can be transferred between them not by conduction but by radiation.  If the two 

particles are separated by an opaque solid or liquid medium, the amount of heat 

transferred through it by radiation is usually negligible. Typically, radiant heat transfer is 

of chief interest in gasses. 

Convection: Heat transfer takes place by mass motion of a fluid such as air or 

water when the heated fluid is caused to move away from the source of heat, carrying 

energy with it.  Convection above a hot surface occurs because hot air expands, becomes 

less dense, and rises. 

Because materials have wavy and rough surfaces, their surfaces are uneven and 

irregular.  Friction occurs on those asperities whenever two materials slide against each 
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other.  Accordingly, contact between two materials can only occur at a limited number of 

asperity points.  Since the number of contact points depends on the load, the roughness of 

the surface, and the total area of those contact points (typically about the top 5μm of the 

contacting bodies), very high pressures are concentrated on those points.  During contact 

between surfaces, there are two interactions taking place, which is between the asperities 

externally and inside of materials internally.  The interaction between rubbing contact 

surfaces results in formation of friction, which is the resistance to the sliding of one solid 

body over or along another.  Through frictional processes, mechanical energy is 

transformed into internal energy or heat, which causes the temperature of the sliding 

bodies to increase. 

Because of contact surface roughness at the sliding rail and shoes, frictional 

processes due to high velocities and heavy loads occur on the asperities.   Frictional heat 

energy is concentrated on those solid-to-solid contacting areas.  Thus, it may be assumed 

that most frictional energy is transformed into heat energy, and this heat energy transfers 

between two sliding solid materials conductively.  Therefore, the conduction is the 

dominant mechanism of heat transfer between two sliding solids. 

1.5 Heat Partitioning Coefficient On Sliding Surfaces 

Hale (1) assumed that frictional heating was split evenly between the slipper and 

rail with 50 % of the frictional heating entering the slipper and 50% entering the rail.  He 

also assumed that the slipper and rail are in contact while sliding.  The slipper and rail 

were assumed to be made out of the same material.  However, the balance of frictional 
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heating is actually a function of the temperature gradients of the slipper and the rail, the 

relative velocity (sliding time and distance), and material properties.   

Farrell, Eyre (24), Lim and Ashby (25) suggested that heat partitioning values 

have strong correlation with loading pressure, relative velocity and frictional coefficient.  

Thermal physics suggests that the heat gradient is determined by temperature difference 

between rail and slipper as well as change in material properties when melt occurs. 

Because the slipper is traveling along the rail, the front edge of the slipper always enters a 

cooler region of the rail and the temperature difference at the front edge of the slipper is 

larger.  So, the gradient of frictional heat energy is greater at the front edge.  While the 

slipper is sliding on the rail, the slipper is in contact in a cooler region of the rail and 

more heat energy tends to flow into the lower temperature region.  This leads that the 

gradient of heat flux of the slipper is smaller than that of the rail.   

Frictional heat energy on the sliding contact is a function of heat partitioning 

coefficient, pressure, relative velocity and material properties.  While sliding, one 

fraction of the frictional heat energy flows into the contact surface of slipper and the 

other fraction of the frictional heat energy flows into the contact surface of rail.  The 

frictional heat energy increases the temperature at the contact surfaces of slipper and rail 

and eventually the slipper may reach a melt temperature.  Once the slipper starts melting 

at the interface, the melt layer is continuously removed by sliding contact.   
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1.6 Literature Review on Heat Partitioning Values 

The leading works on the thermal analysis of sliding systems are those by Blok 

(26) and Jaeger (21).  At the interface of two sliding materials, the temperature of both 

contacting surfaces should be continuous and the frictional heat energy must be 

conserved.  The temperature distributions of sliding surfaces at the interface should be 

non-uniform.  Thus, heat partitioning values should be non-uniform along the slipper and 

rail at the contact surfaces and change with time.  The heat partitioning values balance the 

thermal energy between a slipper and rail.  This non-uniform temperature distribution of 

sliding surfaces and non-uniform heat partitioning values at the interface, make the 

thermal analysis of a sliding system difficult.  Furthermore they make the analytical 

approach of developing a heat partitioning function complex.   

Instead of matching the surface temperature of the two materials at all points 

along the contact interface, Blok (26) matched the maximum surface temperature of two 

sliding bodies along the contact region and determined the distribution of heat partitioned 

into each bodies.  Jaeger (21) used a Green’s function to develop steady-state solutions of 

moving and stationary bodies, matched the averaged temperature of the two bodies at the 

contact interface.  Kennedy and Tian (27) used a finite element analysis technique to 

develop approximate solutions of surface temperature and heat partitioning fractions for 

several sliding problems.  Komanduri and Hou (28) used a Green’s function to find 

contact-surface temperature distributions of moving and stationary bodies to determine 

variable heat partitions along the interface between two bodies.  
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1.6.1 Analytical Analysis Approach  

Francis (29) developed a steady-state solution for the temperature distribution on 

a sliding contact interface using Hertzian contact.  He assumed that each body would get 

all of the frictional heat energy and that the temperature would only be influenced by the 

frictional heat energy of each point of the body.   

Iwand et al. (30) found analytical solutions by assuming a constant heat flux 

flowing into the moving body over a circular area of radius a given by (1 ) Vq pα µ= −  

where q is the heat flux into the moving body, α  the heat partition factor which is the 

fraction of the total friction heat generated that flows into the rail, p the surface pressure 

taken as uniform, µ  the coefficient of friction, and V is the slide velocity.  A steady-state 

value of heat partitioning value α  is determined analytically by the formula 

 1
1 1.474 / aV

α
κ

=
+

  (1.6) 

where κ the thermal diffusivity.  

Sun et al. (31) considers a semi-infinite body with a uniform heat flux on a 

rectangular area with assumptions of a uniform pressure and the gradient of heat flow 

being normal to the surface.  Using Jaeger’s method, equating expressions for the average 

temperatures of two bodies, they developed a transient heat partition factor in the form  

 1 1
1/2 1/2

32

2 3
1/2

1

( ) 1 JJ Jt
s j s j s j

α −= −


+ +
+ + +


 
 

   (1.7) 
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where 1−  the inverse Laplace transform, s  the Laplace transform variable, ,i iJ j the 

functions of the contact area dimensions, slide velocity and thermal properties.  The 

development of Equation (1.7) and the definitions of each term are well derived and 

explained in Sun’s paper, Progress in the reduction of wheel spalling.(31) 

1.6.2 Functional Analysis Approach 

Komanduri and Hou (32) use the functional analysis approach to investigate the 

temperature distribution and the heat partition at the chip-tool interface in machining.  

They assume a uniform heat flux distribution along the sliding contact area to develop the 

best fit curve of heat partition values.  They consider the functional relationships for the 

heat partition fractions as a function of the heat intensity distribution, contact length of 

interface, the velocity of the moving heat source, and the thermo-physical properties of 

the two bodies of the sliding system.   

They consider the case of uniform heat intensity distribution and adopt the 

solutions for an infinitely long stationary and an infinitely long moving band heat sources 

(21).  They observe that it takes much longer for a stationary heat source to reach a quasi-

steady-state than a moving heat source.  The moving heat source is considered as quasi-

steady-state while the stationary heat source is considered as transient.  They determine 

the time for a moving heat source to reach the quasi-steady-state given by 

 2

20
qst

v
κ

=   (1.8) 
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where qst  is the time for a moving heat source to reach the quasi-steady-state, κ is the 

thermal diffusivity, and v is the velocity of heat source.   

 

Figure 3. Surface Temperature Rise Along the Contact Interface for the Moving and Stationary Bodies 
Considering Uniform Heat Partitioning Fraction (32) 

In Figure 3, for Body 1 with a stationary band heat source, the distribution of 

temperature rise is symmetric and the maximum value of the temperature rise is at the 

mid-point of the contact length.  However, for the moving body, it is not symmetric and 

the maximum temperature rise is towards the trailing edge.  The higher the velocity of the 

moving heat source, the closer is the maximum value of temperature rise to the trailing 

edge.  This is the characteristic form of the temperature rise distribution on the surface 

caused by a moving heat source as originally shown by Carslaw and Jaeger (21).  

Furthermore, the numerical result, which will be presented in Chapter 7, will show the 

same pattern.   

Direction of 
Motion 
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From the results of the calculation of temperature rise for moving and stationary 

bodies for a uniform heat partition as shown in Figure 3, it is clear that matching of the 

temperatures at all points on either side along the width of contact would be impossible.  

Consequently, when two bodies are in sliding contact, the heat partition would be non-

uniform along the width of contact.  Therefore, it is necessary to match the temperature 

rise everywhere along the width of contact on either side of the interface and not merely 

the average temperature rise.   

Komanduri and Hou (32) developed the function for the non-uniform distribution 

of heat partition function iB  using the curve-fit analysis approach with trial-and-

correction terms.  They use a polynomial curve-fit because it is easy to adjust the 

parameters for matching the two temperature rise distribution curves at the sliding contact 

interface on each body.  By increasing the number of terms of the polynomial function, a 

high degree of accuracy could be obtained.  The resulting functional relationships of the 

local heat partition fractions is given 
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  (1.9) 

where 1 2,B B  the averaged heat partition fractions over the sliding contact area for Body 

1 and Body 2, 1 2,i iB B  the local heat partition fraction for Body 1 or Body 2 at the point 

ix , B∆ the maximum trial-and-correction factor at 0ix = , w  the width of contact area, 

and m  determined by a trial and error.   
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Figure 4. Variation in the Heat Partition Fraction with Power Function Correction (32) 

 

Komanduri and Hou plotted a pair of temperature rise equations for stationary and 

moving band heat sources with a non-uniform distribution of heat liberation intensity, 

equations 1 2andi iB B  in Equation (1.9).  Figure 4 shows the variation of the heat partition 

fraction with power function correction, 1iB  as a function of the width of the heat source 

/ix w  for different values of m .  They observed that for smaller values of ( 1)m < , the 

compensation effect on the left wide of the temperature rise distribution curves as a 

whole can be lowered keeping the effect on the extreme left end ( )/ 0ix w →  still 

sufficiently large.  Therefore, they stated that it is necessary to select an appropriately 

small value of ( 1)m <  such that the portion of the curve near the left end would have 

sufficient compensation without causing over compensation to the remaining left part.  

For large values of (10  30)m m≤ ≤ , the compensation effect is concentrated towards the 
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extreme right end while its effect is very small or negligible near the middle or at the left 

side.(32)    

For matching the remaining part on the right side, a third term with a large 

exponent is needed.  Thus, Komanduri and Hou discovered the functional relationships of 

the local heat partition fractions shown below 
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  (1.10) 

where ,,m k C  determined by a trial and error, i.e. for large values of the Peclet number 

( )20≈ , 0.03, 35 ~ and45, 0.5k Cm ≈ ≈ ≈ .(32)   

1.6.3 Numerical Analysis Approach Using FEA Model 

Gupta et al. (33) assumed 50% of the frictional heat entering the contact surface 

of rolling wheel and another 50% of the frictional heat entering the rail, equally 

distributed between the wheel and rail.  They used finite element analysis to study the 

frictional heat energy in a rolling and sliding system.  Kennedy et al. (34) consider a 

Hertzian pressure distribution over the contact area rather than a uniform one and use a 

finite element analysis to determine the heat partition factor by matching the temperature 

everywhere between the wheel and rail.  They simplify assumptions to determine the 

transient solutions for the railcar wheel sliding problem.   
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Figure 5 shows the comparison between Sun et al.’s analytical transient solutions 

(dotted line), Equation (1.7) (31), and the numerical solution using a transient finite 

element analysis.  Kennedy et al. have chosen the case presented by Sun et al.(31) which 

consists of a BR Mark II coach wheel with a wheel load of 42,000 N and a sliding 

velocity of 40 m/s.  The contact patch is a square area with sides of length 0.01m.  The 

coefficient of friction is 0.075.  The thermal conductivity of the wheel and rail steel is 

40W/mC, and the thermal diffusivity is 10 × 10−6 m2/s.  The heat generated is assumed 

to be uniform across the contact interface and given by q pVµ= .  A transient finite 

element analysis was performed for this case assuming an initial temperature of 0oC

.(34)   

 

Figure 5. Heat Partition Factor vs. Time at Positions Along the Contact Patch (34) 

Figure 5 shows that for all points on the interface, the heat partition factor rises 

rapidly with time to a value close to one.  The results of the analytical model by Sun et al. 
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(31), in which the heat partition factor α  is treated as being uniform across the contact 

patch, are shown in Figure 5.  This simplified analytical solution is very close to the FEA 

results at the center ( 0)x =  of the contact patch.(34) 

 

Figure 6. Temperature Distribution Along the Contact Patch at Various Times (34) 

Figure 6 shows temperature profiles on the wheel surface near the contact patch at 

various values of time.  At 𝑡 = 0.1 ms, the temperature distribution along the contact 

patch is approximately uniform and is zero outside the contact patch.  As time progresses, 

the temperature distributes in a non-uniform manner with a peak value near the tailing 

edge.  The numerical model using ADI and Strang Splitting methods will present similar 

behavior, and the numerical results developed are compared in Chapter 7.  

Malinowski, Lenard and Davies (35) used the mechanical models of the hot/warm 

forging process.  The method for the determination of the heat-transfer coefficients in 

bulk metal-forming process consisted of two steps.  The first involved measuring the 
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temperature distributions within two dies, one of which simulated the cold forming tool 

and the other the hot workpiece.  The second step made use of the finite-element 

simulation of the resulting heat-transfer problem.  The two stainless steel 303 dies of 25.4 

mm diameter each are instrumented with four Type K thermocouples of 1.6 mm outside 

diameter, with INCONEL sheaths and exposed beads, located 2, 4, 10 and 25 mm from 

the contact surface and embedded to a depth of 10 mm.  The dies are connected to the 

water-cooled heat exchangers of a servohydraulic testing system.  One of the dies is 

heated to a pre-selected temperature in a split, openable furnace.  When the desired 

temperature is reached, the furnace is removed and the cold die is brought into contact 

with the hot die under closely controlled conditions.  The velocity of approach is selected 

at 0.83 mm/s.  The initial temperature of the hot die is varied from 300 to 900 oC .  They 

used the heat-transfer coefficient as an unknown function of the time of contact, the 

pressure and the temperature, and the heat-transfer coefficient function was determined 

using a least-squares approximation.  They developed empirical relations of the heat-

transfer coefficients as a function of the three parameters, the interfacial pressure, the 

time of contact, and the initial temperature of the hot die.  Equation (1.11) is the heat-

transfer coefficient function they estimated 
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The predictions of Equation (1.11) are valid for pressures in the range of 30 −

90 MPa and temperatures from 300 to 900 oC .  The parameters A, B and Q are defined as 

follows 

2 2 3 2
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They discovered that the interfacial heat-transfer coefficient is strongly related to 

the contact pressures, but not strongly related to the temperature of the hot die.  The 

calculated temperature distribution does not depend on the magnitude of the coefficient 

of heat transfer as strongly.(35)    

Iqbal, Mativenga and Sheikh (36) developed an experimental setup using Finite 

Element modeling of dry sliding metals to estimate interface heat transfer coefficient.  

Rubbing tests were performed where the end surface of a cylindrical pin made of tool 

material was pressed against the end surface of a rotating workpiece.  For these tests, a 

pin of 2.5 mm diameter and 15 mm length was made of cemented tungsten carbide.  The 

mass of the pin was measured using a precision electronic balance to calculate the 

amount of weight loss during the rubbing process.  The rubbing experiments were 

performed at the rubbing speeds up to 776 m/min.  The rubbing time was set to one 

minute for all rotational speeds in order to achieve a steady state temperature in the pin.  
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The thermal imaging camera was used and this camera can capture and store thermal 

images and data.  They observe that the estimated interface heat transfer coefficient 

decreases at low speeds and then becomes approximately steady for high speeds based on 

their experimental results.  Also, they estimated values of interface heat transfer 

coefficient highly depend on temperature at very low speed but do not show a 

dependence on any parameter at high speed over 600 m/min (equivalent to 10 m/sec).   

1.7 Research Objectives 

The objectives of this dissertation are to develop an analytical solution for the 

slipper’s frictional heat partitioning (the function evaluating how much frictional heat 

energy flows into the slipper while sliding) in order to describe the interaction and melt 

wear mechanism on the sliding surfaces at high velocity and high pressure, to develop the 

mathematical model to calculate the distribution of the frictional heat partitioned into a 

slipper numerically, and to analyze its effects on a sliding surface of material such as the 

surface temperate and melt wear.  Understanding the distribution of heat partitioned into 

sliding materials and the resulting surface temperatures is critical to develop designs that 

minimize material failure due to melt wear.  The problem may be split in two parts: pre-

melting problem and post-melting problem.  Before melting during sliding contact the 

frictional heat energy influences the temperature profile raising the temperature at sliding 

surfaces.  When the surface temperature of the material reaches its melting temperature, 

the material changes phase from solid to liquid at the sliding surface, i.e. creating the melt 

layer.  Due to high sliding velocity and turbulence flow between two contact surfaces, 
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this melted layer is removed so the melt layer does not stay on the sliding contact 

interface.  This process is called the melt wear.   

The surface temperature profile during the pre-melting period is developed using 

Green’s function.  The heat partitioning function is developed using the Laplace 

Transform and Incomplete Gamma Function analytically and is evaluated numerically.  

The heat partitioning values on the sliding interface demonstrate the surface temperature 

of a one dimensional half space region in sliding contact with various velocities and 

pressures, and calculate the wear percentage due to melting process.  Because the 

frictional heat partitioning values determine the amount of frictional heat energy flowing 

into the sliding surface over the other, these values are important factor to evaluate the 

surface temperature distribution and to find the time required for the sliding interface to 

reach the melt temperature at one surface.  

With the immediate melt layer removal, the surface temperature at the contact 

area never exceeds its melt temperature and is assumed to hold at melt temperature after 

melting occurs.  When the melt layer is created at the sliding surface due to the frictional 

heat energy, the liquid is formed at the outer layer and the boundary between the liquid 

and solid (the melt front) moves in the direction of the material’s depth.  The liquid layer 

(melt layer) is removed instantaneously while sliding.  This process explains how melt 

wear at high sliding velocities and pressure influences is directed to either surface.   

 Chapter 2 discusses the mathematical development and formulation of the heat 

transfer problem using partial differential equations and different initial boundary 
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conditions. It then presents the mathematical approach to find the temperature 

distribution solution to heat transfer problem using Green’s function and the error 

function.  In Chapter 3, the mathematical models of rail and slipper are developed for a 

two dimensional heat transfer problem to the high speed sliding system.  Carslaw and 

Jaeger’s approach, matching the averaged surface temperatures of rail and slipper, is 

adopted to develop the analytical solution of frictional heat partitioning.  There are some 

assumptions made in order to formulate and solve slipper and rail’s two dimensional heat 

transfer problem analytically, which are the sum of the frictional heat energy flowing into 

the slipper and rail being equal to the total frictional heat energy, the uniform heat 

partitioning value and uniform pressure distribution along the contact surface. No change 

in thermal properties due to temperature change and phase change may be assumed.  

Because of these assumptions, the analytical solution to the two dimensional heat transfer 

problem is only valid until the melt layer on sliding contact occurs.  It is important to find 

melt time, i.e. when the melt layer is first generated.  As such, in Chapter 4, the slipper’s 

one dimensional heat transfer problem is formulated using a partial differential equation 

and solved using Green’s function.  For the melt temperature of slipper given, the melt 

time formula is developed for two velocity cases: constant velocity and linearly 

increasing velocity.  In order to verify the analytical heat partitioning solution of the two 

dimensional heat transfer problem, the two dimensional numerical heat partitioning 

solution is sufficient and necessary.  In Chapter 5, the slipper and rail’s two dimensional 

heat transfer numerical models are developed using ADI and Strang Splitting Methods.  

Then, in Chapter 6, the slipper and rail’s numerical models calculate their surface 
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temperature distributions and match the averaged surface temperatures, which is Carslaw 

and Jaeger’s approach in order to develop the numerical solution of frictional heat 

partitioning for two dimensional heat transfer problem.  After verifying the analytical 

solution with the numerical solution, the melt wear percentage is estimated numerically 

for different scenario in Chapter 7.  Finally, the numerical results of melt wear percentage 

are compared and analyzed and the final considerations of the analytical and numerical 

solutions for frictional heat partitioning are discussed. 
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2 Analytical Modeling 

2.1 One Dimensional Heat Conduction Problem 

 Conservation of energy assumptions are foundational to modeling heat flow with 

partial differential equations.  The heat equation is derived from the conservation of heat 

energy.  In Section 1.4, the solid used to formulate differential equations of heat 

conduction is assumed isotropic (i.e. homogeneous material) having isothermal surfaces 

(i.e. same temperature at every point at this instant upon it), as well as linear heat flow.  

Since temperature distribution of the very thin layer on local sliding contact areas is of 

interest with high velocities and pressures in this research, the heat flux vector at an inter-

boundary surface may be considered in only one direction. Accordingly a one-

dimensional heat transfer example will be used to demonstrate the simplified heat 

conduction problem in order to understand how frictional heat input affects the equation 

of heat conduction.  

Suppose a thin rod of length h satisfies following assumptions: 

1. The rod is isotropic solid (made of a single homogeneous material). 

2. The lateral surface area of the rod is insulated perfectly (heat flows only in the x 

direction). 

3. The temperature of the cross sectional area at 𝑥 is constant. 

Conservation of heat energy says that the heat energy between x and x x+ ∆  

changes in time due only to heat energy flowing across the edges at 𝑥 and 𝑥 + Δ𝑥, and 
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heat energy generated inside.  Applying the principle of conservation of heat to the 

segment [ , ]a b , the conservation of heat energy  is 

 
Rate of change of Heat energy flowing across Heat energy generated 
heat energy in time    boundaries per unit time   inside per unit time

= +
  

Let 𝑒(𝑥, 𝑡) be the thermal energy density, the amount of the thermal energy per 

unit volume and assumed to be constant throughout the volume.  Then the total heat 

energy in the slice from 𝑥 to 𝑥 + Δ𝑥 is 𝑒(𝑥, 𝑡)𝐴Δ𝑥.  

In a finite segment [ , ]a b , the total heat energy is ( , )
b

a
Ae x t dx∫ , the sum of the 

contributions of the infinitesimal slices.  So the rate of change in heat energy is 

equivalent to the following; 

 𝑑
𝑑𝑡 ∫ [𝑒(𝑥, 𝑡)𝐴𝑑𝑥]𝑏

𝑎 = [𝑞(𝑏, 𝑡)𝐴 − 𝑞(𝑎, 𝑡)𝐴] + ∫ 𝑄𝐴𝑑𝑥𝑏
𝑎  (2.1) 

where ( , )q x t is defined as heat flux (the amount of thermal energy per unit time flowing 

to the right per unit surface area), ( , )Q x t or Q  is heat source (heat energy per unit volume 

generated per unit time), and ( , )e x t  is thermal energy density (the amount of thermal 

energy per unit volume). 

The total thermal energy in a thin slice, ( , )e x t A x∆ , can be defined as the energy 

required to raise the temperature from a reference temperature rT  to its actual 

temperature ( , )T x t , 
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 ( ) ( )( ( , )( , ) )rx c x xe x t A T x t T A xρ∆ = − ∆     (2.2) 

where ( )c x  is the heat capacity or specific heat (the measure of the heat energy per a unit 

mass necessary to raise the temperature of a substance by one unit temperature), and 

( )xρ  is mass density (mass per unit volume).  Based on this definition, the specific heat 

( )c x  of a material depends on the temperature ( , )T x t  making the heat equation nonlinear 

and mathematically complex.  Under some conditions, such as restricted temperature 

intervals and homogeneous rod, the specific heat may be assumed to be constant c   

having a mass density ρ .   Using Equations (2.1) and (2.2), the conservation equation 

results in a partial differential equation; 

 T Tk Q
t

c
x x

ρ ∂ ∂ ∂ = + ∂ ∂ ∂ 
  (2.3) 

If there are no internal heat sources 0Q = and the thermal conductivity k is 

constant, then Equation (2.3) becomes 

 
2

2

T T
t x

κ∂ ∂
=

∂ ∂
  (2.4) 

where κ is the thermal diffusivity and defined as k
cρ

 . 

2.2 Simple Heat Conduction Problem Due to Sliding Contact Flux 

Carslaw and Jaeger introduced the solution when heat was a moving source.  They used 
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1 T T
tκ

∂
= ∆

∂
 for the differential equation of conduction of heat in 3 dimensions, and this 

equation is satisfied by 
2 2 2[( ) ( ) ( ') ]/4

3/28( )
x x y y z z tT q e

t
κ

πκ
′− − − −+ +=  for 𝑡 > 0.    

As 0t →   this expression tends to zero at all points except ( ', ', ')x y z , where it 

becomes infinite.  Also the total quantity of heat in the infinite region is  
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+ += =∫ ∫ ∫ ∫ ∫ ∫  .      (2.5) 

Suppose that heat is generated at the origin for times 0t >  at the rate q heat units 

per unit time, and that an infinite heat generator uniformly moves by the origin with 

velocity 𝑣0 parallel to the axis of x.  In the element of time 'dt  at 't , 'qdt  heat unit were 

generated at the origin; also the point where the heat is generated, which at time t is at 

( , , )x y z , at time 't  was at (𝑥 − 𝑣0(𝑡 − 𝑡′), 𝑦, 𝑧).  Thus the temperature at t at ( , , )x y z  

due to the heat 'qdt  emitted at 't  is 𝑞𝑑𝑡′

8𝜌𝑐�𝜋𝜅(𝑡−𝑡′)�3/2 exp �−
�𝑥−𝑣0�𝑡−𝑡′��

2
+𝑦2+𝑧2

4𝜅(𝑡−𝑡′) �.  And the 

temperature at t  due to the heat emitted at the origin from time 0 to t is    

       𝑞
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3
2

∫ 1
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𝑅/2√𝜅𝑡      where 𝑅 = 𝑥2 + 𝑦2 + 𝑧2.                 (2.6) 
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Equation (2.6) is the solution for heat supply for a finite time t.  If t →∞ , a 

steady state solution is established, and the temperature at ( , , )x y z  is 𝑞
4𝜋𝑘𝑅

𝑒
−𝑣0(𝑅−𝑥)

2𝜅  . 

If heat is produced at the constant rate 'q  per unit time per unit length along the y-

axis, the temperature in the steady state at the point ( , , )x y z is found by integration to be  

                 𝑞′

4𝜋𝑘 ∫ 𝑒�−𝑣0�√𝑅−𝑥�
2𝜅 � 𝑑𝑦′

𝑅
∞

−∞ = 𝑞′

2𝜋𝑘
𝑒

𝑣0𝑥
2𝜅 𝐾0[𝑣0(𝑥2 + 𝑧2)/2𝜅]               (2.7)    

where 0 ( )K x  is the modified Bessel function of the second kind of order zero.        

 Consider the thermal effects of contacting surfaces of slipper and rail of 

Holloman High Speed Test Track (HHSTT).  In this case, heat is supplied over some 

area, whose shape is not well-defined.  A slipper is assumed to be an infinite strip heat 

source of ,b yb x −− < ∞ << < ∞  in the plane z=0 moving with constant velocity 𝑣0.  As 

it slides over the rail, the frictional heat is generated at the constant rate q per unit time 

per unit area over the strip. 

In Section 10.7 of Carslaw and Jaeger’s book Conduction of heat in solids, they 

presented the solution of the infinite strip heat source with velocity 𝑣0.  Using their 

approach to the solution, the temperature distribution is formed by integrating Equation 

(2.7) 

                               𝑇 = 𝑞
2𝜋𝑘 ∫ 𝑒

𝑣0�𝑥−𝑥′�
2𝜅 𝐾0

𝑏
−𝑏 �

𝑣0��𝑥−𝑥′�2
+𝑧2�

1/2
 

2𝜅
� 𝑑𝑥′   (1) (2.8) 
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where 0 ( )K x  is the modified Bessel function of the second kind of order zero.(44)  On 

the sliding contact between the rail and shoe at HHSTT, the frictional heating generates 

the thermal energy, which flows into the rail and shoe.  If it is assumed that the rail and 

shoe are semi-infinite solids, Equation (2.8) is applicable to find the temperature of the 

rail or shoe when they slide with a velocity 𝑣0. 

2.3 Initial and Boundary Conditions 

Equation (2.4), the one dimensional heat conduction equation, is the partial 

differential equation that describes one dimensional heat flow in a homogeneous material.  

However, additional information is needed for a well posed and physically meaningful 

problem.  This information is given in the form of initial and boundary conditions. 

1. Initial Condition describes the state (temperature or concentration) of material 

when time is zero, 0t = .  Simple initial condition is the prescription of the 

temperature at every point in the body at the initial moment and it is expressed 

mathematically as 

 ( ,0) ( )T x g x=   (2.9) 

where ( )g x  is a known function.  If the heat equation is satisfied for all time 0t >  and 

( , ) ( )T x t g x→ as 0t → , then its solution is said to satisfy its initial condition. 

2. Boundary Condition describes the behavior (temperature or heat flux) at the 

surface (boundary).  The boundary or surface in one dimensional heat conduction 
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problem generally consists of the endpoints x a= and x b=  for a b−∞ < < < ∞ .  

If both the temperature and heat flux are specified at both x a=  and x b= , then 

the problem is considered to be over specified, and generally there is no solution 

to the heat equation.  Therefore, it is necessary in obtaining a unique solution to 

prescribe either the temperature or heat flux, or some relationship between the 

two at the endpoints x a=  and x b= . 

During the sliding of two solid materials, the frictional process occurs and 

produces energy, mostly in the form of heat energy.  A continuous supply of heat energy 

raises the temperatures of both contact surface areas and inside the material.  After some 

time, the temperature of the contact surface areas eventually reaches the melting 

temperature.   The boundary between solid material and melted region moves with time, 

and is called a moving boundary.  Finding the speed and position of the this moving 

boundary is essential to determine how fast the material’s surfaces melts away and how 

much the melt wear is created. 

2.4 Moving Boundary and Conditions Due To Phase-Change 

When a material reaches the melt temperature and undergoes a phase change from 

solid to liquid, there is energy absorbed as a result of phase change and that heat energy is 

stored in melt layer.  During this phase change process, there is no temperature change at 

the melt layer and stays at the melt temperature.  This energy is called latent heat of 

solidification or melting, and the amount of latent heat of melting determines the 
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thickness of melt layer.  Thus the rate of heat supply to phase change is related to the rate 

at which the boundary moves. 

Let , , , ,i i i i ic k Tρ κ  be the constant thermal properties (density, specific heat, 

conductivity and diffusivity) and temperature of solid (𝑖 = 𝑠𝑜𝑙𝑖𝑑) and liquid (𝑖 =

𝑙𝑖𝑞𝑢𝑖𝑑).  The specific heat is the measure of the heat energy required to increase the 

temperature of a unit quantity of a material by a unit of temperature, i.e. more heat energy 

is required to increase the temperature of a substance with high specific heat capacity 

than one with low specific heat capacity. In the problem to be considered, there is no 

volume change assumed.  So both solid and liquid states have the same densities, 

solid liquidρ ρ ρ= ≡ . 

 

Figure 7. Melting of a Solid On the Heat-Source-Contact Surface  

When a solid material is in contact with a heat source on the surface, there exists a 

separating interface between two phases and this interface can move as time progresses.  

Figure 7 illustrates how the moving boundary between a solid and a liquid is created and 

which direction the moving boundary moves.  Solidification or melting process occurs 
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when the material’s temperature reaches the melting temperature 𝑇𝑚.  Figure 7 shows that 

the moving boundary of a solid material moves to where the temperature reaches the 

melting temperature 𝑇𝑚.  From Figure 7, the position of the moving boundary can be 

determined by the temperature distribution inside the material, in which a phase change 

occurs at melting temperature. 

If it is assumed that solid and liquid densities do not change significantly during 

phase transformation, some particle movement in a liquid phase can be ignored and heat 

transfer by convection does not take place.  Accordingly heat transfer by conduction 

dominates the solid and liquid.   

Let ,, ( )mT tσ
 be the latent heat (amount of heat energy required during a change 

of state, in this case between solid and liquid, without changing a temperature), the 

melting temperature, and the separating interface location (or moving boundary, position 

from the initial contact surface) between the solid and liquid phases.  Until such time that 

the temperature reaches melt (call this the melt time, mt ), the moving boundary does not 

move ( ) 0.tσ =    

 Temperatures of solid and liquid phases are continuous at the solid-liquid 

interface (moving boundary), and they are equal to its melting temperature.  This leads to 

the boundary condition at the interface  

 ( , ) ( , ) , when ( ) for 0solid liqu midx t T x t tT T x tσ= = = >  . (2.10) 
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In Figure 7, a semi-infinite region 0 x≤ < ∞  contains a solid initially at a temperature  

𝑇𝑠𝑜𝑙𝑖𝑑 lower than the melting temperature mT .  Where the right boundary in Figure 7 is 

held at a constant temperature constT  (lower than melting temperature), mT  is applied at the 

liquid surface 0x =  at 0t = .  𝑇𝑐𝑜𝑛𝑠𝑡 can be either the initial temperature or the ambient 

(room) temperature  The temperature at 𝑥 = ∞ is maintained at this temperature constT  for 

0t > .  The solid starts to change phase at the boundary 0x =  which is treated as the 

separating interface located at ( )x tσ=  between solid and liquid. It moves a distance dσ

in the x direction during dt .  We know that the thermal conductivities ,solid liquidkk  of solid 

and liquid are different and the rates of heat energies which exit the liquid and enters the 

solid must be balanced.  Therefore, the latent heat   must be liberated at this interface 

( )tσ  of liquid and solid.  Mathematically this leads to the condition, 

 
( )( )

liquid solid
liquid solid

x tx t

T T dk
x x dt

k
σσ

σρ
==

∂ ∂
= −

∂ ∂


 . (2.11) 

Equation (2.11) is known as the “Stefan condition” for the local velocity of a 

moving boundary as a function of quantities evaluated at both sides of the phase 

boundary.  The Stefan condition, Equation (2.11), is usually derived from a physical 

constraint when considering problems of heat transfer with phase change.(22)    Solving 

Equation (2.11) for d
dt
σ  produces the follow 

( )

1 liquidsolid
solid liquid

x t

T
k Td k

dt x x σ

σ
ρ

=

∂∂
=

 
 
 

−
∂ ∂

.   (2.12) 
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This expression shows that the velocity of the interface, 
d
dt
σ

,  is proportional to the 

difference of heat flows entering and exiting across the interface.   

2.5 Green’s Function Solution 

Consider the one dimensional infinite space x < ∞  and the linear heat flow along 

the x-axis.  The equation of linear heat flow in one dimension is 

 
2

2

T T
x t

κ ∂ ∂
=

∂ ∂
  (2.13) 

where κ  is  thermal diffusivity, ( , )T x t  is a temperature of a point x  at time 0t > .  The 

expression 

 
2 /4

( , )
x teT

t
x t

κ−

=   (2.14) 

is a particular solution of linear heat flow Equation (2.13). 

 Observe that: 

1. For a fixed 𝑡 > 0, T  approaches zero as x → ±∞  and T  approaches 1 / t  as 

0x → . 

2. At 0x = , T  approaches zero as t →∞  and T  approaches ∞  as 0t → . 

3. For all 0t > , 2Tdx πκ
∞

−∞
=∫ . 
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If , ,x t T are considered as position in the depth of solid from a surface boundary, 

time, and temperature distribution respectively, then Equation (2.14) captures the 

physical properties of heat transfer;  

1 The temperature distribution is “smoothing out” over a material with the 

maximum temperature decreasing as time progresses, implying that heat energy 

stored in a material spreads to an even distribution as time progresses. 

2 The maximum value of T occurs at 0x =  as 0t → , which implies that the heat 

source is applied initially at the center of a material 0x = .  

Let’s integrate Equation (2.14) with respect to space variable x over a semi-

infinite area 0 xξ≤ ≤ .   Introducing the change of variable 
2

x
t

ξ
κ

= ,  dx
t

 is replaced 

with 2 dd x
t

κ ξ = ,   

 
2

2
/4 /2

0 0 0
( ) for 0
2

2
x tx x x te xdx e d erfTdx t

t t

κ κ ξκ ξ κπ
κ

−
−= = = >∫ ∫ ∫   (2.15) 

with the error function erf(x) defined as  

 
2

0

2( )
x
eerf x dξ ξ

π
−= ∫  . (2.16) 

Equation (2.16) is known as “error function solution” or “Green’s function” of the 

heat equation. (Appendix A.1)  The function given by Equation (2.14) is positive for any 

0t >  and has a bell-shaped graph over x−∞ < < ∞  for a fixed t .  Figure 8 shows that the 
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graph of the Gaussian function 2 2( ) /2

2

1
2

xe µ σ

πσ
− is a bell-curve shape with the peak of 

height 21 / 2πσ  at x µ=  and the bell shape gets wider as the value of 𝜎2 gets larger.  

By letting 0µ =  and 2 tσ κ= , the Gaussian function 2 2( ) /2

2

1
2

xe µ σ

πσ
− becomes 

Equation (2.14) which is a particular solution of linear heat flow Equation (2.13). 

 

Figure 8. Gaussian Distributions With Different Parameters (23) 

Thus, for some fixed time 0t >  the peak height of Equation (2.14) 

2 /4 /x tT e tκ−=  is 1 / t  at 0x =  and decays as t  grows.  This describes the temperature 

distribution of a material with one point heat source at 𝑥 = 0 over time.  Since the 

temperature at some point x  in a material at a certain time is the total sum of thermal 

contribution from the initial state at all points, integrating 
2 /4x t

t
eT

κ−

=  over the positive 

x  gives the temperature distribution for 0t > .     
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3 Two-Dimensional Mathematical Model 

The sliding system of rail and slipper is a semi-infinite solid, and the temperatures 

of both bodies are initially at an ambient temperature.  Once the rocket-powered sled 

starts moving, friction generates the intensive heat energy which is applied to both 

contact surfaces at the interface.  Because the physical geometry of slipper and rail’s 

surfaces is rough and the sled is moving with loading pressure, dynamic bounce effects 

should be considered.  While in contact, the frictional heat energy should be the only heat 

source and no frictional heat loss to environment assumed.  While not in contact, there is 

the heat energy gain or loss due to turbulence flow between two surfaces.  Therefore the 

conductive heat transfer mechanism is applied while in-contact and convective heat 

transfer mechanism is applied when not-in-contact.  The frictional heat partition fraction 

is only engaged in conductive heat transfer while in contact.   

This research employs a two dimensional heat transfer formulation to the high 

speed sliding system instead of a three dimensional one.  It has been shown (40) that the 

surface temperature distribution along the centerline of a sliding contact area from a three 

dimensional analysis is virtually identical to its two dimensional counterpart for high 

velocity.   

3.1 Characteristics of Heat Partition Fractions and Bounce Effects 

The slipper and rail in sliding contact is illustrated in Figure 9.  This sliding 

contact generates heat due to friction.  The flow of this heat is accounted for in terms of 

heat flux and is partitioned into flux into the slipper and flux into the rail. 
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Figure 9. Frictional Heat Distribution of Slipper and Rail with Heat Partition Fraction 

It is assumed that there is no heat loss at the sliding interface areas of slipper and 

rail.  For now, the heat partitioning function 𝛼(𝑡) is assumed to be the constant function 

𝛼.    If α (0 1)α≤ ≤  is defined as the slipper’s heat partitioning value, then 1 α−  is the 

rail’s heat partitioning value.  Thus, the expression for the frictional heat flowing into the 

rail and slipper is   

 
( ) ( )

( )
( ) (1 ) (

( )
)

slipper

rail

Q t Pv t
Pv t

Q t Pv t
q t

αµ
µ

α µ
=

⇒  = −
=


  (3.1) 

where heat flux into slipper 𝑄𝑠𝑙𝑖𝑝𝑝𝑒𝑟(𝑡), heat flux into rail 𝑄𝑟𝑎𝑖𝑙(𝑡), total frictional heat 

 𝑞(𝑡), sliding velocity 𝑣(𝑡), coefficient of friction 𝜇, heat fraction flowing into slipper 𝛼, 

pressure 𝑃, and heat fraction flowing into rail 1 − 𝛼.  

Due to the aerodynamic behavior of the load, a skipping or bounce effect at the 

interface of slipper and rail is created.  Figure 10 illustrates the bounce or skipping of the 

slipper along the rail.  During the time of contact, frictional heating takes place and a flux 

is generated as given by Equation (3.1).  During the time of no contact, the slipper 

experiences forced convection which is modeled by the boundary condition 
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Figure 10. Slipper's Bounce Model Along a Rail (1) 

 
0

( )s
s r

x

T T
x

k hT

=

− =
∂

−
∂

, (3.2) 

where rT  is the forced fluid reference temperature and h is the surface convection 

coefficient.  To account for the bounce effect on the flux, a switch function ( )m t using the 

Heaviside step function is    

Contact
(Not-In-

1 (In- )
( )

Contact)0
m t 

= 


.   (3.3) 

This leads to the boundary condition   

 ( )
( )

( ) ( ) (1 ( )) ( )s
s r

x t ConvectionConduction HeatHeat

T m t q t m t h Tk T
x σ

α
=

∂
= + − −−

∂ 



 . (3.4)  

As time progresses, a melt layer may appear.  This layer, as illustrated in Figure 

11,  is removed continuously after the temperature of slipper’s sliding surface reaches its 

melting temperature.  The latent heat of fusion stored in the slipper’s melt layer must be 
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accounted for.  To this end, the boundary condition at the sliding interface with the melt 

layer is modified as  

 ( )

( ) ( ) (1 ( )) ( )

: density : latent heat of fusion : melt front location

s
s r

x t

T dm t q t m t h T T
x dt

k
σ

σα ρ

ρ σ
=

∂  = − + − −− ∂  




 . (3.5) 

 

 

Figure 11. Dynamics of Melt Layer Removed Due to Latent Heat of Fusion  

The melt wear volume is calculated using melt front, i.e. 

VolumeMelt Wear
m

t

st

dA dt
dt
σ

= ∫  where slipper's surface areasA = . 

 The bounce effect due to external loading changes the boundary condition at the 

interface with conductive heat transfer while in contact, but not the convective heat 

transfer while not in contact.  It creates surface temperature changes of slipper and rail, 

influencing the melt wear.  The results of the slipper’s surface temperature and melt wear 

percentage due to bounce effect will be presented and analyzed in Chapter 7. 
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There are a few things to consider which influence the nature of the frictional heat 

partition function 𝛼.  First, as the slipper slides along the rail’s surface, the slipper’s 

sliding surface enters into the cooler region of rail.  If the frictional heating is assumed to 

be the only heat source, the slipper’s surface temperature is always higher than the rail’s.  

As such, the motion of slipper needs to be considered.  Second, when the slipper and the 

rail are in contact, the frictional heat energy flows into the slipper and rail.  By Equation 

(3.1), the pressure profile is used to calculate the flux when in contact.  If there is zero 

pressure, it is considered as the slipper and rail are not in contact.  So the convective heat 

transfer is used.  Third, heat transfer occurs at a higher rate across materials of high 

thermal conductivity than across materials of low thermal conductivity.  More heat flux 

flows into the material of high thermal conductivity.  Materials of high thermal 

diffusivity rapidly adjust their temperature to that of their surroundings, because they 

conduct heat quickly.  So the material properties are one of the important factors to 

characterize the frictional heat partition function.  The last thing to consider is the sliding 

speed.  As the difference of two sliding surface temperatures gets bigger, the more heat 

energy tends to flow into low temperature region.  If the slipper is moving fast, the 

slipper generates more frictional heat energy as indicated by Equation (3.1).  More heat 

flux tends to flow into the rail rather than the slipper because the slipper’s sliding surface 

may be in contact with the larger region of rail.  Therefore, the slipper’s sliding speed 

influences the frictional heat partition values.        

If slipper and rail are made of the same material, they have the same thermal 

properties.  So, initially any heat input at the interface distributed between slipper and rail 
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is determined by the relation of the thermal properties.  When the slipper is sliding along 

the rail with high velocity and high pressure, the frictional heat partitioning values should 

drop rapidly and, as melt is achieved, approach some fixed stable number.   

3.2 Two-Dimensional Mathematical Model 

As described in Section 3.1, the frictional heat partitioning values are influenced 

by material thermal properties and sliding velocity so the frictional heat partitioning can 

be represented as a function of material thermal properties and sliding velocity.  To better 

understand the evolution of the frictional heat partition function α , a simplified two 

dimensional model for thermal evolution between the slipper and the rail is examined.  

Consider two semi-infinite solids, which is initially at a uniform ambient temperature aT .  

During sliding processes, the surface at 0y =  in the interval xl l− < <  is subjected to a 

heat source at the rate of ( )q t  due to frictional force.  Suppose that ,s rT T  are the 

temperature distributions of slipper and rail, respectively, during the pre-melting period.  

It is assumed that, at the sliding surface 0y =  in the interval xl l− < < , the frictional 

heat generates a heat flux while in contact and the convective heat transfer occurs while 

not in contact.  The temperatures as | |y →∞  of slipper and rail are the fixed ambient 

temperature aT  .  There is a convective heat transfer outside of contact region on the rail.  

Due to aerodynamic effect, a shock wave may be created at the slipper’s front-head and 

the convective heated air flows at the slipper’s tail.  Figure 12 illustrates the slipper’s 

coordinate system relative to the rail’s coordinate system.  With this coordinate 
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transform, it leads to the following mathematical formulations of slipper and rail’s 

thermal evolution equations for a pre-melt problem.   

 

Figure 12. Slipper's Coordinate Corresponding to Rail's Coordinate System 
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  (3.6) 

where 1 2 3,,h h h  are the convective coefficients at slipper’s heading/tailing/contact surface 

sides.  1 2 3, ,T T T  are the temperature distribution outside of the slipper’s head, tail and 

between the slipper and the rail’s interface area when not in contact.  ( )m t  is the sign 

function indicating if the loading pressure exists, i.e. if ( ) 0P t ≥ , ( ) 1m t = ; otherwise, 

( ) 0m t = .   
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where 3 3( ( ), ) (( , ))r a m ax x t tT TT T φ ξ τ−=+ − , ( ) slipper's velocityv t = , 
0

( ) ( )
t

x t v dτ τ= ∫  

and 4h   the thermal convective coefficient between the air outside of interface interval 

and the rail’s temperature.  Equations (3.6b) and (3.7b) show that the initial temperature 

of slipper and rail is at a uniform ambient temperature.  Equations (3.6f) and (3.7d) 

explain that only the surfaces ( 0)y =  of slipper and rail in the interval xl l− < <  is 

subjected to the frictional heat source.  Also, at sliding surface 0y =  in the interval 

xl l− < <  , the frictional heat generates a heat flux while in contact and the convective 

heat transfer occurs while not in contact.   

 

Figure 13. Boundaries of Slipper and Rail 
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Figure 13 shows the boundaries of rail and slipper.  B1 and B3 indicate the rail’s 

outside boundaries, B2 and B5 the rail and slipper’s contact interface boundaries 

respectively, and B4 and B6 the slipper’s back and front boundaries respectively.  The 

boundaries as y →−∞  and y →∞  indicate these surfaces are far from the contact 

region.   

Consider the rail’s boundary conditions.  At the contact interface B5, some 

percentage of the frictional rail when it is in contact and the convective heat flows into 

rail when it is not in contact.  Frictional heat energy is only generated while the sliding 

surfaces of slipper and rail are in contact.   

The slipper’s PDE can be transformed to non-dimensional formulation.  To do 

this, let ( ) ( , , )( , , )s s
a m aTT x y t T T w ξ η τ= + −  with dimensionless variables sx

l
ξ = , 

*
y

y
η =  and 

*
t

t
τ = where l is the slipper’s length, *t  is the total event time and 

* *sy tκ= is a diffusion length.   

After introducing these dimensionless variables and defining the constants Nu , 

the Nusselt numbers, as ( 1, 2,3)i
i sN hu il

k
==  with *

( )
s

s
m a

y
k T

C
T

=
−

 and * ,y
l

ε ≡  

Equations (3.6) become 
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s

s
s

w

Nu

w w w

w

w

N

w

w w

w q

u

C m

m

ξ

ξ

η

ε τ η ξ
τ η ξ
ξ η ξ η

ξ η τ η

η τ φ η τ η τ
ξ

η τ φ η τ η τ
ξ

τ α ξ τ ξ τ
η

τ ε

=−

=

=

∂ ∂ ∂
= + > > − < <

∂ ∂ ∂

= < >

→ →∞

∂
− − > >

∂

∂
− > >

∂

=

− =

−

− =
∂
∂

+ 3 3( (( ,0, ) , , 0)) | | 1swNu ξ τ φ ξ τ ξ τ<− >

 (3.8) 

Additionally, the functions ( , )iφ η τ  are defined through ( , ) ( ) ( , )i a m a iT T TT η τ φ η τ= + − .    

With ** sy tκ=  and material properties given in Table 1, the value of ε is 

approximately 210− .  Furthermore, using a typical value of 100ih ≈  (the reason to choose 

the value of ℎ1 is explained in Appendix 2) and material properties given in Table 1, Nu  

is approximately 0.3 .  The functions 1 2 3a, ndφ φ φ  will depend on the aerodynamic 

heating associated with the shock front generated at high speeds.  It is not the intension of 

this research to determine these functions.       

Because 𝜀 ≪ 1, the contribution of the boundary condition at the interface will 

only exist in a boundary layer of order ε .  As our interest is in the behavior at the 

interface between the slipper and the rail, only the inner expansion solution is chosen.  

The solution is obtained from Equation (3.8) after setting 0ε =  which becomes 
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0

:

I.C.: ( , ,0) 0
B.C.: ( , ,0) 0 as

*( ) ( , ) (
(

P

| )

D

,
)

E s s

s

s

s s s
s

m a

w

yw C m q C
k T

w w

T

w

τ ηη

η η

ξ η

ξ η η

τ α ξ τ ξ τ=

=

=

→ →∞

 
= − = − 

  (3.9) 

In this research, only the continuous contact is considered, 1m = .  That is, it is assumed 

that the pressure is always positive. Using the similar process in the one-dimensional 

problem, which will be described in Section 4.2 for the solution to slipper’s surface 

temperature for pre-melt problem, the solution to Equation (3.9) is  

 𝑤𝑠(𝜉, 𝜂, 𝜏) = 𝐶𝑠 ∫ 𝑒
− 𝜂2

4(𝜏−𝜏)

�𝜋(𝜏−𝜏′)
𝛼(𝜉, 𝜏′)𝑞(𝜉, 𝜏′)𝑑𝜏′𝜏

0    (3.10) 

and Green’s function for slipper is  𝐺𝑠(𝜉, 𝜂, 𝜏; 𝜏′) = 𝑒
− 𝜂2

4(𝜏−𝜏)

�𝜋(𝜏−𝜏′)
 (41).  Again, this solution is 

the leading order inner solution and does not contain the weak contribution at the 

boundary layer. 

Next consider the evolution of the temperature in the rail.  As our interest is in the 

temperature in a neighborhood of the slipper, we establish a moving coordinate for the 

rail in reference to the fixed slipper coordinate system. 

In Figure 12, sx  represents a position with respect to the moving slipper 

coordinates while rx  represents a position with respect to the fixed rail coordinates.  If 

the slipper is moving to the left with a velocity ( )v t  (assume ( )v t  is a monotone non-
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decreasing positive function), then after time *t the slipper has moved a distance 

*

0
)*) ((

t
x v tt dt= ′ ′∫ along the rail coordinates.  Thus any point rx  on the rail coordinates is 

related to a point sx  on the slipper coordinates by the Galilean transformation 

( )r sx tx x−= .                                 (3.11) 

With rT  and the dimensionless variables defined in Appendix A.2, the simplified 

dimensionless rail’s PDE is 

 
2 2 2

2 2

( ) * * *s r r r r

r r

w v t y y w y w w
l l

κ
κ τ κ ξ ξ η

∂ ∂ ∂ ∂   = + +   ∂ ∂ ∂ ∂   
  (3.12) 

where ( )v t  is the velocity profile of slipper.  Using the definition of diffusion length, 

** sy tκ= , Equation (3.12) becomes    

 
2 2 2

2 2

* *( ) with
r r r r r

s

w t w y w wv t
ll

κγ γ γ
τ ξ ξ η κ

∂ ∂ ∂ ∂ = + +  ∂ ∂
=

∂ ∂  
  (3.13) 

Using the nominal values given in Table 1, 14.4 10
r

s

κγ
κ

−≈ ×=  and 

2
2 4 .)* (10y

l
ε − 



= ≈


   The contribution of the heat diffusing in ξ  axis direction, 𝜕

2𝑤𝑟

𝜕𝜉2 , 

is negligible. With *t t τ= ,  let ( * ) *( ) v t tv
l
ττ ≡ .  Simplifying Equation (3.13) further 

yields  
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2

2( )
r r rw w wv τ γ
τ ξ η

∂ ∂ ∂
= +

∂ ∂ ∂
 . (3.14) 

If ( * ) 30 / secv t mτ ≈ , then ( * ) * 30·8( ) 240
1

v t tv
l
ττ = ≈ = .  In Appendix A.2, the rail’s 

simplified and dimensionless boundary conditions at the contact surface for Equation 

(3.7d) are  

 
4

3
3

* ( ,0, ) | | 1
( ,0, )

*(1 ( , )) ( , ) (1 [ ]) ( ,0, ) ( , ) | | 1

r
r r

r r
r

y h w
w k

y hC m q m w
k

ξ τ ξ
ξ τ

η α ξ τ ξ τ ξ τ φ ξ τ ξ

 >∂ = ∂  − + − − <


 (3.15) 

where 
(

*
)

r
r

m a

yC
Tk T−

= .  With the similar analysis in the slipper PDE system, the rail’s 

simplified reduced PDE system becomes 

 

2

2

2

Rail's

( )

PDE : ( ) | | , 0 , 0

I.C.: ( , ,0) 0 | | , 0
B.C.: ( , , ) 0 as | or , 0

( ,0, )

|

(

(1 ) (1 ( , )) (

)

| | ,, ) 0

r r r

r

r

r

r

w w wv

w

b

H C q

a w
w

τ γ ξ η τ
τ ξ η
ξ η ξ η

ξ η τ ξ η τ

ξ τ
η

ξ α ξ τ ξ τ ξ τ

∂ ∂ ∂
= + < ∞ < >

∂ ∂ ∂

= < ∞ <

→ →∞ →

<

−∞ >

∂
∂

= − − ∞ >

 (3.16) 

where 𝑣̅(𝜏) ≡ 𝑣(𝑡∗𝜏)𝑡∗

𝑙
, 

r

s

κγ
κ

= , 
(

*
)

r
r

m a

yC
Tk T−

=  and ( )H ξ  is the Heaviside function.  

Then, the solution of rail’s pre-melt problem (Appendix A.2) is  
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𝑤𝑟(𝜉, 𝜂, 𝜏) = �𝛾
𝜋

𝐶𝑟 ∫ 1
√𝜏−𝜏′ 𝑒

−𝜂2

4𝛾�𝜏−𝜏′��𝐻(1 − 𝑧2)�1 − 𝛼(𝑧, 𝜏′)�𝑞(𝑧, 𝜏′)�𝑑𝜏′𝜏
0   (3.17) 

where ( ) ( )z ξ τ ξ τ ξ′−= +  and  ( ), ( and)ξ τ ξ τ ξ′  are different points on rail.  

* *

0
(( ) )v d

τ
ξ τ τ τ= ∫ and is the position on slipper, ( )ξ τ ′  is the slipper moving distance on 

the rail during the time τ ′ , ( ) ( )ξ τ ξ τ ′− (the slipper is moving in the negative direction in 

ξ -axis) is the position on rail at time t τ ′= , which corresponds to the contact point of 

slipper, and ξ  is the observation point.  The Green’s function for the rail is  

                                              𝐺𝑟(𝜂, 𝜏; 𝜏′) = 1
�𝜋(𝜏−𝜏′)

𝑒
−𝜂2

4𝛾�𝜏−𝜏′�.   (3.18) 

Let’s define 𝐡 ≡ 𝐡(𝜏, 𝜏′) = 𝜉̅(𝜏) − 𝜉̅(𝜏′) and consider Heaviside function in 

Equation (3.17), i.e. 𝐻 �1 − �𝜉 + 𝜉̅(𝜏) − 𝜉̅(𝜏′)�
2

� = 𝐻(1 − (𝜉 + 𝐡)2).  If the 

observation  point exists in the interface interval, the frictional heat energy flows into the 

contact surface of  the rail and slipper.  Otherwise, no frictional heat energy is generated.  

Equation (3.17) describes that the frictional heat energy input distribution exists only 

along the sliding contact surface.  Therefore, the values for Heaviside function in 

Equation (3.17) are given below 

                       𝐻(1 − (𝜉 + 𝐡)2) = �1            for  − 1 < 𝜉 + 𝐡 < 1
0                    otherwise             

� .           (3.19) 

where h in Equation (3.19) represents the value of  −𝐡  in Figure 14.  Figure 14 describes 

that the region where 𝑦(𝑥) = 1 − (𝑥 − 𝐡)2 > 0 is the sliding contact surface along the 
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rail.  The value of Heaviside function with 𝑦(𝑥) = 1 − (𝑥 − 𝐡)2 > 0  becomes one.  If 

the rail and slipper are in-contact and the frictional heat is generated, the product of 

Heaviside function and the partitioned frictional heat flux is the heat source effecting rail 

and slipper. 

 

Figure 14. Graph of Heaviside Function Along Rail's Surface 

Let’s consider the parabolic function 𝑦(𝑥) = 1 − (𝑥 − 𝐡)2  and the domain of x  

for ( ) 0y x ≥  can be represented as slipper and rail’s contact surface.  If h moves as 

slipper slides along the rail and ξ  is the point on the rail, the frictional heat flux 

influences in the interval 1 1ξ− ≤ ≤  and no frictional heat flux outside of the interval.   

Using Equations (3.10) and (3.17), the surface temperature distributions of the 

slipper and rail at the contact interface 0η =  are 

 

𝑤𝑟(𝜉, 0, 𝜏) = �𝛾
𝜋

𝐶𝑟 ∫
𝐻�1−(𝜉+𝐡)2��1−𝛼�𝜉+𝐡,𝜏′��𝑞�𝜉+𝐡,𝜏′�

√𝜏−𝜏′ 𝑑𝜏′𝜏
0    (3.20a) 
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                    𝑤𝑠(𝜉, 0, 𝜏) = 𝐶𝑠

√𝜋 ∫ 𝛼�𝜉,𝜏′�𝑞�𝜉,𝜏′�
√𝜏−𝜏′ 𝑑𝜏′𝜏

0                                             (3.20b) 

The temperature distributions for the slipper and the rail should be continuous 

along the axis perpendicular to the contact interface, | | 1 at 0ξ η≤ = . This would require 

( ) ( ),0, ,0,r sw wξ τ ξ τ=  over the in-contact interval even though between mirroring 

points of the slipper and rail along the contact surface the temperature gradient may be 

different.  This implies the heat partition fraction would be non-uniform.  If a non-

uniform distribution of the heat partition fraction is considered, this equation becomes a 

Volterra Integral Equation of the first kind which would require a numerical method to 

solve.  In an effort to obtain an analytical solution, the method of Carslaw and Jaeger (21) 

is adopted. Their method was to match the averaged contact-surface temperature 

distributions for the slipper and the rail.  We further assume the frictional heat partition 

fraction value and the total frictional heat energy generated are uniformly distribution 

along the contact surface which is equivalent to assuming the variation in the function 

along the contact region is small.  With these assumptions, the frictional heat partition 

fraction value and total frictional heat energy only depend on the sliding time, i.e.

( , ) ( ) α ξ τ α τ= and ( , ) ( ). q qξ τ τ=   Were these assumptions not made, the heat partition 

fraction solution would have a solution in an integral form not analytically solvable.   

First define 
1

1

1( ) ( ,0, )
2

w w dτ ξ τ ξ
−

= ∫ .  Then and( ) ( )r sw wτ τ  are respectively the 

averaged temperatures of rail and slipper at the interface at a given timeτ . Using 

Equation (3.20), these values become 
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       𝑤� 𝑟(𝜏) = �𝛾
𝜋

𝐶𝑟

2 ∫ ∫
𝐻�1−(𝜉+𝐡)2��1−𝛼�𝜏′��𝑞�𝜏′�

√𝜏−𝜏′ 𝑑𝜏′𝑑𝜉𝜏
0

1
−1      (3.21a) 

        𝑤� 𝑠(𝜏) = 𝐶𝑠

2√𝜋 ∫ ∫ 𝛼�𝜏′�𝑞�𝜏′�
√𝜏−𝜏′ 𝑑𝜏′𝑑𝜉𝜏

0
1

−1 .              (3.21b) 

Next equate the averaged surface temperatures of slipper and rail at the interface using 

equations (3.21a) and (3.21b). Then, using Lemma A.3 given in Appendix A.3 with  

𝐾(𝐡) define as 

  
1 2

1

1 | | | |( ) (1 ( ) ) (1 )(1 )
2 2 2

K H d Hξ ξ
−

≡ − + = − −∫
h hh h , (3.22) 

and 𝐡 ≡ 𝐡(𝜏, 𝜏′) = 𝜉̅(𝜏) − 𝜉̅(𝜏′), the equation reduces to 

                     ∫ 𝛼�𝜏′�𝑞�𝜏′�
√𝜏−𝜏′ 𝑑𝜏′𝜏

0 = √𝛾 𝐶𝑟

𝐶𝑠 ∫ 𝐾(𝐡)
�1−𝛼�𝜏′��𝑞�𝜏′�

√𝜏−𝜏′ 𝑑𝜏′𝜏
0        

or                           

∫ 1
√𝜏−𝜏′ �1 + 𝛽𝐾(𝐡)�𝛼(𝜏′)𝑞(𝜏′)𝑑𝜏′𝜏

0 = 𝛽 ∫ 1
√𝜏−𝜏′ 𝐾(𝐡)𝑞(𝜏′)𝑑𝜏′𝜏

0       (3.23) 

where 𝛽 = √𝛾𝐶𝑟
𝐶𝑠

= 𝑘𝑠

𝑘𝑟 �𝜅𝑟

𝜅𝑠.   The argument of the Heaviside function changes as the 

velocity profile changes because 𝐡(𝜏, 𝜏′) = 𝜉̅(𝜏) − 𝜉̅(𝜏′) and * *

0
(( ) )v d

τ
ξ τ τ τ= ∫ .  The 

function 𝐡(𝜏, 𝜏′) represents the distance between the position on rail of the slipper at time 

t τ= and the position at time 't τ= .  This implies that the Heaviside function is a 

functional whose argument is velocity, ( )v t .  Thus Equation (3.23) remains a Volterra 

integral equation of the first kind with a weak singular kernel and would require a 
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numerical method to solve.  However, if the velocity is constant, 0( )v vτ = , then 

0
* *

0
( ) ( )d vv

τ
ξ τ τ τ τ== ∫ and 0h( , ')= ( ) ( ) ( )vτ τ ξ τ ξ τ τ τ′ ′− = − .  Further, from Equation 

(3.22), 𝐾(𝐡) becomes  

                      𝐾(𝐡) = 𝐻(1 − 𝑣0�𝜏−𝜏′�
2

) �1 − 𝑣0|𝜏−𝜏|
2

�                        (3.24) 

The integral equation given by Equation (3.23) now has a difference kernel and is 

solvable using Laplace transform methods.  As shown in Appendix A.4, this leads to the 

solution   

 { } { } ( )q q B sα =                 (3.25a) 

where                                                              

 

( )

( )
( )

K
s

K
s

B s
β

τ
π

β
τ

 
 

=  
 

+  
 

h

h




 (3.25b) 

with  ℒ �𝐾(𝐡)
√𝜏

� = ∫ 𝑒−𝑠𝜏 1
√𝜏

𝐻 �1 − 𝑣0|𝜏|
2

� �1 − 𝑣0|𝜏|
2

� 𝑑𝜏∞
0 .  Thus for non-vanishing ( )q t  

 
( )1

0

1( ) ( )
( )

1       ( ) ( )
( )

( )

t

t q t
q t

b t q
q t

B

d

α

τ τ τ

−= ∗

= −∫



 (3.26a)  

with 1( )) ( )(b B tt −=  .  If both the pressure and the velocity remain nonzero constants     
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then 0 00) ( ) ( )( P v vq qPτ µ τ τ µ == = is constant and, from equation (3.25a),  

 { }
0

(( ) ) )/  ( 
t

tB s ds bα τ τα == ⇒ ∫ . (3.26b) 

At this point, it is necessary to determine ( )B s  as given by Equation (3.25b) 

which requires the evaluation of 

 ( ) 0 0

0

1 1 1
2 2

s v vK
e H dτ τ τ

τ
τ τ

∞
−    

= − −    
    

∫
h

 . (3.27a) 

Because 0 | |( ) 0
2

1 vH τ
− =  for 0

2
| |1 0v τ

− < , the upper limit can be terminated at 

0 2vτ = . Introducing the change of variables,
 

, zs
s

z τ τ= =  and dzd
s

τ = , into Equation 

(3.27a) along with the reduces upper limit of integration yields 

     ℒ �𝐾(𝐡)
√𝜏

� = 𝑠−1/2 ∫ 𝑒−𝑧𝑧−1/2𝑑𝑧2𝑠/𝑣0
0 − 𝑣0

2
𝑠−3/2 ∫ 𝑒−𝑧𝑧1/2𝑑𝑧2𝑠/𝑣0

0 .         (3.27b) 

These integrals can be expressed in terms of incomplete gamma functions defined as 

(41)(42)  

 
(𝑎)    𝛾(𝑠, 𝑥) = 1

𝛤(𝑠) ∫ 𝑡𝑠−1𝑒−𝑡𝑑𝑡𝑥
0                            

(𝑏)    𝛾(𝑠, 𝑥) = (𝑠 − 1)𝛾(𝑠 − 1, 𝑥) − (𝑥𝑠−1𝑒−𝑥)
                           

   (3.28) 

where  𝛾(𝑠, 𝑥) is the lower incomplete gamma function, and Γ(𝑠) = ∫ 𝑡𝑠−1𝑒−𝑡𝑑𝑡∞
0 .  

Further recalling (1 2) πΓ =  and using Equation (3.28a), Equation (3.27b) becomes  
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ℒ �
𝐾(𝐡)

√𝜏
� =

1
√𝑠

√𝜋𝛾 �
1
2

,
2𝑠
𝑣0

� −
𝑣0

2
1

√𝑠3

√𝜋
2

𝛾 �
3
2

,
2𝑠
𝑣0

� 

                                               = �𝜋
𝑠

�𝛾 �1
2

, 2𝑠
𝑣0

� − 𝑣0
4𝑠

𝛾 �3
2

, 2𝑠
𝑣0

��.                       (3.29) 

Introducing Equation (3.28b) for 
0

3 2,
2

s
v

γ
 
 
 

and defining 

 ( ) 3/2 1 1 ,
2 2

xeF x x x x
x

γ
−

−    = − +   
   

  (3.30) 

 Equation (3.29) is more compactly written as  

ℒ �𝐾(𝐡)
√𝜏

� = 𝐹(𝑠) ≡ � 2
𝑣0

𝐹�(2𝑠
𝑣0

)             (3.31) 

and ( )B s , as given in Equation (3.25b), becomes 

 ( )*
*

*
         where     

1 (
)

)
(

sF s
sF s

B s
β ββ
β π

=
+

= . (3.32) 

Using the results of the lemma from Appendix A.6, which states 

 
2 1

1/2

0

1 2 !( , ) where
2 (2 1)!

k
x k

k k
k

kx x e A x A
k

γ
+∞

−

=

= =
+∑ , (3.33) 

Equation (3.30) can be written as an alternate expression for ( )F x  as (Appendix A.7.) 

 
2 1

1
0

2 !( ) ( 1) where
(2 1)!

k
x k

k k
k

kF x e k A x A
k

+∞
−

+
=

= + =
+∑  . (3.34) 
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From the ratio test, it is clear that the series portion of ( )F x converges everywhere in the 

complex plane so that ( )F x  is an entire function. 

Before proceeding to the inverse Laplace transform, consider the case of constant 

flux, (𝑡) = 𝑞0 , and apply both the Initial and Final Value Theorem (93). For this case, 

the solution is given in Equation (3.26b) and the Initial Value Theorem states  

 ( ) { }( ) ( )*

*
( )0 lim lim lim

11 ( )s s s
B s

sF s
s s

sF s
β βα α

ββ
+

→+∞ →+∞ →∞
= =

+
==

+
  (3.35) 

where lemma A.5 is use along with *  ββ
π

= .  The Final Value Theorem states 

 ( ) { }( ) ( )*

*0 0 0
lim lim lim lim

1
)

(
( 0

)t s s s

sF s
t s s

sF s
B s

β
α α

β+ + +→+∞ → → →
= == =

+
 . (3.36) 

If the slipper and the rail have the same thermal properties, then 1β =  and Equation 

(3.35) says the initial partitioning of heat flux will be ½. As the thermal properties of the 

system materials vary, the initial heat flux will be bias to the slipper or rail accordingly.  

Further, as time progresses Equation (3.36) suggests the thermal energy generated will be 

bias toward the rail. 

Returning to the case where the flux 0q  and the velocity 0v  are constant, the heat 

partition function ( )tα is determined through the inverse Laplace transform of { }α as 

given in Equation (3.26b). Thus  
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 ( )*

*(1 ( ))
( 1( )

2 2
)1 i i

st st

i i

sF s

s sF s
t e ds e ds

i i
B s

s
β

β
α

π π

∞ ∞

− ∞ − ∞ +
= =∫ ∫                           (3.37) 

Analysis of this equation can be found in Appendix A.8. However, the integrand clearly 

contains a branch point at s=0. Further, the apparent simple pole at s=0 is removed by the

s term which appears in the numerator. Using the numerical tool Matlab suggests and 

analysis will show 1 * ( )sF sβ+  has no roots in the complex plane. Thus, taking the 

branch cut along the negative real axis in s plane, a branch cut integral is evaluated to 

determine the heat partitioning function ( )tα .   Referring to Appendix A. 8, the heat 

partitioning function ( )tα  is given by 

 
0 *

0
2

* 2 2

( )( )
(1 ( )

1
)) (

v tr re F rt dr
r rF r

βα
π β

∞ − −
=

+ −∫




  (3.38) 

where 𝛽∗ = 𝛽
√𝜋

= 𝑘𝑠

𝑘𝑟 � 𝜅𝑟

𝜋𝜅𝑠 and 𝐹�(−𝑟) = 𝑒𝑟 ∑ (𝑘 + 1)22𝑘+3 (𝑘+1)!
(2𝑘+3)!

(−𝑟)𝑘∞
𝑘=0 . ( See 

Appendix A.8.)   

Equation (3.38) is the solution of the heat partition function with a non-zero 

constant velocity profile ( 0( ) 0v vτ = ≠ ).  This function has two parameters 0and vβ , 

where β is determined by the thermal properties of the slipper and rail, and 0v  is the 

dimensionless velocity, 0
*( ) ( * )tv v t v
l

τ τ= = , which is constant.  Equation (3.38) is the 

slipper’s frictional heat partition function ( )tα for times prior to melting. Typical 

behavior of this function ( )tα  can be seen in Figure 25 found in Section 7.1.  
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4 One-Dimensional Mathematical Model 

In this chapter, a simple one-dimensional pre and post-melting mathematical 

problem is formulated and the analytical solution of the pre-melt temperature distribution 

is developed.  With some given parameters, this solution determines the time required to 

reach the melting temperature of the slipper.    

A rocket sled slipper, where high-velocity and high-pressure are present, is 

governed by a coupled system of thermal and mechanical phenomena.  During sliding, a 

localized region of high temperature yields a thin melt layer and material loss on a sliding 

contact area.  By sliding, the rapid cooling by onrushing rail and air flow may result in 

the solidification of melted material forming a teardrop shaped shallow depression in 

both the slipper and rail material.(4)(5)  Calculating the contact temperature between 

contacting surfaces is necessary to estimate the properties of the melt-wear layer and its 

resulting material failure.   

Traveling along the rail, the front edge of the slipper always enters a cooler 

region.  Accordingly, the gradient of frictional heat energy of the rail is greater at the 

front edge.  The gradient of heat flux of the slipper is smaller than that of the rail due to 

the surface temperature difference between the rail and slipper’s sliding interface.  The 

frictional heat energy is a function of pressure, relative velocity, and material properties.  

While sliding, the frictional heat energy increases the temperature at the contact surfaces 

of slipper and rail and eventually the slipper reaches its melting temperature.  Once the 

slipper starts melting at the interface, the melt layer is continuously removed by sliding 
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contact.  All of these factors influence the temperature distributions of the slipper and the 

rail.   

 

Figure 15. Heat Transfer in Liquid Layer Between the Sliding Surfaces (37) 

Figure 15 illustrates a solid surface or solid-liquid interface which has a complex 

structure and complex properties depending on the nature of the solids and the interaction 

between the sliding surfaces.  The surfaces contain irregularities of various orders 

ranging from macroscale to interatomic scale.  Even the smoothest surfaces contain 

irregularities, asperities, whose heights exceed the interatomic distance.  In addition to 

surface irregularities, the solid surface consists of several layers with deformed layers as 

the outermost layers.(37)  These layers are extremely important because their mechanical 

behavior is influenced by the depth of deformation of the surface layers and the presence 

of the deformed layers affects friction and wear.  Therefore, microscale and nanoscale 

models for the surfaces are important for tribological applications.  This length scale at 

the surface is much smaller than the depth of material.  For the numerical and 
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mathematical analysis at the sliding surface, we focus on the macroscale thin layer to 

render the present problem tractable by avoiding some of the details above. This scale is 

still much smaller than the material depth by 2-3 orders of magnitude.  This suggests that 

the material could be assumed to be the half space, a semi-infinite material. 

When formulating differential equations of heat transfer for this dissertation, only 

heat conduction is considered as a heat transfer mechanism.  Other assumptions are: no 

changes in material properties during phase change, solids made up of homogeneous 

materials, no heat energy loss other than melt removal, no heat energy source other than 

frictional heat on sliding surfaces and fixed temperature at the other ends.  More specific 

assumptions will be made in formulating mathematical models.   

This chapter starts with simple one-dimensional mathematical formulations of pre 

and post-melting problems and develops the analytical solution of the pre-melt 

temperature distribution.  This solution determines the time required to reach the melting 

temperature of slipper using certain parameters, frictional coefficients, sliding velocities, 

and heat partition values.   The next chapter develops two-dimensional models and the 

temperature distribution of slipper and rail using Green’s function for the pre-melting 

problem.  Finally an expression for heat partitioning fractions of the pre-melting problem 

is developed.   
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4.1 One-Dimensional Mathematical Model of Pre/Post-Melting Problem 

Recall Figure 7 in Section 2.4, which illustrates the melting process of a solid 

material when there is a heat source at the surface.  Let 𝑇𝑐𝑜𝑛𝑠𝑡 , 𝑇𝑠𝑜𝑙𝑖𝑑 , 𝑇𝑙𝑖𝑞𝑢𝑖𝑑 be 

𝑇0(𝑥), 𝑇1(𝑥, 𝑡), 𝑇2(𝑥, 𝑡), and a heat source be defined as heat flux 𝑄(𝑡). 

Consider a semi-infinite solid, which has the initial temperature distribution 𝑇0(𝑥)  

inside the solid in Equation (4.4).   

Pre-Melting Problem  

 
2

1 1
2 ( 0,P : 0 )DE m

T T x t t
t x

κ∂ ∂
= > < <

∂ ∂
  (4.1) 

                                        𝐵𝐶1:         𝑇1(𝑥, 𝑡) → 𝑇0(𝑥)      𝑎𝑠    𝑥 → ∞                            (4.2) 

 1 ( ) ( 0,BC : 0 )2 m
Tk Q t x t t
x

∂
− = = < <

∂
  (4.3) 

 1 0( ,0)IC : ( ) ( 0)xT x T x= >   (4.4) 

where 𝜅, 𝑘, 𝑇0(𝑥), 𝑇1(𝑥, 𝑡), 𝑄(𝑡), 𝑡𝑚 are thermal diffusivity, thermal conductivity, initial 

temperature, ambient temperature, pre-melt temperature, heat source, and melt time. 

Equation (4.3) shows that during sliding process, the surface at 0x =  is subjected to heat 

source at the rate of ( )Q t  due to frictional force.  Suppose that  𝑇1(𝑥, 𝑡), 𝑡𝑚 are the 

temperature distribution during pre-melting period and the time required for a solid to 

begin melting.  Before the melting time, the temperature at any point inside of a material 
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never exceeds its melting temperature .mT    During the time prior to melt, 0 mtt≤ < , the 

material remains solid, i.e. 𝑇0(𝑥, 𝑡) ≤ 𝑇1(𝑥, 𝑡) < 𝑇𝑚.  It is assumed that only sliding 

surface at 0x =  has a heat source and as x →∞  the material temperature approaches an 

ambient temperature.   

Now consider the melt evolution with removal of a semi-infinite solid region.  

The temperature distribution inside a solid material is initially at a uniform temperature 

𝑇0(𝑥) = 𝑇0.  When ( ) 0Q t > , the heat source adds progressively more thermal energy at 

the boundary 0x = , the temperature of a solid increases and may eventually reach its 

melting point at a characteristic melting time mt .  Therefore, a material begins to melt at 

the sliding surface for mt t> , and this melted layer is assumed to be removed 

immediately.  After melt occurs for mt t> , the following PDE system must be satisfied. 

Post-Melting/Melt Removal Problem  

 
2

2 2
2PD ( ( ), )E : m

T T x t t t
t x

κ σ∂ ∂
= > >

∂ ∂
  (4.5) 

 𝐵𝐶1:     𝑇2(𝑥, 𝑡) → 𝑇0    𝑎𝑠    𝑥 → ∞ (4.6) 

 2B  C2 ( ) ( ( ), ): m
T dk Q t x t t t
x dt

ρ σσ∂
− = − = >

∂
   (4.7) 

 2 1

2

( , ) ( , ) ( ( ) 0)
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e BC : ( ( ), ) (
BC :

)
m m m

m m

T x t T x t x t
T t t T t t

σ
σ

= = =
= >

  (4.8) 
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where 20, , ,, mT TT ρ 
 are the initial temperature, post-melt temperature, melting temperature, 

density and latent heat. 

The phase change of a material occurs when the surface reaches the melting temperature.  

The thin melted layer at the boundary 0x =  is developing when the time is greater than or equal 

to its melt time.  During this process, the additional energy of phase change, latent heat 

introduced in Equation (4.7), must be added for melt to continue.  In the initial boundary 

condition of Equation (4.8), now the melt boundary location defined by ( )x tσ= , must start at 

mt t= , i.e. ( ) 0mtσ = .  Also, since the melt region is assumed to be removed immediately due to 

sliding two materials, for any mt t>  the temperature on the melt boundary cannot exceed its 

melting temperature mT , which implies that 2T  remains constant ( mT ) at the melt boundary after 

the melt time mt , shown in the interface boundary condition in Equation (4.8).  In order to 

maintain the constant temperature on the melt boundary, melt region removal is necessary and its 

expression appears shown in Equation (4.7).  The boundary condition as x →∞ , in Equation 

(4.6), remains unchanged for the pre-melt state, Equation (4.2).   

 Note that the system is continuous from the pre-melting problem to post-melting 

problem.  Before solving the melt evolution with removal problem, it is necessary to know the 

temperature distribution 1( , )mT x t  because it provides the initial condition of the melt removal 

problem.  So the temperature distribution of pre-melting problem ( mt t= ) should be the initial 

temperature distribution of post-melting problem, i.e. 12 ( , ) ( , )m mT Tx t x t=  .    
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4.2 Model Solution Using Laplace Transforms 

In this section, the PDE system to find the melt time (Melt Time Problem) along with its 

boundary and initial conditions is formulated. The solution of the Melt Time Problem and its 

development are presented.  Using the Laplace transform in the time dynamic transforms a PDE 

system to an ODE system in one-dimension for which a closed form solution is obtained.   

Let ( )f t  be a function of t defined for 0t > .  Then the Laplace transform of f  with 

transform variable s  is  

 
0

ˆ ( ) ( ( )) ( )stf s f t e f t dt
∞ −= = ∫  , (4.9a) 

while the Inverse Laplace transform is given by 

 1 1 e
2

ˆ ˆ( ) ( ( )) ( ) .st

Bri
f t f s f s ds

π
−= = ∫  (4.9b) 

Many of the properties of the Laplace transform and its inverse can be found in 

references (38),(60) and (93). Using these properties, the one-dimensional time-dependent 

function ( , )T x t  and the notation 
0

ˆ( , ) ( , ) ,( ( , )) stT x s e T x t dtT x t
∞ −== ∫  yields 

2

2
ˆ ˆ ˆ( ) '( , ) ( ) ''( , ) ( ) ( , ) ( ,0)T T TT x s T x s sT x s T x

x x t
∂ ∂ ∂

= = = −
∂ ∂ ∂

   ,  (4.10) 

where 
ˆ

( , )ˆ '( , ) Tx s s
x

T x∂
∂

=  and 
2

2
ˆ ˆ

' ), ,) (' ( Tx s s
x

T x=
∂
∂

.  Therefore with the initial condition in 

Equation (4.4), Equations (4.1) through (4.3) become 
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 𝑃𝐷𝐸:   𝑠𝑇1� (𝑥, 𝑠) − 𝑇1(𝑥) = 𝜅𝑇1� ′′(𝑥, 𝑠) (4.11) 

 𝐵𝐶1:      𝑇1� (𝑥, 𝑠) → 𝑇0(𝑥)    𝑎𝑠   𝑥 → ∞ (4.12) 

 𝐵𝐶2:     − 𝑘𝑇1�
′(0, 𝑠) = 𝑄�(𝑠) (4.13) 

where 𝑄�(𝑠) =  (𝑄(𝑡)).  Equation (4.11) is an ordinary differential equation for 𝑇1� (𝑥, 𝑠), which 

can be written  

 𝑇1�
′′(𝑥, 𝑠) − 𝑠

𝜅
𝑇1� (𝑥, 𝑠) = − 𝑇0(𝑥)

𝜅
 . (4.14) 

If 0 ( ) 0T x = , the homogeneous solution for 𝑇�1 is given by 

   𝑇�1ℎ(𝑥, 𝑠) = 𝐴(𝑠)𝑒𝛼𝑥 + 𝐵(𝑠)𝑒−𝛼𝑥            with 𝛼  de�ined as �𝑠
𝜅

  ,             (4.15) 

where the positive branch of the square root is chosen which leads to   

 Re( ) 0α >  . (4.16) 

The coefficients ( ), ( )A s B s are determined from boundary conditions given in Equation (4.12) 

and (4.13).  If the initial temperature distribution does not vanish (i.e. 0( ) 0T x ≠ ), a particular 

solution which satisfies Equations (4.12) and (4.13) is needed.  Such a solution is found by using 

the method of variation of parameters and is given by  

 ( ) ( )0
1 0

( )ˆ ( , ) [ ]
2

x x x
p

TT x s e e dα ξ α ξξ ξ
ακ

− − −= − −∫ .  (4.17) 
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The general solution using the homogeneous solution and particular solution of Equations (4.15) 

and (4.17) is of the form 1 1 1h pT T T= +  or 

𝑇�1(𝑥, 𝑠) = �𝐴(𝑠) − ∫ 𝑇0(𝜉)
2𝛼𝜅

𝑒−𝛼𝜉𝑑𝜉𝑥
0 � 𝑒𝛼𝑥 + �𝐵(𝑠) + ∫ 𝑇0(𝜉)

2𝛼𝜅
𝑒𝛼𝜉𝑑𝜉𝑥

0 � 𝑒−𝛼𝑥.          (4.18) 

Now apply boundary conditions, Equations (4.12) and (4.13), to the general solution, Equation 

(4.18), to determine ( ), ( )A s B s .  Beginning with Equation (4.12), and observing Equation 

(4.16) implies lim 0
x

xe α−

→∞
=  .  

[𝐵𝐶1]        �𝑇�1(𝑥, 𝑠)�
𝑥→∞

= lim𝑥→∞ �𝐴(𝑠) − ∫ 𝑇0(𝜉)
2𝛼𝜅

𝑥
0  𝑒−𝛼𝜉𝑑𝜉� 𝑒𝛼𝜉 = 0 (4.19) 

⇒        𝐴(𝑠) = �
𝑇0(𝜉)
2𝛼𝜅

𝑒−𝛼𝜉
∞

0
𝑑𝜉  

Next using Equation (4.13), 

[𝐵𝐶2]      − 𝑘𝑇�1
′(0, 𝑠) = 𝑄�(𝑠) = −𝑘𝛼𝐴(𝑠) + 𝑘𝛼𝐵(𝑠) 

                                                ⇒        𝐵(𝑠) = 𝐴(𝑠) + 𝑄�(𝑠)
𝑘𝛼

.                                           (4.20) 

Now the solution to Equations (4.11) - (4.13) is  

𝑇�1(𝑥, 𝑠) = �
𝑇0(𝜉)
2𝛼𝜅

∞

0
𝑒−𝛼(𝑥−𝜉)𝑑𝜉 +

𝑄�(𝑠)
𝛼𝑘

𝑒−𝛼𝑥 + �
𝑇0(𝜉)
2𝛼𝜅

∞

0
𝑒−𝛼(𝑥+𝜉)𝑑𝜉 

                                          = ∫ 𝑇0(𝜉)
2𝛼𝜅

∞
0 [𝑒−𝛼(𝑥−𝜉) + 𝑒−𝛼(𝑥+𝜉)]𝑑𝜉 + 𝑄�(𝑠)

𝛼𝑘
𝑒−𝛼𝑥               (4.21) 

where /sα κ=  and Re( ) 0α > . 



72 

 

To determine the solution of 1( , ),T x t it is necessary to invert the Laplace transform.  

Using the inversion formula  
−1

� 1
√𝑠

𝑒−𝑥√𝑠� = 1
√𝜋𝑡

𝑒−𝑥2

4𝑡   from Handbook of Mathematical 

Functions with Formulas, Graphs, and Mathematical Tables (42), the solution of 𝑇1(𝑥, 𝑡) for 

0 < 𝑡 < 𝑡𝑚 and 𝑥 > 0 is   

 

2 2

1 00

2

0

( ) ( )( , ) ( ) exp exp
2 4 4

              + ( ) exp
( ) 4 (

1

1
)

t

x xT x t T
t t t

xQ d
k t t
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κ π κ κ

κτ τ
π τ κ τ

∞     − − − +
= +    

    
 −
 − − 

∫

∫
   (4.22a) 

since 
−1

�𝑒−𝛼𝑥

𝛼
� = 

−1
�𝑒

−𝑥�𝑠
𝜅

�𝑠
𝜅

� = √𝜅
√𝜋𝑡

𝑒
−𝑥2

4𝜅𝑡  .  Thus the half-space Green’s function for the 

Neumann boundary condition (22) is 

 
2 2( ) ( )( , , ) exp exp

2 4
1 1

4
x xG x t

t t t
ξ ξξ

κπ κ κ
    − − − +

= +    
    

. (4.22b) 

 Using this Green’s function, Equation (4.22a) is simplified to 

 1 00 0
( , ) ( ) ( , , ) + ( ) ( ,0, )

t
dT x t T G x t Q G x t d

k
κξ ξ ξ τ τ τ

∞
= −∫ ∫  , (4.23) 

The first term of Equation (4.23), 00
( ) ( , , )T G x t dξ ξ ξ

∞

∫ , shows the influence over time t  due to 

the initial temperature distribution 0( )T ξ  while the second term,
0

( ) ( ,0, )
t
Q G x t dτ τ τ−∫ , is the 

influence of the frictional heat source ( )Q τ . 
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4.3 Physical Interpretation of Mathematical Solution 1( , )T x t   

Equation (4.22) is the solution to the pre-melting problem, Equation (4.1), under 

considerations of boundary and initial conditions.  Equation (4.2) - (4.4) shows that the 

temperature distribution during the pre-melting period is influenced by the initial temperature 

distribution 𝑇0(𝑥) and heat source 𝑄(𝑡).  In Equation (4.23), the temperature at time t in the solid 

at the sliding contact area is influenced by two factors, a transient heat distribution due to the 

initial temperature over one-dimensional space and a continuous frictional heat source over time.  

( ),,G x tξ  influences the initial temperature distribution and ( ,0, )G x t τ−  influences the heat 

source for 0 mt t< <  and 0x > .  ∫ 𝑇0(𝜉)𝐺(𝑥, 𝜉, 𝑡)∞
0 𝑑𝜉 describes how the initial temperature 

evolves over space, and ∫ 𝑄(𝜏)𝐺(𝑥, 0, 𝑡 − 𝜏)𝑡
0 𝑑𝜏 describes how much the heat source affects the 

temperature distribution over time.  If there is no initial temperature given, then only the 

frictional heat source raises the temperature requiring more time to reach melt temperature.  If 

there is a change in the flux function ( )Q τ , such as an increase or decrease in heat flow rate, 

then the time to reach the melt temperature takes less or more time respectively. 

Next we determine the time required for the temperature at the sliding contact surface to 

reach the melting point with given parameters, such as pressure, velocity, friction and material 

properties of a given material.  After a material reaches melt temperature at the sliding surface, it 

forms a thin melt layer at the boundary as the phase change occurs.  The thin melt layer creates 

new wear phenomena as the phase changes with resulting new material properties, friction 

coefficient and boundary conditions.  In order to understand the relation of wear and temperature 

distribution, it is essential to know the temperature distributions in the two sliding materials due 
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to frictional heating; how quickly a material reaches melt temperature; how fast the melt front 

moves from the boundary; and what affects the velocity of moving boundary. 

Recalling an earlier discussion, the melt layer at the sliding surface starts developing at 

its melt time mt t=  and moves continuously into the material depending on the heat flux.  

Because the melt layer is removed and the melt front moves, the rate of melt removal (melt wear) 

is directly proportional to the rate at which the melt front moves.    

With these considerations, finding the time mt  to start melting (melt time) is equivalent to 

solving 1(0, ) mmtT T=  for mt .  Melt temperature mT  of a specific material (VascoMax, whose melt 

temperature is 1685 K in SI unit(39)) can be obtained from any reference book or handbook of 

material properties.   

Heat flux being the essential factor in the melting process, it is necessary to consider the 

frictional heat energy to define the heat flux function ( )Q t .  It is influenced by velocity v , 

friction coefficient µ , partition coefficientα  and pressure P .   Some assumptions are needed; 

1. The velocity of moving body is either constant or increasing, 0( )v t ≥ .  There are two 

cases for the velocity function of interest in this research.  The velocity function will be 

given by 0( )v t at q= + ; constant ( 0a = ) and linear ( 0a ≠ ), where 0q  initial velocity 

and a  acceleration. 

2. The frictional coefficient µ  is a number related to the two specific surfaces that are in 

contact with each other.  It is dependent on the roughness of each surface and how the 

materials slide against each other.  The pressure or force P  is the force pushing two 
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materials together, perpendicular to each surface.  For a sufficiently small time 

increment, friction coefficient µ  and pressure P  are constant.  Also, partition coefficient 

α  is assumed to be constant (to be discussed in section 4.1).   

 

The assumption of constant values for , ,Pµ α  is not strictly true as the values will 

depend on the nature of the contacting surfaces.  However, in the transient moving problem, they 

are assumed fixed for a small time increment.  

Because frictional heat is the major contributor to the melting process, it is important to 

define the frictional heat flux function ( )Q t .  Consider a two-body sliding contact in which Body 

1 is moving with velocity 1( )v t  relative to the contact area and Body 2 is moving with velocity 

2 ( )v t   relative to the same contact area.  The rate of total energy dissipated in the sliding contact 

is determined by the friction force and the relative sliding velocity.  If it is assumed that all of 

this energy is dissipated as heat on the sliding surfaces within the real area of contact, then the 

rate of heat generated per unit area of contact ( )Q t for either Body 1 or Body 2 is defined as  

 0 0( ) ( ) ( )( ) Pv t P q at aQ t Pq P tµα µα µα µα= + = +=   (4.24) 

where µ  is the coefficient of friction, α  the frictional heat partitioning value, P the contact 

pressure or load, and 1 2 0( ) ( )( ) | |t vt qtv v at= = +−  the relative sliding velocity.  The sliding 

velocity of two materials is either accelerating at a constant rate (linearly increasing velocity with 

time, 0a ≠ ) or a fixed constant velocity, 0a =  where 0q  is the initial velocity. 



76 

 

Let the sliding surface ( 0x = ) temperature reach the melt temperature mT  when mt t= .  

Since the material’s melt temperature is a material property, the melt time mt  can be calculated.  

Let the change in temperature at the melt front be equal to the difference between the melt 

temperature mT  and the initial temperature 0T .  Let’s assume that the initial temperature 

distribution is the same as the ambient temperature, i.e. 0 aT T= .  Then solve Equation (4.23) 

with 0, mx t t= =   for the melt time mt , i.e. 

1

00 0

(0, )

( ) (0, , ) ( ) (0,0, )m

m m

t

m m m

t T

T G t d

T

Q G t d T
k
κξ ξ ξ τ τ τ

∞

=

+ − =∫ ∫
.                            (4.25) 

Note that if 0 ( ) aT Tξ =  , then 00
( ) (0, , )m aT G t d Tξ ξ ξ

∞
=∫  .  Then, Equation (4.25) becomes 

 00
( ) (0,0, ) (as sumed to-T b          e )mt

m m a aQ G Tt d T T
k
κ τ τ τ− = =∫  . (4.26) 

Combining 
2 2( ) ( )( , , ) exp exp

2 4
1 1

4
x xG x t

t t t
ξ ξξ

κπ κ κ
    − − − +

= +    
    

 in Equation (4.23) and 

0( )) (Q Pq Pa tt µα µα= +  in Equation (4.24), yields 

 0
0

( )
( )

mt

m
m

a
Pq Pa d

k
T T

t
µα µα τ κ τ

π τ
+

=
−

−∫  . (4.27) 

First, consider the material moving at a constant velocity, i.e. 0a =  .  The rate of heat 

flux is constant, 0( ) PQ t qµα= , and the solution of Equation (4.27) for melt time mt , solved in 

Appendix A.10,  is  
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2

0

( )
2

m a
m

TT k
Pq

t π
κ µα
 

=  
 

−  . (4.28) 

Let’s apply this result to a Holloman High Speed Test Track experiment.   

Table 1. Physical and Material Properties for the HHSTT Wear Project (1) 

 
Thermal 

Conductivity 
( 𝐽

𝑚⋅𝑠⋅𝐾
) 

Density 
(𝑘𝑔

𝑚3) 

Thermal 
Diffusivity 

(𝑚2

𝑠
) 

Specific 
Heat 
( 𝑗

𝑘𝑔⋅𝐾
) 

Melting 
Temp. 
( K ) 

Slipper 
(VascoMax V300 
Maraging Steel) 

31 8000 9.2e-6 420 1685 

Rail 
(AISI 1080 

Carbon Steel) 
15 8055 3.91e-6 480 1670 

Slipper’s Dimension 

Total Traveled Distance 

Total Sliding Time 

4 in (width)*8 in (length)*14.7 mm (thickness) 

5.8155 km 

8.14 seconds 

 

The material used for the Holloman High Speed Test Track experiment (1) is VascoMax, 

whose material properties are given in Table 1.  During the experiment, the ambient temperature 

aT  is 300 K, the initial velocity 0q  is fixed at  𝑞0 = 10 m/sec , the pressure is fixed at 

100P MPa=  and the frictional coefficient value µ  ranges from 0.1 to 0.5.  It is assumed that 

half of the total frictional heat energy dissipated enters into a shoe and the other half enters into 

the rail.(1)  In Table 2, time to reach the melting point on the sliding contact surface is evaluated 

for different values of frictional coefficient while considering that the rate of heat input is 

constant.  
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Table 2. Time to Reach the Melt Temperature at the Contact Surface with Various Frictional Coefficients for a Constant 
Fixed Velocity 10 m/sec 

 

   

Table 2 shows that it takes less time to reach the melting temperature if the frictional 

coefficient increases.  The larger coefficient of friction (the increase of sliding resistance 

between two contact surfaces) means dissipating more frictional energy during sliding process.  

More frictional heat energy heats up the material faster, and the material’s contact area reaches 

the melt temperature faster.  The result of Table 1 explains that more energy input shortens the 

time to reach the melting point or melt temperature. 

Second, consider the case where the velocity of the material is linearly increasing, i.e. 

0.a ≠   From Equation (4.24), the rate of heat input is a linearly increasing function of time.  For 

the linearly increasing heat flux condition ( 0a ≠ ) and 2
ms t= , solving Equation (4.27)  is 

reduced as following 

 3 0 ,s sβ λ+ − =  (4.29) 

where 03 3n
42

a d m aq T T k
Paa

πβ λ
αµ κ
−

= = . 

The exact solution to Equation (4.29) is  

 
1/3 3

1/3 1/3
2( ) ( )

2
41 1 1 1 where
27

s M M Mλ β
λ

 + + + = − 
 

− =   . (4.30) 

Coefficient of 
Friction (µ) 

0.1 0.2 0.3 0.4 0.5 

Melt time (sec ) 6.295 1.574 0.699 0.393 0.252 
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With the linearly increasing value a fixed at 10 m/s2 and the initial sliding velocity 𝑞0 

vary from 0 to 50 m/sec, the solution to Equation (4.30) with various frictional coefficient values 

is presented in Table 3.  In Table 3, time to reach the melting point on the sliding contact surface 

is calculated while the rate of heat input increases linearly.  Each column represents the time to 

reach the melting point for different values of 𝛽 which is defined as 3𝑞0
2𝛼

 .  So the increase in 𝑞0 

(the initial velocity) means the increase in 𝛽.  Each row represents the time to reach the melting 

point for different values of 𝜆 which is defined as 3𝑘(𝑇𝑚−𝑇𝑎)
4𝛼𝜇𝑃𝑎 �𝜋

𝜅
 .  So the increase in 𝜇 (coefficient 

of friction) means the decrease in 𝜆.    

Table 3. Time to Reach the Melt Temperature at the Contact Surface with Various Frictional Coefficients and Initial 
Velocities for Linearly Increasing Velocity 

  𝛽 = 0 𝛽 = 1.5 𝛽 = 3 𝛽 = 4.5 𝛽 = 6 𝛽 = 7.5 

0.1µ =  𝜆= 3.4624 2.289 1.413 0.821 0.482 0.302 0.202 

0.2µ =  𝜆= 1.7312 1.442 0.649 0.279 0.139 0.081 0.053 

0.3µ =  𝜆= 1.1541 1.100 0.378 0.136 0.064 0.037 0.024 

0.4µ =  𝜆= 0.8656 0.908 0.246 0.079 0.036 0.021 0.013 

0.5µ =  𝜆= 0.6925 0.783 0.172 0.052 0.023 0.013 0.009 

With 0

2
3

a
qβ = , the values of β  increase as the initial velocity 0q  changes from zero to 

50 / secm .  With 3
4

m aT T k
Pa

πλ
αµ κ
−

= , the values of λ  decrease as the fictional coefficients µ

change from 0.1 to 0.5.  So time (in seconds) to reach the melting point for a linearly increasing 

flux condition is a function of 2s  with parameters β  and λ .  In Table 3, the values of each 
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column with a fixed value for initial velocity 0q  are decreasing as the values of frictional 

coefficient increase.  This trend is similar to the one described in Table 2 where less time is taken 

to reach the melting temperature if the frictional coefficient increases.  The increased initial 

velocity contributes to increased heat energy input (or increase of heat flux ( )Q t ).  More heat 

energy accelerates the material’s melting process on the sliding contact area and shortens the 

time to the start of melting.  Expectedly, an increase in the frictional coefficient and initial 

velocity provides more frictional energy which heats the material faster reducing melt time, here 

we have quantified it. 
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5 Numerical Formulation of Two Dimensional Heat Transfer Problem 

 

Figure 16. Rail and Slipper's Two Dimensional Heat Transfer Model 

During numerical analysis, let’s consider the sliding system of rail and slipper to be 

finite.  The length of the slipper is 2L  and the length of the rail is some multiple of the length of 

the slipper, i.e. lengthRail 2kL=  for some positive constant integer k, and the slipper lies in the 

middle of the rail.  In Figure 16, andL L+ −  represent and LL+ −  respectively for some L (the 

half of the slipper’s length).  They are initially at 0 ( , )T x y .  Finding the temperature distribution 

and melt wear of the slipper, and the slipper’s frictional heat partitioning function are our 

interest.  The length of the slipper is fixed, and the entire contact surface of the slipper is subject 

to the frictional heat source while sliding.  So it is reasonable to set the slipper’s coordinate 

system fixed and to make the rail’s coordinate system match the sliding velocity.  Treat the rail 

as a moving object sliding at the velocity ( )v t  in the opposite direction of slipper’s ‘real world’ 

direction in x-axis and treat the slipper as a stationary object.  Using the coordinate change due to 

the slipper sliding along the rail, the rail’s PDE introduces the extra term ( )v t u
x
∂
∂

.   
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While sliding, dynamic loading pressure is observed.  This dynamic loading was earlier 

described as the bounce effect.  This phenomenon randomly changes the interface boundary 

condition between rail and slipper from in-contact to not-in-contact.   From Figure 16, when the 

slipper’s surface is in contact on the rail’s surface, the sliding contact surface area sL Lx− ≤ ≤  at 

0y =  is subjected to frictional heating.  For 0t > , the position sx  on the slipper’s surface 

corresponds to a position rx  on the rail, i.e. 
0

( ) ( )
t

r s sv t dx t x x t x′ ′= + = +∫ , where ( )x t  is the 

distance that the sled has traveled on the rail for time t .      

This heating generates a flux ( , )q x t  along the contact surface.  It is assumed that only the 

sliding surface area | |rx L≤  at 0y =  is subjected to the heat source at a rate of ( , )q x t .  When 

they are not in-contact, the surfaces are subjected to convective heat transfer between the 

slipper’s surface and the air layer in the gap.  The region outside of the sliding surface area, 

| |rx L> , at 0y = is subjected to convective heat transfer.  The other boundary conditions of rail 

y →−∞  and slipper y →∞  are a fixed boundary temperature, aT , call it ‘ambient temperature’.  

Later, for the discrete PDE, the domain of the y-axis will be finite.  The slipper’s head and tail 

boundary x L= −  and x L= +  will be subjected to convective heat transfer between the slipper’s 

heat and tail and the surrounding air.  Let the temperature surrounding the slipper head, tail and 

below be 1 2 3( , ), ( , ) and ( , )y t T y t T x tT .  These assumptions lead to the slipper and rail’s two 

dimensional PDE, initial and boundary conditions as the following. 
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For the slipper, 

 

2 2

2 2

0

1 1

2 2

3 30

(a)

(b) ( , )

(c) ( , ) for

(d)

PDE :

I.C.: ( , ,0) for | | , 0
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( ( , , ) ) 0
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( ( ,0
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(e)
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+
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∂

∂
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r

( , , )f s) aa
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x L
x t
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α
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
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→∞

 . (5.1) 

For the rail, 

 

2 2

2 2

0

0

PDE : ( )

I.C.: ( , ,0) | | ,
: as | |

( ( ,0, ) ) or
in con

(a)

(b) ( , ) 0
B.C. (c) ( , , )

(
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(1 · ( )

( ( ,0, ) )

d)
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r r

a

r

a r r

r

a

y

u u u uc v t k k
t x x y

u x y T x
x y

uk
y

h u x t T

x y y
u x y t T

x
t L

L x L
q t L

h

x

u x t T

ρ

α

=

− +

− +

∂ ∂ ∂ ∂ − = + ∂ ∂ ∂ ∂ 
= < ∞
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∂
=

∂
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

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
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= 
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.  (5.2) 
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Equations (5.1b) and (5.2b) set the initial temperatures of slipper and rail as 0 ( , )T x y .  

Equations (5.1e) and (5.2d) describe the bounce effect.  When in contact, the sliding contact 

surface area at 0y =  is subjected to frictional heating.  When not in-contact, the surfaces are 

subjected to convective heat transfer between the contact surface and the air layer in the gap.  

Equations (5.1c) and (5.1d) are the slipper’s head and tail boundary x L= −  and x L= + , 

subjected to convective heat transfer.  Equations (5.1f) and (5.2c) are the other boundary 

conditions of slipper and rail, which is a fixed boundary temperature aT . 

From this point, the label x  will be used instead of sx  or rx  for slipper or rail.  The rail is 

divided into three intervals on the surface as indicated in Figure 16.   The interval | |x L<  has 

either a conductive heat transfer boundary condition when in contact or a convective boundary 

condition when not in contact.  The other two intervals x L−∞ < < −   and L x< < +∞  have a 

convective heat transfer.  This implies that the boundary conditions are not continuous at the 

endpoints x L=  and x L= − .   For the numerical analysis, we take the limit at the endpoints 

from the positive and negative directions and set these two limits being equal.  Therefore, at the 

endpoints L+  and L− , the continuous condition has to be applied, i.e. 

 

0 0

0

0 0

0

In Contact: lim lim

         ( )( ( ,0, ) ) (1 ( )) ( )

    

,

               lim l

,

im

         ( )( ( ,0, ) ) (1 ( )) ( )

r rx L x L
y y

r rx L x L
y y

u uk k
y y

t q t

u uk

h L u L t T L

h L u L t

k
y y

t q L tT

α

α

+ −

+ + − +

− −

−

→ →

− −

= =

+ + +

→ →
= =

− = −

− =

∂ ∂
=

∂ ∂

∂

−

⇒

∂ ∂
=

∂

⇒

 . (5.3) 
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=
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=
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⇒
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−

∂

=

=

−⇒

−

∂

3 3( )( ( ,0, ) )h u L t TL− −= −

 . (5.4) 

The following section adopts Lakoba’s study (45) on development of numerical method and 

analysis.  In the next section, numerical methods for the heat transfer problem in 2 dimension in 

space will be developed.  The simple explicit scheme for the 2D heat equation (Crank-Nicolson 

scheme, CN scheme) will be presented, and it will show the stability of CN scheme of 2D heat 

equation.  However, after analyzing CN scheme for 2D heat equation, it is discovered that CN 

scheme of 1D heat equation is even more time-efficient than of 2D heat equation.  In order for 

the 2D heat equation to be stable and time-efficient, CN scheme needs to be modified using 

operator splitting and this modified CN scheme of 2D heat equation is called Alternating 

Direction Implicit (ADI) method. 

 Since this chapter has lots of details and computations of 2D heat equation developments 

using CN scheme, ADI and Strang’s Splitting methods, here is a brief preview for each section.  

In Section 5.1, we will examine the stability and time-efficiency of CN scheme for 2D heat 

equation, and discover that CN scheme for 2D heat equation is not time-efficient.  The ADI 

method for 2D heat equation will be derived by splitting operators into 𝑥 and 𝑦 directions, and 

we will prove that ADI method is stable and time-efficient.  The boundary conditions need to be 

altered for 𝑥 and 𝑦 direction.  So Section 5.2 will present the developments of different boundary 

conditions, such as Dirichlet, Neumann and Convective boundary conditions of ADI method.  In 
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section 5.3 and 5.4, the numerical implementations of slipper and rail will be developed using 

ADI method and redefined boundary conditions of 2D heat equation, and presented in vector-

matrix form.  In Equations (5.49) and (5.76), the matrix 𝐁 will represent the 2D heat transfer 

PDE, and the vectors 𝐔𝑗
𝑖  , 𝐛𝑛+1 (𝑖 = 𝑛 , 𝑛 + 1 and 𝑗 = 𝑥, 𝑦) will represent the temperature 

distribution in 𝑥 or 𝑦 direction and the boundary conditions of interface and the other end.  Since 

the heat partitioning function only appears at the interface while the slipper is sliding in contact 

with the rail, the heat partitioning function 𝛼(𝑡) will be seen in the boundary vector 𝐛𝑛+1.  Also, 

the accuracy and stability of ADI methods for the slipper and rail’s 2D heat equations will be 

discussed.  Since the 2D heat transfer PDE for the rail has heat flow term 𝑣(𝑡) 𝜕𝑢
𝜕𝑥

, it becomes the 

convection-diffusion equation which has some restrictions on numerical analysis.  So in Section 

5.5, Strang’s Splitting method will be introduced to overcome the technical problem when 

implementing 2D convection-diffusion equation using ADI method.  Then, the numerical results 

of temperature distributions for the rail and slipper using ADI and Strang’s Splitting methods can 

be found.  The slipper’s heat partitioning values will be calculated iteratively by matching the 

averaged surface temperatures of rail and slipper in Section 5.6.   

5.1 Stability and Derivation of ADI for Two Dimensional Heat Problem 

The general form of the two dimensional parabolic differential equation is  

  
2 2

2 2

u u u
t x y

∂ ∂ ∂
+=

∂ ∂ ∂
 (5.5) 

with proper boundary conditions and initial condition.   
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Figure 17. Crank-Nicolson Method for 2D Heat Equation 

To construct a difference scheme, the space domain is partitioned into a uniform 

rectangular grid with the time domain.  Figure 17 shows the Crank-Nicolson schematic of 2D 

heat equation for 𝑢𝑛 and 𝑢𝑛+1.  If the second-order difference operator 2
xδ  is defined as 

2
, , 1 , , 12n n

x y x y x y x y x
n nu u u uδ + −= − + , an explicit scheme for Equation (5.5) is  

 
1 2 2

, , , ,
2 2

nn
y x y x x y

n
x

n
yyxu u u u

t x y
δ δ+ −

= +
∆ ∆ ∆

  (5.6) 

The stability of the 2 dimensional heat PDE scheme can be obtained by the von Neumann 

technique.  Substituting ( )
,

i ax x by y
y
n n

xu eλ ∆ + ∆=  for 𝑥, 𝑦 ∈ ℝ into Equation (5.6), the amplification 

factor λ  is 2 2
2 21 4 4

2 2
a bt x t ysin sin

x y
λ ∆ ∆ ∆ ∆   = − −   ∆ ∆   

.  With the condition 
2 2

1
2

t t
x y
∆ ∆

+ ≤
∆ ∆

, 

then | 1|λ ≤  for all anda b .  Therefore, this scheme is conditionally stable.   

The Crank-Nicolson (CN) scheme of Equation (5.5) is obtained by averaging the spatial 

variation over two time steps which leads to 
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 . (5.7) 

With 2 2andx ys st t
x y
∆ ∆

= =
∆ ∆

defined, Equation (5.7) can be rewritten as  

 2 2 1 2 2
, ,1 11 1 1 1

2 2 2 2
n n

y y y yx x y x x x y xu us s s sδ δ δ δ+   − − = + +   
   

 . (5.8) 

A similar stability analysis produces the amplification factor  

 

2 2

2 2

1 2 2
2 2

1 2 2
2 2

x

x

y

y

a x b ys sin s sin

a x b ys sin s sin
λ

∆ ∆   − −   
   =

∆ ∆   + +   
   

 . (5.9) 

Since ,x ys s , and 2sin  are positive, Equation (5.9) is always less than or equal to one for any 

partition size andx y∆ ∆ .  Hence Equation (5.8) is unconditionally stable.   

In The Heat equation in 2 and 3 spatial dimensions, Lakoba (45) performed the accuracy 

analysis for CN scheme.  Because 
22

,2 2 (1)nx t
y

y
xu

x y t
δδ δ

∆ ∆ ∆
= , it follows that 

2 12 2
, , 2

2 2 ( )
4

n n
y x y xx y u ut t

x y t
δδ + −∆

∆
∆ ∆

=
∆

  .  Since the accuracy of the scheme 

2 2 1 2 2
, ,1 11 1 1 1

2 2 2 2
n n

y y y yx x y x x x y xu us s s sδ δ δ δ+   − − = + +   
     

is 2 2 2( )t x y∆ + ∆ + ∆ , Lakoba (45) says 

that it may be added to any term of the same order without changing the accuracy of the scheme.  
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Using this observation, add the term 
2 12 2

, ,
2 24

n n
y x y xyx u ut

x y t
δδ + −∆

∆ ∆ ∆
 to L.H.S. of Equation (5.7) 

resulting in  

 ( )
1 2 1 22 22

, , , , 1
, ,2 2 2 24 2 2

n n n n
y x y x y x y x n nx xy

y x y
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u u u ut
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u
x y

u
δ δδ δ+ +

+
 

=
− −∆
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∆ ∆ ∆ ∆

+  
 ∆ ∆

.   (5.10) 

Equation (5.10) still has the accuracy 2 2 2( )t x y∆ + ∆ + ∆ .  After multiplying by t∆ , Equation 

(5.10) has the equivalent form  

 2 2 2 2 1 2 2 2 2
, ,2 2 2 2

1
2 2 2

1
2

n nx x x x
x x y x

y y y y
y y x x xy y yu u

s s s ss s s sδ δ δ δ δ δ δ δ+   
− − + = + + +   

   
.  (5.11) 

Factoring the operator expressions on both sides results in  

 2 2 1 2 2
, ,1 1 1

2 2 2 2
1n nx xy

x y
y

y yx x y x

s s
u us sδ δ δ δ+      − − = + +      

      
  (5.12) 

which is the modified Crank-Nicolson scheme(46).  For the CN scheme, a system of second-

order difference operators of both x and y directions must be solved at each time step.  Because it 

does not form the tridiagonal matrix as a 1-D problem, solving such a system can be quite 

laborious due to the expensive computational power and memory depth to store and solve the 

matrix directly systematically.  A simple and efficient method, called Alternative Direction 

Implicit (ADI) method, for solving 2-D parabolic problems was first proposed by Peaceman and 

Rachford in 1955.(47)  The basic idea is to break a 2-D problem into two 1-D problems solved 

by implicit schemes as tridiagonal.   
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For the ADI method, Equation (5.12) is implemented as follows  

  

2 2
, ,

2 2
, ,

*

1 *

( )
2 2

( )
2

1 1

1 1
2

yx
x y x y x

y x
y x x y x

n
y

n
y

a

b

ss u u

s su u

δ δ

δ δ+

  − = +  
   
   − = +   

  





. (5.13) 

First, it is necessary to prove that this method is equivalent to Equation (5.12).  This will imply 

that it satisfies the same accuracy.  Apply the operator 2

2
(1 )x

x
s δ−  to both sides of Equation 

(5.13b).  Then the sequence of equations follows 

12 2 2 2
, ,

2 2
,

*

*

2 2 2 2

2 2

1 1 1 1

1 1

yx x x
x y x x x

n
y y x

x x
x x y x

s su u

s

s s

us

δ δ δ δ

δ δ

+     − − = − +     
     

  = + −  
  

   (5.14) 

where the fact that the operators 2 2an1 1d
2 2
x x

x x
s sδ δ   + −   

   
 commute is used.  Next apply 

Equation (5.13a) and Equation (5.14) becomes 

2 2 2 2
, ,

11 1 .
2 2

1
2 2

1y yx x
x y x x

n n
y yy x

s ssu us δ δ δ δ+      − − = + +      
      

   (5.15) 

This proves that Equation (5.12) is equivalent to Equation (5.13).   
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5.2 Boundary Conditions for the ADI methods 

 The ADI methods solve a 1-dimensional heat transfer problem implicitly in one direction 

and repeat it in the other direction.  Between these steps, the boundary conditions need to be 

modified.  It is important to prescribe boundary conditions for the intermediate solution *
,y xu  in 

Equation (5.13).  There are three kinds of boundary conditions, Dirichlet, Neumann and mixed 

boundary conditions.   

 

Figure 18. Two Dimensional Boundaries for the ADI Method (45) 
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  (5.16) 

Figure 18 shows how to label the boundaries for the ADI scheme.  Equation (5.16) 

defines ig  for i=0,1,2,3 as a function for each boundary.  M, L represent the upper endpoints of x 

and y domain. 
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In order to find the required boundary values * *
,0 ,and with 1 1y y Mu Lu y≤ ≤ − , two 

equations in Equation (5.13) must be added to solve for *
,y xu .  This leads to the equation  

 ( ) ( )* 1 2 1
, , , , ,

1
2 4

yn n
y x y x y x y

n
x x

n
y yu u u u

s
u δ+ ++ −= +   (5.17) 

which is valid for all integers.  

Here, the derivations of three intermediate boundary conditions of the Peaceman-

Rachford method for the two dimensional heat transfer problem are demonstrated.   

For the Dirichlet boundary condition, the boundary values of the intermediate step *
,y xu  

at 0x = and x M=  are  

 

( ) ( )

( ) ( )

( )
( )

* 1 2 1
,(0, ) ,(0, ) ,(0, ) ,(0, ) ,(0, )

1 2 1
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y y yyn
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y

n

y

n

n

n

n

s
u

s
g
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+ +
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+
+
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= +

= +

−
+ +

−
=

( )1 1
1,(0,1)

n
yg+ +
−

 
 
 + 

  (5.18) 

for 1 1y L≤ ≤ − .  Here the notation ,(0, )y Mu  represents the row vector ,0yu  or ,y Mu  and ,(0,1)yg  

represents the boundary condition 0 ( , )g y t or 1( , )g y t  described in Equation (5.16).      

To determine the Neumann boundary condition values at the intermediate step *
,y xu , the 

central difference scheme around *
,(1, 1)y Mu −  is used in conjunction with Equation (5.17) to 

estimate the heat flow rate. This leads to the following sequence of equations.   
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* * 1 1
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 
 = + +
 +

− +

− − 

.(5.19) 

The Robin boundary condition at the intermediate step *
,y xu is derived by considering the 

boundary condition of thn  time step, 1
,3 ,1

,2( )
2

n n
y y n n

y

u u
h u hT

x
− = −

∆

−
 for 1

nT  the air temperature at the 

boundary 0x =  of thn  time step and ℎ the convective coefficient.  For the boundary condition 

for *
,y xu , this expression becomes 

* *
* *

1
,3 ,1

,2( )
2

y y
y

u u
h u hT

x
− = −

∆

−
.  Using Equation (5.17) and 

substituting into LHS of Equation (5.19), the boundary condition for *
,y xu  can be represented 

with and ( 1)th thn n +  as per the following steps 
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Therefore, the boundary condition is reduced to  

 ( ) ( ),(3, 2) ,(1, ) 1 2 1
,(2, 1

* *
*

) 1 1 1 1( )
2 2 4

y M y M yn n n n
y M y

u u hh u T T T
s

T
x

δ− + +
−

−
+ −= − +

∆
 . (5.21) 

In the following sections, the development of the numerical code for slipper and rail 

using the ADI method will be presented and analyzed.  In the numerical analysis of slipper and 

rail, their conductive and convective boundary conditions are considered.  The numerical 

representations of three boundary conditions, Equations (5.18), (5.19) and (5.21), are adopted 

when the numerical method using the ADI method is being constructed according to Lakoba’s 

paper(45).    
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5.3 Numerical Analysis for Slipper using ADI method 

 

Figure 19. Slipper and Rail's Sliding System 

Let’s formulate Peaceman- Rachford’s 2D ADI scheme (47) for the slipper.  Use the 

Crank-Nicolson method (48) for 2 2 2and( )x yδ δ∇ ,  
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Define 2 2,
2 2x y

s sp
x y

pt tκ κ∆ ∆
= =

∆ ∆
and define the operators 2 2and ,x x x y y yA p A pδ δ= =  then R.H.S. in 

Equation (5.22b) becomes 

 { }( )1
, ,

1 (. )R.H.S n n
x y y x y xA A u t

t
u += =+ + ∆

∆
  . (5.23) 
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As shown in Section 5.1, and according to Lakoba’s accuracy analysis (45), 

2 12 2
, , 2

2 2 ( )
4

n n
y x y xx y u ut t

x y t
δδ + −∆

∆
∆ ∆

=
∆

 which is equivalent to
1

, , 2( ).
n n
y x y x

x y

u u
A t

t
A

+ −
= ∆

∆
  Further, the 

accuracy of the slipper’s 2D ADI scheme is 2 2 2( )t x y∆ + ∆ + ∆ .  Therefore, it is possible to add 

to the scheme any term of the same order without changing the accuracy of the scheme.  Using 

this observation and add the term appearing on L.H.S of Equation (5.22b), 
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= + = +
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 Then, rewrite Equation (5.22b) using Equations (5.23) and (5.24)   
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 , (5.25) 

and this is the slipper’s 2D scheme.  andx yA A  are operators, and the operator expressions on 

both sides can be factored.  Result in the factored form is  
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When factoring the operator expressions, the order of operators in their product is not 

changed as these operators may not commute.  For splitting steps, choose *
,y xu  such that 
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 , (5.27) 
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which is Peaceman and Rachford’s 2D ADI method for slipper.  In order to show that Equation 

(5.27) is equivalent to 1
1 2 , 3 4 ,

n n
y x y xB B BB u u+ = , apply the operator ( )21 x xp δ−  to both sides of 

Equation (5.27b), and apply the operator ( )21 x xp δ+  to both sides of Equation (5.27a) to produce 
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2 2 * 2 2
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2 2 1 2 2 *
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x xp p
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p u p u

p upp u

δ δ δ δ

δ δ δ δ+

+

− +−

− = + −

− =
 . (5.28) 

  Because the operators ( ) ( )2
1

2
31  and 1x x x xB Bp pδ δ−= = + commute, Equation (5.28) lead to the 

following result 

 ( )( ) ( )( )2 2 1 2 2
, ,1 1 1 1n n

x x y y y x x x y y y xp u up p pδ δ δ δ+− = + +−  . (5.29) 

This proves that Peaceman and Rachford’s 2D ADI method for the slipper is equivalent to 

1
1 2 , 3 4 ,

n n
y x y xB B BB u u+ =  . 

It is sufficient to show that the explicit heat transfer scheme is conditionally stable with 

very strong restrictions and the Peaceman and Rachford’s 2D ADI method for slipper, Equation 

(5.27), is unconditionally stable using the von Neumann stability analysis.  Note that this 

stability analysis does not consider any influence of the boundary condition, but only considers 

the PDE.  It uses the fact that the solution of the constant-coefficient difference equation is 

satisfied by the Fourier harmonics ,
n n iby y iax x
y xu eeλ ∆ ∆=  where λ  is the amplification factor and 

,a b  are arbitrary scaling factors.    

Before examining the difference scheme, first observe  
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The explicit heat transfer scheme is given by 
1

2
n n

n
s

u u u
t

κ
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∆

 and its equivalent form is   
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Substituting Equations (5.30a) and (5.30b) into Equation (5.31), produces 
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Upon removing a common factor, the amplification factor is  

2 2
2 21 4 sin 4 sin

2 2
s st a x t a y
x y

κ κλ ∆ ∆ ∆ ∆   = − −   ∆ ∆   
.   (5.33) 

In order to make this scheme stable, the stability condition | 1|λ ≤  has to be imposed.  

Clearly, 20 sin 1
2

a x∆ ≤ ≤ 
 

 and 20 sin 1
2

b y∆ ≤ ≤ 
 
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∆ ∆
.  If the 
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smallest value is used, i.e. 2sin 0
2

a x∆  = 
 

 and 2sin 0
2

b y∆  = 
 

, then 1λ ≤ .  Since | 1|λ ≤  is 

imposed, the stability condition for λ  becomes 
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the following result, 2 2
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2

2 s

yt
κ
∆

∆ ≤ . 

Now it remains to show that the Peaceman and Rachford 2D ADI method for the slipper 

is unconditionally stable.  Recall Equation (5.27).  For the von Neumann stability analysis of the 

modified Peaceman-Rachford 2D ADI method scheme, set ,
n n ibm y ial x
m lu eeλ ∆ ∆=  and 

* *
,

n ibm y ial x
m lu e eλ λ ∆ ∆= , where *λ is the amplification factor for the intermediate step from the thn  

time step.  Substituting these expressions into Equation (5.27) admits the following 
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y y x x

y x

e e e e

b y a xp p

e p e e p eλλ δ λλ λ λ δ λ λ

λ λ

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆− = +

 
= − 



∆  ∆    +     
    

 (5.34) 
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By defining 2 2sin and 4 sin
2 2

4 y x
b y a xE F pp ∆ ∆   = =   

   
, the results of Equations (5.34a) and 

(5.34b) can be written as * *1 1and
1 1

E F
F E

λ λ λ− −
= =

+ +
 respectively.  This leads to 

* 1 1 1 1 1· ·
1 1 1 1 1

F E F E F
E F E E F

λ λ − − − − −
= = =

+ + + + +
.  For all positive E and F, 1 11 and 1

1 1
E F
E F

− −
≤ ≤

+ +
. It 

follows that | 1|λ ≤  for all a and b.  Therefore, the Peaceman-Rachford 2D ADI method for the 

slipper, Equation (5.27), is unconditionally stable.   

In order to solve the heat transfer problem and find the solution numerically, it is 

necessary to discretize the region of slipper in space and time.  Let the length of the slipper be  . 

Let xn be the number of gridpoints of slipper including the endpoints, and add one ghost point at 

each end outside of the slipper.  Therefore, xn+2 is the number of gridpoints of slipper including 

the ghost points along x-axis.  Similarly, let yn be the number of gridpoints of slipper along y-

axis.  Therefore, yn+2 is the number of gridpoints including the ghost points.  Using this 

discretization in space and time and the difference operators 2
, , 1 , , 12n n n n

x y x y x y x y xu u u uδ + −= − +  and 

2
, 1, , 1,2n n n n

y x x xy y y x yu u u uδ + −= − + , the finite difference Crank-Nicolson scheme of Equation (5.1) 

becomes 

      

1 22
, , 1 1

, , , ,2 2

1
, 0

( ) ( )

wit

PDE :

I h.C.: 2 ( , ) ( 1, 1)( , )

y
n n
y x y x n n n nx

y x y x y x y x

y x

s s

u u
c k u u k u u

t x y
u T y x yn xx y n

δδρ
+

+ +−
= +

∆ ∆

≤ ≤ +

+
∆

+

+

=
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,3 ,1
1 ,2 1

21
,1 ,3 ,2 1

, 2 ,
, 1

, 2 ,

2

2
2,

2

1

B.C.1 (Head) ( )

( )

B.C

: ( ) with 2 1
2

2 ( ) ( )

( : ( ) wi.2 T tail) ( ) h 2 1
2

2 ( (

n n
y y n n

y

n n n n
y y y

s
n n
y xn y xn n n

y xn

n n n n
y xn y xn y xm

s

s

s

u u
k h u T y yn

x
h xu u u T x
k

u u
k h u T y yn

x
h xu u

y

y

u T
k

y

+
+

+ +

−
= − ≤ ≤ +

∆
∆

⇒ = − − + ∆

−
= − ≤ ≤ +

∆
∆

⇒ = − −



2) () )xy + ∆

  (5.35) 

       

3

3, 1,

3 2, 3

1, 3,
3 2, 3

2
1, 3, 2, 3

in contact
B.C.3 (Interface) :

( ) not in contact2

in contact2
( ) not in contact

2 ( ( )) ( )

( )

( )

(1 ) ( )

n nn n
x x

n n
x

n n
n n

x x n n
x

n n n n n n
x x x

s

s

s

u u
k

h u Ty

yu

q
x

q
u

x

m h x

h u Tk

yu u m q u T y
k

α

α

α

 −− = − −∆ 

∆
⇒

−

∆
⇒ = + − +

= + 


− ∆



− 

1,B.C.4 (Top) : with 2 1n
yn x aT xu xn+ = ≤ ≤ +

 

where m is the switch function depending on loading pressure.  The region of slipper ,
n
y xu  is 

within 2 ( , ) ( 1, 1)y x yn xn≤ ≤ + + , and boundary values are 2, 1,and 1with 2n n
x yn xu x xnu + ≤ ≤ +  and  

,2 , 1 wand 1ith 2n n
y y xn ynu u y+ ≤ ≤ + .  Given the solutions ,

n
y xu with 3 ( , ) ( , )y x yn xn≤ ≤ , it is 

necessary to find the values at the boundary points ,2 , 1and with 2 1n n
y y xnu y nu y+ ≤ ≤ +  and 

2, 1,and with 12n n
x yn xu x xnu + ≤ ≤ + .    

To complete the boundary condition, four corner points of the slipper have to be added.  

These corner points are ghostpoints, which are not part of the slipper and exist at each corner of 

the slipper externally.  Using Lakoba’s method (45), the boundary conditions at slipper’s head 

and tail are used to evaluate the two left endpoints and two right endpoints.  For the left low 



102 

 

endpoint 1,1u ,  apply the convective boundary condition at the slipper’s head 1y =  and solve for 

1,1u , i.e.  

1,3 1,1 1
1 1,2 1 1,1 1,3 1,2 1

1, 2 1,
1, 1 2 1, 2 1, 1, 1 2

2,3 2,1 1
1 2,2 1 2,1 2,3

2
2

2( ) ( )
2

2( ) ( )
2

2( )
2

n n
n n n n n n

s
s

n n
xn xn n n n n n n

s xn xn xn xn
s

n n
yn yn n n n n

s yn yn yn

u u h xk h u T u u u T
x k

u u h xk h u T u u u T
x k

u u h xk h u T u u
x

+
+ + +

+ +
+ + +

− ∆
= − ⇒ = − −

∆

− ∆
= − − ⇒ = − −

∆

− ∆
= − ⇒ = −

∆ 2,2 1

2, 2 2,
2, 1 2 2

2
, 2 , , 1 22 2 2

( )

2( ) ( )
2

n n
yn

s
n n
yn xn yn xn n n n n n n

s yn xn yn xn yn xn yn xn
s

u T
k

u u h xk h u T u u u T
x k

+

+ + +
+ + + + + + +

−

− ∆
= − − ⇒ = − −

∆

(5.36) 

It is further necessary to determine the boundary values for the intermediate solution 

*
, .y xu   Recall Equation (5.27) and define 2

s
x

t
x

r κ ∆
∆

=  and 2
s

y
tr

y
κ ∆

=
∆

.  To find the expression for *
,y xu  

add Equations (5.27a) and (5.27b) and solve for *
,y xu  , 

 

( ) ( )

2 * 2 2 * 2 1
, , , ,

* 1 2 1
, , , , ,

1 1
2 2 2 2

1
2 4

1 1 0

n

y yn nx x
x y x y y x

n

x y x y y x

yn n
y x y x y x y y x y x

r rr r

u u u

u u u u

r
u u

δ δ δ δ

δ

+

+ +

−

= +

      − + + + − − =      
      

+ −

 . (5.37) 

The result *
,y xu  in Equation (5.37) will find the intermediate boundary values of the slipper’s 

head and tail by examining the expression ( )* * *
,3 ,1 1 ,22

s
y y yu u h uk

x
− −

∆
.  It is assumed that the 

temperature distributions 1 ( )nT y  and 2 ( )nT y  at the slipper’s head and tail are uniform, so there is 
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no temperature difference along y-axis.  In Section 5.2, the convective boundary condition for 

the slipper, Equation (5.21), with the result *
,y xu  becomes  

 
* *

,3 ,1 * 11 1
,2 1 1 1( )

22
y y n n

y
s s

u h hu T T G
k k

u
x

+−
− + ≡=

∆
 . (5.38) 

Similarly, for the intermediate boundary condition of slipper’s tail, 

 
* *

, 2 , * 1
, 1

2 2
2 22 )

2
(

2
y xn y xn n n

y xn
s s

u h hu T T G
k k

u
x

+ +
+

−
+

∆
= + ≡  . (5.39) 

Next, use the first step in Equation (5.27) to find the intermediate solutions *
,y xu .  This 

step solves the heat transfer problem in the x-direction.  Let yU  and xU   be the row vector at a 

fixed y and the column vector at a fixed x for slipper inside, i.e. ,2 ,3 , 1[ , , , ]T
y y y y xnu u u +=U   and 

2, 3, 1,[ , , , ]T
x x nx y xu u u +=U  , and yb  and xb  be the boundary influence vector at slipper’s 

bottom/top and head/tail, i.e. ,2 , 1[ ,0 0, ]T
y y y xnu u +=b   and 2, 1,[ ,0 0, ]T

x yn xx u u +=b      For each 

2 1y yn≤ ≤ + , solve Equation (5.27a), which is the linear system 

 2 * *
1 1( 2 )

2
(1

2 2
) y yn nx

x y y y y y
n

y
nr rr δ + −−− = + + +U UU bU U  . (5.40) 

L.H.S. of Equation (5.40) is 

 

* *
,2 ,2

2
* *

, ,
* *

, 1 , 1

2
1

y y

x
x

y xn y xn

y xn y xn

s
r

u u

u u
u u

δ

+ +

   
   

     − =      
   
      

A
 

 . (5.41) 
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where  

2 2

2 2

2 2

1 0 0

1 0 0

0 1 0 0

0 0 1 0

0 0 1
2

0 0 1
2

x x

x x
x

x x
x

s

x x
x

x x
x

x x

r r
r rr

r rr

r rr

r rr

r r

+ − 
 
 − + −
 
 

− + − 
 
 
 
 − + −
 
 
 − + −
 

=

 − + 

A















.  

R.H.S. of Equation (5.40) is 

  

,2 1,2 ,2 1,2 1

,3 1,3 ,3 1,3

, 1 1, 1 , 1 1, 1 2

2
0

2
2

2
2

n n n n
y y y y
n n n n

yy y y y x

n n n n
y xn y xn y xn y xn

u u u u xG
u u u u

u u

r r

u u xG

+ −

+ −

+ + + + − +

        − 
         
         + − +         
         
               

  ∆
 
  + 
 
  ∆ 

    

, (5.42) 

where 1 2,G G  are defined in Equations (5.38) and (5.39).  Combine Equations (5.41) and (5.42), 

then the result of Equation (5.40) in a matrix form is  
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*1
,2*

,2

*
,

*
*, 1 2

, 1

1,2 ,2 1,2

1,3 ,3 1,3

1, 1 , 1 1,

· ·

0

· ·

2 2
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x
y

sy

y xn

y xn x
y xn

s

n n n
y y y
n n n

y yy y y
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n n
y xn y xn y x

s

n

r x h u
u

u
u u

u u u
u u u

r

k

r x h
k

r r

u u u

+
+

+ −

+ −

+ + + −

 
         +            
 

   
   
   = + − +   
   
      

∆

− ∆

A



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2
2 2

11
1 1

11

· · ( )

· ·

2

(

0

)
2

n nx

s

n
n nx

s

r x h T T
k

r x
k

h T T

+

++

 
                  

∆
+

+

 

−
+

∆




. (5.43) 

Now the values of the intermediate solution *
, with 2 ( , ) ( 1, 1)y x y x yn xnu ≤ ≤ + +  are 

determined.  In order to complete this first step, solving the heat transfer problem in the y-

direction, it is necessary to determine the values of * *
,1 , 2and for 2 1y y xnu u y yn+ ≤ ≤ +  using 

Equations (5.38) and (5.39),  

 

* * * 11 1
,1 ,3 ,2 1 1

* * * 1
, 2 , , 1

2 2
2 2

2 · ( )

2 · ( )

n n
y y y

s s

n n
y xn y xn y xn

s s

h x h xu u T T
k k
h x h xu u

u

T T
k

u
k

+

+
+ +

∆ ∆
+

+ +

= − +

∆ ∆
= +

 . (5.44) 

The results of Equation (5.44) are the values of the intermediate solution *
,y xu  with 1 2x xn≤ ≤ +  

and 2 1y yn≤ ≤ + , and  these values are necessary and sufficient to find the solution on the 

( 1)stn +  time level. 
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The solution at the new time level, 1
, with 2 ( , ) ( 1, 1)n

y x y x yn xu n+ ≤ ≤ + +  is determined by 

solving the heat transfer problem in the y-direction (into slipper’s depth) with the values of the 

intermediate solution *
, with 1 2 and 2 1y x x xn yu yn≤ ≤ + ≤ ≤ + .   

Let’s recall Equation (5.27b), 12 2 *
, ,2 2

1 1ty x
y xy x y xu

r
urδ δ+   − = +   

  
 .  Equation (5.35) shows a 

Dirichlet boundary condition at the slipper’s top (B.C.4 of Equation (5.35)) and the Neumann 

boundary condition or mixed boundary condition at the interface (B.C.3 of Equation (5.35)).   In 

this step, Equations (5.19) and (5.21) need to be considered.  For each x for 2 1x xn≤ ≤ + , solve 

the linear system 

 ( )2 1 * * * * 1
1 11 2

2 2 2
y yn nx

y x x x x x x mx

r rrδ + +
+ − =

 
− + +


= 


− +U UU U U b  . (5.45) 

L.H.S. of Equation (5.45) is 

 

2, 2,

2

, ,
1

1 1

1

1
1, 1,

11
2
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x x

y
y

yn x yn x
n n
yn x

s

x

n

n

n

y

u u

u u
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r

u
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+ +
+

+

+

+ +

+

   
   

     − =          
      

B
 

  (5.46) 
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where 
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 
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 
 
 
 

− + − 
 
 − + − 
 
 −

=

+  

B















. 

In order to solve R.H.S. of Equation (5.45), it is necessary to determine the boundary 

influence vector 1

mx
n

x

+

=
b .  At the interface, the on-and-off bounce effect changes the boundary 

condition from conductive to convective heat transfer.  The boundary condition at the interface is    

 ( )3, 1, 1 1 1 1
3 2

1 1

, 3 3
1 (1 ) ( )

2
x x n n n

n
n

x

n

s

u
q m h u

u
m

y
T G

k
α + +

+ +
+ +−

− − − ≡
∆

=  . (5.47) 

Note that 3G  contains the unknown value 1
2,
n

xu + . This definition is a convenient way to show the 

step from Equation (5.48) to (5.49).  B.C.4 of Equation (5.35) shows that the boundary condition 

for 1y yn= + and 2 1x xn≤ ≤ +  (the slipper’s top) is a fixed temperature boundary condition 

(Dirichlet boundary condition).  2,mu   and 1,yn mu +  for 2, 1,[ ,0 0, ]x m yn mb u u += 
 are defined.  

Therefore, R.H.S. of Equation (5.45) is 
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2, 2, 1 2, 2, 1

3, 3, 1 3, 3, 1

01, 1,

* * * *
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* * *

1 1, 1
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*
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  (5.48) 

where 3G   is defined in Equation (5.47).  Combine Equations (5.46) and (5.48), then the result of 

Equation (5.45) in a matrix form is  
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
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  (5.49) 

 

5.4 Numerical Analysis for Rail using ADI method 

Recall Figure 19, Slipper and rail’s sliding system, of Section 5.3.  Peaceman and 

Rachford’s 2D ADI method (47) for the rail is different from Equation (5.22) because the rail’s 

PDE contains the heat flow term ( ) uv t
x
∂
∂

 due to its moving velocity ( )v t  (in the slipper’s 

reference frame).  Similar to the numerical analysis for slipper in Section 5.3, the Crank-
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Nicolson scheme(47) is obtained by averaging both forward and backward central difference 

scheme (49) to produce  

 ( )( )
1

2 1 1 11
2

n n
n n n n n n

r
u u u u v u v u

t
κ

+
+ + +−

= ∇+ ++∇ ∇
∆

    (5.50) 

where v is a vector valued function and 1
1( ) and ( )n n

n nv v t v v t+
+= = .  With the Taylor series 

expansion around 1/2nt + , the vector functions nv  and 1nv +  may be expressed by the common term 

1/2nv +  (the averaged velocity),    

 
( )

( )

1 1/2 1/2 2

1/2 1/2 2

( )
2

( )
2

n n n

n n n

v d t t
dt
d t

v v

v
t

v tv
d

+ + +

+ +

= +

=

∆
+ ∆

−
∆

+ ∆




 . (5.51) 

The heat flow term 𝑣𝑛 ∙ ∇un + 𝑣𝑛+1 ⋅ ∇𝑢𝑛+1 in Equation (5.50) can be rewriten using Equation 

(5.51) as   

              𝑣𝑛+1 ⋅ ∇𝑢𝑛+1 + 𝑣𝑛 ⋅ ∇𝑢𝑛
 

= �𝑣𝑛+1
2 + 𝑑

𝑑𝑡
�𝑣𝑛+1

2� Δ𝑡
2

� ∙ ∇𝑢𝑛+1 + �𝑣𝑛+1
2 − 𝑑

𝑑𝑡
�𝑣𝑛+1

2� Δ𝑡
2

� ∙ ∇𝑢𝑛 + 𝑂(Δ𝑡2)                    (5.52) 

          = 𝑣𝑛+1
2 ∙ ∇(𝑢𝑛+1+𝑢𝑛) + Δ𝑡2

2
𝑑
𝑑𝑡

�𝑣𝑛+1
2� ∙ ∇�𝑢𝑛+1−𝑢𝑛�

Δ𝑡
+ 𝑂(Δ𝑡2)  

Assuming ∇ ⋅ 𝜕𝑢
𝜕𝑡

= 𝑂(1), then  𝛥𝑡2

2
𝑑
𝑑𝑡

�𝑣𝑛+1
2� ⋅ 𝛻�𝑢𝑛+1−𝑢𝑛�

𝛥𝑡
= 𝑂(Δ𝑡2)   and Equation (5.52) 

reduces to 

           𝑣𝑛+1 ⋅ ∇𝑢𝑛+1 + 𝑣𝑛 ⋅ ∇𝑢𝑛 = 𝑣𝑛+1
2 ⋅ ∇(𝑢𝑛+1 + 𝑢𝑛) + 𝑂(Δ𝑡2).            (5.53) 
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Introducing Equation (5.53) into Equation (5.50) along the central difference operators, 

defined in the usual way as , , 1 , 1
c n n n
x y x y x y xu u uδ + −= − , produces    

( ) ( )

1
, ,

1/2 1/22 1 1 12 1
, , , ,, , , , 2

2 2

22 1/2
1

, ,2 2

1
2 2

( ) ( )
( )

2 2

( )
2 2

1
2

n

n n n nn n

n
y x y x

n c n cn n
x x y x y x y y x y xx y x y x y x y xr

n c
ynx x x

yy

r
y x y x

y n

u u
t

v u u v u uu u u u
t

x y

v

y

y

x

x
vu u

x

δ δδ δκ

δδ δκ

+ +

+

+ ++ +

+
+

−

∆
 + + 
 = + + + ∆ 

∆ ∆      
 

= +

+ +
+

+ + 
∆ ∆

∆ ∆

+
∆  



( )
1/2

2
, ,

1 ( )                      (
2

5.54)
n c

y
n n

y x
y

xu t
y

u
δ+

+
 

+ ∆ 
 ∆ 

+

    

Next define the values
1/21/2

2 2, , and
2 2 4 4

nn
yn nxr r

x y x y

v tv tt tp c c
x y y

p
x

κ κ ++ ∆∆∆ ∆
= = = =

∆ ∆ ∆ ∆
, along 

with operators 2 2 and, , n n c n n c
x x x y y y x x x y y yA p A p C c C cδ δ δ δ= = = = .  It is important to observe that n

xC  

changes at each time step and that xv & yv  are respectively the horizontal and velocity and 

vertical velocities.  If the sled slides along the rail horizontally and does not move vertically, then 

c
y y yC c δ=  is negligible as 0n

yc = .  Now Equation (5.54) can be simplified to 

 { }
1

, , 1
, ,

1 ( ) ( )
x

n
y x y x n n

x y y x y

n
n

x

u u
A A C u u t

t t

+
+−

= + + =
∆

+ ∆
∆

  , (5.55) 

which is the rail’s modified implicit 2D ADI scheme.   

Once again, according to Lakoba’s analysis (45), 

1 2 122
, , , ,2 2

2 2 ( )
4

n n n n
y x y x y x y xx y

x y r

u u u utA t
t x y t

A
δδκ

+ +− −∆
= ∆

∆ ∆ ∆
=

∆
 . Similarly, 

1
, , 2( )

n n
y x y xn

x y

u u
C A t

t

+ −
= ∆

∆
 . 

Because the accuracy of the rail’s modified 2D ADI scheme is 2 2 2( )t x y∆ + ∆ + ∆ ,  adding the 
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operators x yA A  and n
x yC A   to the L.H.S. of Equation (5.55) does not change the order of 

accuracy of the scheme,  i.e. { } { }
1

, , 1
, ,

11 ( )
n n
y x y x nn n n

xx y x y x y y x y x

u u
A C A A A C u u

t t
A

+
+−

+ = ++ +
∆ ∆

+ .  

Rearranging terms Equation (5.55) becomes 

 { } { }1
, ,1 1n n

x y x y y y x x y x y y y
n n

x
n n

x x x xC A A A u C A AA C A AA uC A+− − + = ++ +++− + .  (5.56) 

The operator expressions in Equation (5.56) can be factored by defining 1 (1 ),x
n
xB A C−= −

2 (1 )yB A= − , 3 (1 )x
n
xAB C++= , and 4 (1 )yB A= + .  Then, Equation (5.56) in a factored form is  

 1
1 2 , 3 4 ,

n n
y x y xB B BB u u+ =  . (5.57) 

Notice that when factoring Equation (5.56), the order of operators in their product was not 

changed as the operators do not commute.  Splitting steps require *
,y xu  chosen such that  

 
( ) ( )
( ) ( )

2 * 2*
, ,1 , ,

1 * 2 1 2 *
, , , ,

4

2 3

1 1 (a)

1 1 (b)

c nn
x x x y x y y y xy x y x

n n c
y x y x y y y x x x x y x

n
x

n
x

c u p uB u B u

u u p u c p u

p

B B

δ δ δ

δ δ δ+ +

 − = + =   
   

= − = + +     

−
⇒







,  (5.58) 

which is the modified Peaceman and Rachford’s 2D ADI method for the rail.  To prove the 

equivalence of this split step method to Equation (5.57), apply the operator 2(1 )cn
xxx xc pδ δ− −  to 

both sides of Equation (5.58b) and the operator 2(1 )cn
xxx xc pδ δ+ +  both sides of Equation (5.58a) 

and obtain 

 
( )( ) ( )( )
( )( ) ( )( )

2 2 * 2 2
, ,

2 2 1 2 2 *
, ,

1 1 1 1

1 1 1 1

c c c n
x x x x x x y x x x x y y y

n n
x

c n c c
x x x y y y

n
x x x

n n n
x x xx x x x x x x y x

c c p u c p u

c p u c c

p

p p u

p

p

δ δ δ δ δ δ δ

δ δ δ δ δ δ δ+

+ − − = + +

− − = −− + +

+ +

−
 . (5.59) 
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Again, because ( ) ( )2 21  and 1n n
x

c c
x x x x x x xc p c pδ δ δ δ+ − −+  commute, Equation (5.59) leads to  

 ( )( ) ( )( )2 2 1 2 2
, ,1 1 1 1n n

x x
c n c n
x x x y y y x x x x y y y xc p u c pp p uδ δ δ δ δ δ+− − = + +− +  . (5.60) 

This proves that Equation (5.58) is equivalent to 1
1 2 , 3 4 ,

n n
y x y xB B BB u u+ = .   

To study the stability of the rail’s modified 2D ADI scheme (Equation (5.58)), an 

approach similar to that for the implicit scheme on the sled (Section 5.3) is used. However, 

because the operators 1 3 and B B  are time dependent, a modified approach is necessary. Begin by 

setting , n
n iby y iax x
y xu eeλ ∆ ∆= where nλ  may change at each time step and **

, ,
n

y x y xu uλ= . Further, 

applying the central difference operator, c
xδ , and the two second order difference operators 

2 2 and x yδ δ  to ,
n
y xu produces 

 

( )

( 1) ( 1)
,

2 2
,

2 2
,

(2 )sin

( 4)sin
2

( 4)sin
2

( )

c n iby y ia x x iby y ia x x
x y x n n

ia x ia x iby y iax x
n

iby y iax x
n

n iby y iax x
x y x n

n iby y iax x
y y x n

u e e e e

e e e

x e e
a xu e

e

a

e

yu e

i

b e

δ λ λ

λ

λ

δ λ

δ λ

∆ + ∆ ∆ − ∆

∆ − ∆ ∆ ∆

∆ ∆

∆ ∆

∆ ∆

=

∆

∆ −  
 
∆

=

−  

=

 

−

−

=

=

 . (5.61) 

Using these in the rail’s modified 2D ADI scheme (Equation (5.58)) and removing the Fourier 

terms results in  
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2 2

2 2
1

*

*

[1 8 sin [1 8 sin ]
2 2

[1 8 sin ] [1 8 sin
2

4 sin( ) ]

4 sin( )
2

]

x

x

n
x n y n

n
ny n x

a x b yc x p

b y a xp c x

i a p

i a p

λ

λ λ

λ λ

λ +

∆ ∆   − ∆ + −   
   

∆ ∆   + = + ∆ −   
   

=
 (5.62a) 

Next define 2n
2

8 siy
bp yE ∆ =  

 
, 28 sin

2x
a xF p ∆ =  

 
  and 4 sin( )n

n x xG c a= ∆  and observe that 

2 2 and s0 sin 1 , 0 sin in( )1 1 1
2 2

aa x b y x∆ ∆   ≤ ≤ ≤ ≤ − ≤ ∆ ≤   
   

.  Thus E and F are always positive 

and Equation (5.62a) is reduced to   

  
*

*
1

(1 ) (1 )
(1 ) (1 )n n

iG F E
E iG F

λ

λ λ λ+

− + = −

+ = + −
     (5.62b) 

 Solving this equation for 1nλ +  leads to  

*
1

1 1 11 1 ·
1 1 1 1 1n

n n n
n

n
n

n
n

F iG F iG F iGE E
E E F iG E F iG

λλ λ λλ +

− + − + − +− −
= = =

+ + + − + + −
.    (5.63a) 

This difference equation has the solution 

                                
1

11 .
1 1

n n
k

k k
n

F iGE
E F iG

λ
=

− +− 
 + + − 

= ∏  (5.63b) 

For all E, F and G, 11 1and 1
1 1

n

n

F iGE
E F iG

− +−
≤ ≤

+ + −
 because E and F are positive number.  It 

follows that | 1|nλ ≤  for all a and b.  Therefore, the modified Peaceman-Rachford 2D ADI 

method for rail is unconditionally stable.     
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The rail and slipper are semi-infinite solids.  In order to solve the heat transfer problem 

and find the solution numerically, it is necessary to discretize the regions of rail and slipper in 

space and time.  Therefore, the semi-infinite space of rail and slipper is no longer useful and 

must be replaced with a finite length.  For the numerical analysis, the three additional boundary 

conditions are added, such as the right-end-side and left-end-side boundaries, and aerodynamic 

boundary between the rail and slipper’s contact surfaces.  It is assumed that the temperature 

distribution at the right and left ends are fixed at an ambient temperature.  Aerodynamics 

(movement of air) between the rail and slipper’s sliding surfaces creates the bounce effect while 

the slipper moves along the rail with the sliding velocity.  The switch function defined in Section 

3.1 is used to simulate the bounce effect.  Let’s suppose that the length of rail is some multiples 

of slipper’s length.  For convenience and simplification to demonstrate the numerical 

formulation of this problem for the rail, say 2k = .  So the number of gridpoints of rail on x-axis 

is twice that of the slipper’s.  Let 2xn be the number of gridpoints to which the rail is discretized 

including the endpoints, and add one ghost point at each end outside of the rail.  Therefore, 

2xn+2  is the number of gridpoints assigned to the rail including the ghost points along the x-

axis.  Similarly, let yn be the number of gridpoints assigned along the y-axis.  Therefore, yn+2 is 

the number of gridpoints including the ghost points.  Let 3and
2 2

L xn xnL− += =  for some positive 

even integer xn .  Accordingly these numbers represent the endpoints of the rail’s contact 

surface.  Discretizing space and time, the finite difference scheme of Equation (5.2), heat transfer 

problem for the rail, becomes 
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α

− +

− +

− +

− +

+

−
=

∆

  − ≤ ≤ − + ≤ ≤ +
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≤ ≤ 

 − ≤ ≤ − + ≤ ≤ + 
  − ≤ ≤  

−

2,om) : with 2 2 1a
n
yn x T x xnu + = ≤ ≤ +  (5.64) 

The rail’s PDE includes the heat flow term ( )1/2 1·n n nuv u+ +∇ +  because the rail is a 

moving object.  This heat flow will introduce the heat front and heat tail after computing the 

rail’s 2D ADI scheme, which was discussed in Literature Review Section, Section 1.6.3.  The 

whole rail is initially at 0 ( , )T x y  and the only heat source is under the sliding surface.  The left 

and right sides of rail’s domain are not influenced by the frictional heat.  Let the temperature 

distributions of both the left and right ends of the rail remain at ambient temperature aT .  

Similarly, let the rail’s bottom remain at aT .  From Figure 19, at the rail’s top the frictional heat 

source is only located between L−  and L+  when the slipper and rail are in contact.  As such, the 

boundary condition at the interface in the interval L x L− +≤ ≤  is the same as the slipper’s 

interface boundary condition with the different heat partitioning value (1 α− ).  In the region 

1 1x L−≤ ≤ −  and 1 2 2x xnL+ ≤ ≤ ++ , there is convective heat transfer between air and rail.         
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The region of the rail ,
n
y xu  is within 2 ( , ) ( 1, 2 1)y x yn xn≤ ≤ + + , and the boundaries are 

1, 2,and 2 1with 2n n
x yn xu x xnu + ≤ ≤ +  and ,1 ,2 2and 2 1withn n

y y xnu u y yn+ ≤ ≤ + .  Given the solutions 

,
n
y xu  with ( , ) (2 1,2 1)y x yn xn≤ ≤ + + , find the values at the boundary points * *

,1 ,2 2andy y xnuu +  with 

2 1y yn≤ ≤ +  and * *
1, 2,andx yn xuu +  with 22 1x xn≤ ≤ + .   

To complete the boundary condition, four corner points of the rail must be added.  These 

corner points are ghostpoints, which are not part of the slipper and exist at each corner of the rail 

externally.  This condition ensures the continuity of boundary conditions around the rail’s four 

boundary sides.  Using an approach similar to the slipper problem in Section 5.3, the values at 

ghostpoints are 1,1 1,2 2 2,1 2,2 2, and,n n n n
xna a a ayn yn xnu T u T u uT T+ + + += == = . 

It is further necessary to determine the boundary values for the intermediate solution 

*
, .y xu   See Equation (5.58) and define

1/2

2 2, and
4

n
nr r

x y x
t t v tr c

x y
r

x
κ κ +∆ ∆ ∆

= = =
∆ ∆ ∆

.  To find the 

expression for *
,y xu , add two Equations (5.58a) and (5.58b) and solve for *

,y xu  , 

 

( ) ( )

2 * 2 2 1 2 *
, , , ,

* 1 2 1
, , , , ,

1 1 1 1
02 2

1
4

2

2

2
y yn c n n n cx x

x x x y x y y x y y x x x x y x
x
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y x y x y x y y x y x

n n

r rc c

u u

r r
u

u u

u u u

r
u

δ δ δ δ δ δ

δ

+

+ +

      − − + − − + + +       =     

+ −

−

= +


. (5.65) 

The boundary condition at left and right end of rail’s domain is a fixed temperature 

0 ( , )T x y .  This implies that at any time step, the temperature at both ends is fixed at 0 ( , )T x y .  So 

the rail’s left and right end boundary condition for 2 1y yn≤ ≤ +  at the intermediate step is   
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Formulating the numerical code for Equations (5.58a) and (5.58b), it is necessary to use 

the difference operator 2(1 )
2

n c x
x x x

rc δ δ− −  and 2(1 )
2

n c x
x x x

rc δ δ− −  to * *
,2 ,2 1andy y xnuu + .  Using 

Equation (5.66), the values at the rail’s left and right end boundaries, 2 *
,2(1 )

2
n c x
x x x y

rc uδ δ− −  and 
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,2 1(1 )

2
n c x
x x x y xnurc δ δ +− − become  
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,2 1 ,2 ,2 1) 1

2 2 2
n nx x x

x y xn x y x x x an y n x
r r rc ru u u Tcδ + +

   = − + + + − −   
   

.  (5.67) 

Performing the first step in Equation (5.58) finds the intermediate solutions *
,y xu .  This 

step solves the heat transfer problem in the x-direction.  Let yU  and xU   be the row vector at a 

fixed y and the column vector at a fixed x for the interior of the rail, i.e. 

,2 ,3 ,2 1[ , , , ]T
y y y y xnu u u +=U   and 2, 3, 1,[ , , , ]T

x x nx y xu u u +=U  , and yb  and xb  are the boundary 
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influence vector at rail’s left and right, i.e. ,2 ,2 1[ ,0 0, ]T
y y y xnu u +=b   and 2, 1,[ ,0 0, ]T

x yn xx u u +=b 

.  For each 2 1y yn≤ ≤ + , solve Equation (5.58a), which is the linear system 

 2 * * * *
1 1(( ) 2 )

2
1

2
yn c n nx

x x x y y y y y y

rrc δ δ + −+ − + +− − = U U U bU U   (5.68) 

L.H.S. of Equation (5.68) is 
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and ,2 ,2 1, ,
T

y y y xnu u + = U  . 

R.H.S. of Equation (5.68) 
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where  1 2,G G  are defined in Equation (5.66).  Combine Equations (5.69) and (5.70), then the 

result of Equation (5.68) in a matrix form is  
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Now the values of the intermediate solution *
, with 2 ( , ) ( 1, 2 1)y x y x yn xnu ≤ ≤ + +  are 

determined.  Since Equation (5.66) shows that the temperature at both left and right ends of the 

rail is fixed at aT , the values of * *
,1 ,2 2and for 2 1y y xnu u y yn+ ≤ ≤ +  are aT .  In order to complete 

this first step, it is necessary to determine the values of *
,y xu  with 1 2 2x xn≤ ≤ +  and 

2 1y yn≤ ≤ + .  These values are necessary and sufficient to find the solution on the ( 1)stn +  time 

level. 
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The solution at the new time level, 1
, with 2 ( , ) ( 1, 2 1)n

y x y x yn xu n+ ≤ ≤ + +  is determined by 

solving the heat transfer problem in the x-direction with the values of the intermediate solution 

*
,y xu  with 1 2 2x xn≤ ≤ +  and 2 1y yn≤ ≤ + .  Recall Equation (5.58b) and consider the mixed 

boundary conditions, the Dirichlet boundary condition at the rail’s bottom and the Neumann 

boundary condition at the interface.  For each 22 1x xn≤ ≤ + , solve the linear system 

   ( )2 1 * * * * * * 1
1 1 1 12 ( )
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which is the matrix form of Equation (5.58b).  L.H.S. of Equation (5.72) is  
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Before rewriting R.H.S. of Equation (5.72), the boundary influence vector 1

mx
n

x

+

=
b must be 

determined.  This boundary influence vector is similar to Equation (5.47), the slipper’s boundary 

condition at the interface discussed in Section 5.3.  The difference is that the rail’s surface is 

partitioned into three parts and each segment has a different boundary condition which is defined 

at B.C.3 in Equation (5.64).  The numerical expression of B.C.3 in Equation (5.64) becomes 
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            (5.74) 

Solving Equation (5.74) for 2,
n

xu is the numerical representation of the rail’s interface, which is 

the first component of 1n
m
+b  .  Let’s define Equation (5.74) as 3G .  When the rail is in contact, 3G  

represents the conductive boundary condition along the sliding contact area and the convective 

boundary condition outside of the contact area.  When the rail is not in contact, there exists the 

convective boundary condition between two sliding surfaces along the contact area and another 

convective boundary condition outside of the contact area.  Then R.H.S. of Equation (5.72) 

becomes 
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 Combine Equations (5.73) and (5.75), then Equation (5.72) becomes  
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5.5 Restrictions on Numerical Analysis of the Convection-Diffusion Problem 

The beginning of Chapter 5 considered the two dimensional heat transfer PDE with a heat 

flow term ( )v t u
x
∂
∂

 for the rail.  In Section 5.4, a finite difference scheme with the rail and the 

convection-diffusion equation was developed.  Equation (5.2a) is the partial differential equation 

of the rail’s heat transfer system, and its forward-time central-space scheme is  
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In order to use the analysis of Strikwerda (50), solving Equation (5.77) for 1
,

n
y xu + helps to 

examine and analyze the stability of Equation (5.77).  The solution of Equation (5.77) for 1
,

n
y xu +  is  
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John C. Strikwerda in Finite Difference Schemes and Partial Differential Equations (50) 

discussed the stability condition for the convection-diffusion equation, 
2

2

u u ua b
t x x

∂ ∂ ∂
+ =

∂ ∂ ∂
 .  He 

found the ratio 
2
xa
b

∆ describes that where this ratio is greater than 1, the solution will be 

oscillatory.  This result is same for both positive and negative a  so it is convenient to use the 

absolute value | |a .   For Equation (5.78) and
2

n

r
v ba κ= =− . Accordingly the ratio is 

2

n

r

xv
κ

∆
.  
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From his conclusion, the condition 1
2

n

r

xv
κ

∆
≤  is a condition on the mesh spacing that must be 

satisfied in order for the solution to the scheme to behave qualitatively as that of a parabolic 

differential equation.   

 

Figure 20. Rail's Surface Temperature Distribution at t=0 for v(t)=1 m/sec 

Figure 20 is the numerical result for 1
2

n

r

xv
κ

∆
<  where 0.002x∆ = , 37.44 10rκ

−= × and 

1nv = .  The x-axis represents the surface along the rail. The slipper contacts the rail between 

100th grid point and 200th grid point.  At the time 0.1t = second, the frictional heat is generated 

due to sliding event and the surface temperature of the interface area along the rail rises.  

Because the rail is effectively moving right with first contact at the 100th grid point a steady 

temperature rise is seen looking left to right in the direction of motion.  Figure 20 indicates that 

the solution does not oscillate notably when the sled’s velocity is 1 m/sec. However, if 1
2

n

r

xv
κ

∆
≥  

where  𝑣𝑛 = 10 m/sec , then the solution becomes oscillatory, see Figure 21.   
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Figure 21. Rail's Surface Temperature Distribution at t=0.004 for v(t)=10 m/sec 

John C. Strikwerda in Finite Difference Schemes and Partial Differential Equations (50) 

states that the oscillations do not grow excessively, i.e. the amplitude of oscillations maintains 

the same length as time progresses.  He indicates they are not the result of instability.   

One numerical technique used to remediate this oscillation is the operator splitting 

method.  In Chertock and Kurganov’s paper On Splitting-Based Numerical Methods for 

Convection-Diffusion Equations (51) they describe that computing solutions of convection-

diffusion equations is an important and challenging problem, especially in the convection 

dominated case.  This is because viscous layers (melt layers) are so thin that one is forced to use 

under-resolved methods that may be unstable.  If a numerical convection method dominates over 

a physical diffusion process, the under-resolved method is typically stable, but the resolution 

may be severely affected.    

If an insufficient amount of physical diffusion is compensated by an excessive numerical 

viscosity, the under-resolved method is typically stable, but the resolution may be severely 

affected.  At the same time, the use of dispersive schemes may cause spurious oscillations that 
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may trigger numerical instabilities.  Their approach to overcome these difficulties was an 

operator splitting technique which numerically preserved a delicate balance between the 

convection and diffusion terms.  

Operator or time splitting is often used in the numerical solution of initial boundary value 

problems for differential equations.  Lanser and Verwer (52) stated that virtually all processes 

modeled by time-dependent partial differential equations split additively in subprocesses for 

which simpler PDEs exist.  This leads to the use of operator splitting or time splitting.  An early 

influential paper on this subject is Gilbert Strang’s paper, On The Construction and Comparison 

of Difference Schemes (53).  In his paper, he used nonlinear initial value problems in two space 

variables.  The methods to solve these nonlinear initial value problems in two space variables 

were either too crude to be accurate for first order or too complicated for third order methods.  

The computations were expensive either by the fine mesh required by a first order scheme in 

order to provide enough detail, or by the delicate differencing which maintained a high order of 

accuracy.  So he proposed a new device for the construction of accurate difference schemes, 

which was an alternating direction scheme with the half-steps ordered for maximum accuracy.    

Figure 21, shows that oscillation appears when the sled velocity is 10 m/sec.  For the 2D 

heat transfer problem the velocity is very large, i.e. 𝑣(𝑡) 𝑖𝑠 100 −  3000 m/sec  , and the 

scheme to solve rail’s heat transfer problem introduces oscillations. As such it will not be a good 

approximation to the true solution.  Because the heat flow term, ( ) uv t
x
∂
∂

 in Equation (5.2a), is not 

negligible in computing solutions of rail’s heat transfer problem, the Strang Splitting technique is 

employed.(53)(54)  The method is described as 
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 2
1

1 1( ) ( ) ( )
2 2

n nS dt dt uu dS St+ =  . (5.79) 

In Equation (5.79), 1 2andS S  are the diffusion and convection processes.  If the diffusion 

process is applied first for the half-time step then the convection process is applied for the full-

time step.  In order to make a full-time step with the diffusion process, the half-time step 

diffusion needs to be applied again.  These processes show the alternating operators between the 

diffusion and convection processes for a single iteration. 

 

 

The rail’s two dimensional heat transfer problem can be rewritten as 

 2

heat flow heat diffusion
( )· ·t r uu t u κ= ∇ + ∇v   (5.80) 

Using the concept of Equation (5.79) with Equation (5.80), it is possible to develop the 

Strang Splitting Method.  For each time step, the heat diffusion process 2·t ru uκ= ∇  is solved for 

a half time step; then the  heat flow process ( )·t tu u= ∇v  is solved for a full time step; and 

finally, 2·t ru uκ= ∇  is solved for a half time step.  As the sled is moving by the velocity ( )tv , 

the contact area between the rail and slipper has to be adjusted at each time as the sled moves.   
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Figure 22. Rail's Domain Change Due to Sliding Velocity 

Figure 22 illustrates how the contact area moves at each time step.  The slipper’s new 

domain corresponds to a new domain of rail each time.  Each domain of rail has a different 

temperature distribution at each time step.  The temperature profile under the distance traveled 

for some time becomes the ambient temperature 0T .  Each point on the graph is mapped to the 

new position due to sliding velocity. 

Let’s consider the discrete domain and difference scheme.  Let dx  be the distance 

between 1x and 2x  during one time interval, and dξ  be the distance from 1x  to some point 3x  

which lies between 1x and 2x  as in Figure 22.  Then if the rail’s temperature is a linear function 

of time on one interval, the slope between two points 1u and 2u  is the same as the slope between 

two points 1u and 3u , i.e. 
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In the Chertock and Kurganov’s paper On Splitting-Based Numerical Methods for 

Convection-Diffusion Equations (51), they split the diffusion process into two half-time steps for 

the first and the third steps, and used the one-full-time step convection process for the second 

step.  Using this idea, frictional heat energy is diffused into the rail for the first half time step.  

Using this relation to move the coordinate of rail in x-axis, the rail is moved by the distance 

traveled at a given velocity during the time step then the frictional heat energy is allowed to 

diffuse into rail for the second half time step.  Finally the frictional heat energy diffusion is 

applied again to complete one iteration. 

5.6 Calculating Heat Partitioning Values Numerically 

In Chapter 3 the heat partition function was determined analytically using the method of 

Carslaw and Jaeger.   First, the surface temperature distributions of two sliding materials were 

calculated using uniform frictional heat energy at constant velocity and  then the surface 

temperatures were averaged along the contact region.  Equating the averaged surface 

temperatures of the two materials gave rise the analytical solution for frictional heat partition 

values. As a result Equation (3.40) in Section 3.2 was derived as the analytical solution of the 

slipper’s frictional heat partition function ( )tα , i.e. 

0 *
2

* 20 2

( )( )
(1 ( ) ( ( )

1
))

v tr rF rt dr
r r F

e
r

βα
π β

∞ − −
=

+ −∫




                                (5.82) 
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s r k
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+∞

=

+
= − = + −

+∑ .  The discrete PDE’s for the 

two dimensional rail and slipper problem correspond to their continuous PDE’s.  As such, 

numerical representations corresponding to the analytical expressions with influences by the 

initial temperature and interface boundary condition must be developed. 

 The numerical method to determine the evolution of the heat partitioning function 

follows the development of the analytical solution. However, because the numerical solution 

allows for a continuously changing flux, ( )q t (i.e. non-constant velocity), along with the 

convective boundary conditions on either end of the slipper, a more accurate estimate of the 

partitioning function will be possible.  

Begin by rewriting the two dimensional numerical solutions of rail and slipper as  

 
1

1 2
1

1 2

( )

( )

(1 )n n n
r n r n
n n n
s n s n

M u q
uu N

u M
N q

α α

α α

+

+

+ −=

+=
 , (5.83) 

where 1 1( ) and ( )n n
r n s nu uα α+ +  yields the numerical solutions of rail and slipper using the previous 

(slipper) heat partition value nα .  1 1andn n
r su N uM can be thought of as the numerical contribution 

of the rail and slipper temperature distributions at time nt .  Similarly, 2 2(1 nd) an n
n nM q qNα α−  

are the numerical contributions of the rail and slipper interface boundary condition to the 

temperature distribution during the time interval nt  to  1nt + .  With the method of Carslaw and 

Jaeger (21), 1( )n
r nu α+  and 1( )n

s nu α+  in Equation (5.83) are averaged along the interface to 

produce values 1( )n
s nu α+  and 1( )r

n
nu α+ .  Here the ‘over bar’ stands for average along the contact 
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interface length only.  If the difference of 1( )n
s nu α+  and 1( )r

n
nu α+  is zero, then the partition value 

nα  was correctly chosen.  If the difference between 1( )n
s nu α+  and 1( )r

n
nu α+  is not zero, the value 

for nα  must be adjusted.  The difference between these average values is given by   

1
2 21

1
1 (1 )( ) ( )n n n n n n

r n s n r n s nu u MM u q N u N qα α α α+ +− + − − +=  . (5.84) 

The goal is to calculate a correction, α∆ , to nα  so that Equation (5.84) vanishes for

c
n nα α α= + ∆ .  Accordingly, c

n nα α α= + ∆  is chosen such that 

1
21

1
1 2(( ) ) 1 ) ( )

0
(n n n n n n

r n s n r n s nM u q Nu M u N qu α α α α α α α α+ ++ − + + − + − += ∆ ∆+∆
=

∆ . (5.85) 

Solving Equation (5.85) for α∆  yields 

 
1 1

2 2

( ) ( )n n
r n n

n
s

nM
u u

q N q
α αα

+ +−
∆ =

+
 . (5.86) 

The averaged boundary condition influences to the rail and slipper at the interface 

2 2andn nM q N q can be found from the averaged temperature influences at the interface 

11 andn n
r sM u N u .  The values of 1

n
rM u  for the rail and 1

n
sN u  for the slipper are calculated 

numerically by letting 1nα =  for Equation (5.83) term 1 r
nM u  and 0nα =  in Equation (5.83) term 

1
n
sN u .  With Equation (5.83), solving 1

1 2( ) (1 )n n n
r n r nu M u M qα α+ = + − and 

1
1 2( )n n n

n ns su uN N qα α+ +=  for 2 2andn nM q N q produces the following 
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 . (5.87) 

Using these values in Equation (5.86), the change of slipper’s heat partition value α∆  is 

computed.  With the slipper’s corrected heat partition value c
n nα α α= + ∆ , the temperature 

distributions for the rail and slipper are re-evaluated.  The averaged temperatures of rail and 

slipper 1 1( ) , ( )n c n c
r n s nu uα α+ +  at the interface are now equal to one another.  There are two major 

influences determining the slipper’s heat partitioning value: 1) the different thermal properties of 

rail and slipper and 2) the surface temperature of rail and slipper.   
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Figure 23. Slipper's Adjusted Heat Partition Values to Match Averaged Surface Temperatures of Rail and Slipper vs 
Sliding Time 

The first two graphs of Figure 23 are (a) the slipper’s heat partition value graph and (b) 

the averaged surface temperatures of rail and slipper when a sled is moving at constant rate 10 

m/sec.  The next two graphs of Figure 23 are (c) the slipper’s heat partition value graph and (d) 

the averaged surface temperatures of rail and slipper when the velocity of a sled is increasing 

linearly at 10 ⋅ 𝑡 m/sec.  From two graphs (b) and (d) in Figure 23, Equation (5.86) calculates 

the correct slipper’s heat partition value at each iteration so the slipper’s averaged surface 

temperature matches the rail’s averaged surface temperature. 

In graphs (a) and (b) of Figure 23, initially the sled is moving 10 m/sec, which means the 

friction initially heats the contact surfaces of slipper and rail.  In graphs (c) and (d) of Figure 23, 

the velocity of the sled is increasing linearly at the rate of 10 m/sec2, v(t)=10t m/sec, i.e. the 

velocity of the sled starts at 0 m/sec and reaches 10 m/sec at one second.  The key point here is 

that v(t)=10t m/sec is starting at zero and the sled accelerates to velocity of 10 m/sec in one 
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second while v(t)=10 m/sec is starting at 10 m/sec and remains at 10 m/sec for one second.  The 

slipper’s initial heat partition fraction is set to 0.488. This initial guess is based on the slipper and 

rail’s thermal properties calculated in Equation (3.39).  The heat generated with the constant 

velocity is greater than for accelerating velocity.  From Equation (4.24) 

1 1

1 20 0
( ) ( ) ( ) ( )dtP t v t P t v t dtµ µ≥∫ ∫ .     (5.88) 

1 2where 0.2, ( ) 10 / and ( ) 10 / .v t m sec v t tm secµ = = = Therefore, the frictional heat generated in 

one second at constant velocity is more than that generated accelerating to that velocity in the 

same time.  The averaged surface temperatures of the slipper and rail are 293K initially.  Figure 

23 (b) and (d) show that the slipper with the velocity 10 m/sec heats up faster and reaches higher 

temperature than the slipper with the velocity 10t m/sec, which Equation (5.88) explains.   

During the first time iteration the slipper receives 48.8% of the frictional heat energy as 

the frictional heat flux is distributed evenly to slipper and rail.  For the next iteration, the 

slipper’s sliding surface is in contact with the new region of the rail due to the coordinate change 

by the distance which the slipper has traveled during one iteration.  So the surface temperatures 

of slipper and rail are not the same for the next iteration.  By matching the averaged surface 

temperatures of rail and slipper after the first time step, the slipper’s heat partitioning value needs 

to be corrected for the next time step.  Because the slipper is moving into a cooler region of rail, 

the slipper accepts less heat energy at the next time step.   

Figure 23 shows that the slipper’s heat partitioning values fluctuate at the beginning and 

the difference between two iterations gets smaller as time evolves.  This numerical instability is 
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due to the slipper’s initial-guessed heat partitioning value evaluated by the relation of thermal 

properties of slipper to rail.  Initially 48.8% of total frictional heat energy flows into slipper’s 

interface so the rail and slipper’s surface temperatures are different.  Since the difference 

between the averaged surface temperatures of the rail and slipper is not zero, the slipper’s heat 

partitioning value must be adjusted.  With the corrected heat partitioning value, the slipper 

absorbs correspondingly more or less at the next iteration.  By the nature of this process, the heat 

partitioning values seem instable at the beginning; however, after a few iterations of adjusting 

process, the value becomes stable, i.e. they continue to oscillate at each iteration but the 

amplitude of oscillation is diminishing.   

After ten iterations, the slipper’s heat partitioning value curve does not oscillate and 

produces a smooth exponentially decreasing function plot.  The reason that the slipper’s heat 

partitioning values decrease is the slipper moves continually into a cooler region of rail and more 

heat energy flows into the cooler rail.  Once the system becomes stable, it is possible to predict 

the long term behavior.  However, when the slipper’s sliding surface starts melting, the slipper’s 

surface temperature remains at the melt temperature and the slipper slides along the cooler region 

of rail (which is set to be the ambient temperature).  After reaching the melting point the surface 

temperature difference between slipper and rail is same for each iteration and the heat 

partitioning value remains unchanged. The heat partitioning value after the melt time is fixed at 

( )mtα , the slipper’s heat partitioning value at melt time.  This melt time can be found from 

Figure 23 or the formulas, Equations (4.28) and (4.30), developed in Section 4.3.  
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From Figure 23, with the velocity 10 m/sec, the slipper’s averaged surface temperature 

reaches the melt temperature 1685 K about 1.3 seconds and the slipper’s averaged surface 

temperature with the velocity 10t m/sec  reaches the melt temperature about 1.4 seconds.  Also, 

from Table 2 and 3 in Section 4.3, the melt time of the slipper with 10 m/sec and 0.2µ =  is 1.33 

seconds and the melt time of the slipper with 10t m/sec  and 0.2µ =  is 1.44 seconds.  This 

implies that the numerical model using Strang’s Splitting method and ADI method verifies the 

solution for the melt time, Equations (4.28) and (4.30) in Section 4.3.  Once the melt time found 

from either the numerical solution or Equations (4.28) and (4.30), the slipper’s heat partitioning 

value after the melt time is no longer valid so the slipper’s heat partitioning value is fixed at 

( ) 0.06mtα =  for mt t≥ .       
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6 Comparison and Analysis 

6.1 Comparison of Analytical and Numerical Results 

As the velocity of sled increases the frictional heat generated due to velocity and pressure 

increases.  The change in the frictional heat at the interface due to the change in velocity and 

loading pressure influences the surface temperatures of rail and slipper and the temperature 

distribution inside both sliding materials.  The ADI method was employed to evaluate the 

temperature changes given velocity and pressure.  The change in surface temperature and the 

frictional heat at the contact surface influences the heat partitioning value. Therefore, it is 

necessary to calculate the heat partitioning fraction given velocity and pressure at each timestep.  

However, computing solutions of convection-diffusion equations is a problem fraught with 

complexity. 

Chertock and Kurganov(51) describe that “Computing solutions of these equations is an 

important and challenging problem, in which viscous layers are so thin that one is forced to use 

under-resolved methods that may be unstable.  If an insufficient amount of physical diffusion is 

compensated by an excessive numerical viscosity, the under-resolved method is typically stable, 

but the resolution may be severely affected.  At the same time the use of dispersive schemes may 

cause spurious oscillations that may trigger numerical instabilities.”   

In order to overcome these difficulties by numerically preserving a balance between the 

convection and diffusion terms, this research employs Strang’s Splitting method.  When using 

Strang’s Splitting method grid spacing size is varied in response to velocity changes.  In ‘Finite 

Difference Schemes and Partial Difference Equations’, John C. Strikwerda (50) examined the 
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convection-diffusion problem with two different grid spacing values, relatively small and large 

numbers.  He concluded, “First, there is a grid spacing limitation.  If the grid spacing is too 

coarse, then the scheme will not compute a qualitatively correct solution.  Secondly, if precise 

information is needed about the solution and it is not cost-effective to use a small grid spacing, 

then other methods should be investigated to obtain this information.  In recent years a number 

of methods have been developed for increasing local grid refinement only in those places where 

the solution is changing rapidly.”(50)   His statement implies that changing the grid spacing size 

and splitting step size due to velocity changes may cause instability in the solutions if Strang’s 

Splitting method is used.  For the numerical analysis using ADI method and Strang’s Splitting 

method, the grid spacing size has to be fixed.  Since the change of the splitting step size at each 

time causes oscillations in the solution, the splitting step size also must remain fixed in the 

numerical code.  Figure 24 shows the comparison of two results, the analytical solution of the 

heat partitioning function, and the numerical solution of the heat partitioning fraction for a 

constant velocity and pressure.  This comparison between the two results of the constant velocity 

case shows that the analytical solution can be calculated only when the velocity is assumed to be 

constant. 

 From Figure 24, it is apparent that the analytical solution is slightly larger than the 

numerical solution.  First, a system of partial differential equations for finding the analytical 

solution was simplified.  In Section 3.2, the slipper’s PDE 
2 2

2
2 2

s ssw w wε
τ η ξ

∂ ∂ ∂
= +

∂ ∂ ∂
in Equation 

(3.8) contains 2ε  in 
2

2

sw
ξ

∂
∂

term. Since the value of ε  is approximately 210− , the heat propagation       
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Figure 24. Comparison of Slipper's Heat Partitioning Values at v(t)=10 m/sec 

in the ξ direction is considered small.  So the influence of 
2

2

sw
ξ

∂
∂

term is ignored.  Second, the 

contribution of the slipper’s head and tail boundary conditions is assumed small enough to be 

neglected.  Because 𝜀 ≪ 1, the contribution of convective effects is neglected.  Assumptions of 

the heat flow in theξ  direction and contact boundary conditions are key influences to the 

difference between the analytical and numerical solutions of the slipper’s heat partitioning values 

and the slipper’s surface temperature.   

In practice, the slipper is always in contact with a cooler region of rail when sliding.  As 

the velocity of the slipper increases, more frictional heat is generated and an increasing portion 

of the frictional heat flows into the rail.  Once the slipper’s surface temperature reaches melt 
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temperature, the temperature difference between the slipper and rail surfaces remains the same.  

With these observations, the slipper’s heat partitioning function should show that the slipper’s 

heat partitioning value is decreasing and approaching a fixed value.  After the surfaces of the 

slipper and rail reach melting temperature, their surface temperature difference is same and the 

heat partitioning value remains same, i.e. ( )mtα  the slipper’s heat partitioning value at melt time.  

The melt time for this research was calculated by Equation (4.28) in Section 4.3 while the 

numerical solution was modeled and developed in Chapter 5.   

A system of numerical PDEs was developed from the two-dimensional convection-

diffusion problem.  It considers all of the following things, which are the convective boundary 

conditions at the slipper and rail surfaces, the two dimensional heat energy diffusion process 

inside of slipper and rail, the bounce effect, and varying velocity and loading pressure profiles.  

Since the numerical analysis considers all of these factors, the numerical solution of the slipper’s 

heat partitioning function with ADI method and Strang’s Splitting method is expected to have 

the heat energy gain or loss consistent with the analytical solution.   

Indeed, the numerical solution follows the qualitative behavior of the heat partitioning 

values.  Figure 24 shows that the numerical result using ADI method and Strang’s Splitting 

method is remarkably close to the analytical solution of the slipper’s heat partitioning function.  

This implies that the numerical evaluation using ADI method and Strang’s Splitting method can 

be used to verify the analytical solution of the slipper’s heat partitioning function, which was 

developed in Section 3.2. 
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7 Numerical Application: Melt Wear Percentage 

Conducting an experimental wear study replicating the conditions seen by the slipper at 

the HHSTT is economically infeasible at this time.  However, the wear phenomena can still be 

evaluated by carefully implementing models verified for slower sliding velocity.  This chapter 

will first discuss the generation of slipper dynamics data, which is the foundation for much of the 

numerical techniques used.  The heat partition function will be integrated and evaluated 

numerically with some parameters varying with time.  The graph of the heat partition fraction as 

a function of time will be compared with other experimental and analytical transient solutions,  

described in literature review section for verification.  It will describe the numerical analysis 

method and the mathematical modeling development.  The method for calculating the surface 

temperature of the slipper and melt wear percentage will then be described.   

7.1 Numerical Analysis of Heat Partition Function 

In Chapter 3, a two-dimensional mathematical model for the present application problem 

was developed and used to derive the surface temperature distributions of two bodies using 

Green’s functions.  After matching the averaged surface temperatures of slipper and rail at the 

sliding interface, the frictional heat partition fraction function is determined and expressed in 

Equation (3.40), i.e.  

0 *
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where 
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+∑ .  The denominator of 

Equation (3.40) is an infinite sum rendering the integration impossible analytically.  With the 

help of a numerical scheme implemented in MATLAB, the integration is carried out and the 

frictional heat partition fraction function is evaluated numerically.   

There are two major parameters in the frictional heat partition function; 
s r

r s

k
k

κβ
κ

=  the 

relation of thermal properties of slipper to rail and 0v the dimensionless constant velocity as 

defined in Chapter 3. Figure 25 shows the comparison among the heat partition fraction function 

graphs of two cases, 5 m/sec and 10 m/sec.  For each velocity case, different values of β  are  

 

Figure 25. Slipper's Frictional Heat Partitioning Values with Various Parameters 
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used.  The values of β = 1, 2 are tested with the two different constant velocity values. 

In Figure 25, the solid line and dotted line represent the velocity 10 m/sec, and the 

velocity 5 m/sec respectively.  Different colors represent the different values of β , the relation 

of the thermal properties of rail and slipper.  For example, if the rail and slipper are made up of 

the same material, then the slipper’s initial heat partitioning value ( 0)α τ =  is evaluated using 

Equation (3.32), i.e. 

  𝛼(𝜏 = 0) = 𝛽
1+𝛽

.      (7.2) 

The initial values for dotted and solid lines of the same color are equal because sled has not 

moved yet.   

We may examine both plots (10 m/sec and 5 m/sec) for any of the cases shown in Figure 

25 to determine trends.   For an increased starting velocity, the heat partitioned to the slipper falls 

faster.  In general the slipper’s heat partition values decrease exponentially and the steady state 

value approaches 0.  Therefore, after a certain amount of time, most of the frictional heat energy 

transfers to rail if the sled moves at very high speed.  This observation is supported by other FEA 

model experiments (34)(35)(36).  In these experiments a locked rail car wheel assumes the role 

of the slipper. In these efforts the researchers assume that the wheel and rail are made out of the 

same material and α  is the fractional heat partitioning value flowing into rail.  Figure 5 in 

Section 1.6.3, Heat partition factor vs. time at various positions along the contact patch, shows 

that initially α  is approximately 0.42 so that α  decreases as time progresses.  After 0.1 second 

of sliding, the heat partition fraction approaches zero.  This implies that almost all of the heat is 
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entering the rail.  Using Figure 25, the result of comparison of heat partitioning graphs for 5 

m/sec and 10 m/sec confirms my numerical results and corresponding results are reasonable.   

7.2 Numerical Methods for Heat Conduction Problem 

As mentioned previously in Chapter 2, the thermal gradient of the slipper is defined by 

the heat conduction equation given in Equation (2.4) as 
2

2

T T
t x

κ∂ ∂
=

∂ ∂
.  This equation can be 

solved numerically, using either an explicit or implicit solution scheme. (1) 

 

Figure 26. One-Dimensional Heat Transfer Schematic (1) 

1. Explicit Solution Scheme:  The advantage of the explicit scheme (which utilizes a 

forward difference for time and a central difference for space) is that the implementation 

is straightforward, as the temperature for each node at a given time step is a function of 

the surrounding nodes at the previous time step.   

 1
1 12 2 )t (n n n n n

i i i i iT T TT T
x

κ+
+ −

∆
= + − +

∆
  (7.3) 
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In Equation (7.3), the n superscript refers to the previous time step and n+1 refers to the 

current time step, and the i subscript refers to the node location.  By definition, the 

temperature at a node for the current time step is denoted as 1n
iT + , and Figure 26 shows a 

schematic of the one-dimensional layout.  The drawback to the explicit scheme is that it 

is conditionally stable.  The coefficient attached to the second term in the right hand side 

of equation above is known as the Fourier number Fo, and defined as 2x
o tF κ ∆

∆
= . 

The stability criterion for the explicit scheme requires that the coefficient associated with 

the node of interest at the previous time step, n
iT , be greater than or equal to zero, or 

1 ) 0( 2Fo ≥− .  This requires a Fourier number such that 0.5Fo ≤ .(40)  This limits the 

range of available time and space intervals, t∆ and x∆ , respectively.  If a fine resolution 

temperature gradient is desired near the surface of the slipper the node spacing needs to 

be small. To maintain stability the time step must be small as well.  This can present 

potential issues with computer memory allocation if the resolution requirements are too 

fine.  This drawback can be circumvented by using an implicit scheme to solve the heat 

conduction equation.   

2. Implicit Solution Scheme:  The implicit scheme differs from the explicit scheme in that it 

uses a backward difference on time and a central difference in space. Most importantly it 

is unconditionally stable meaning that no restrictions are place on t∆ and x∆ .  The 

implicit method is defined as 

 
1 1 1 1

1 1
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2
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n n n n n
i i i i iT T T T T

t x
κ

+ + + +
+ −− − +

=
∆ ∆
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 . (7.4) 
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The most notable difference between Equation (7.3) and Equation (7.4) is that the “new” 

temperature for any node at time n+1 is a function of the “new” temperature at the 

surrounding nodes.  Thus, to solve the equations, the temperatures must be determined 

simultaneously.  This complicates the programming slightly, but the relaxation of the 

time and space intervals allows for a fine resolution of the temperature gradient without 

encountering memory allocation errors.   

7.3 One Dimensional Problem with Melt Front Removal 

Consider the slipper as a semi-infinite solid, which is initially at a uniform temperature.  

During sliding process, the surface at 0x =  is subjected to heating at the rate of ( )Q t  due to 

friction.  Suppose that T  is the slipper’s temperature distribution.  Before the slipper can 

generate a melt layer, the temperature at any interior point will never exceed its melt temperature 

mT , i.e. 0 ( , ) mT x tT T<≤ .  Once the surface temperature of slipper reaches the melt temperature, 

the surface undergoes a change of state from solid to liquid, called ‘melt layer’.  It is assumed 

that this melt region is removed continuously and immediately.    

 

Figure 27. Heat Transfer Boundary and Initial Conditions (1) 
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In Section 3.2, the heat flux 𝑄(𝑡) is assumed to be uniform along the contact surface, and 

the one dimensional heat transfer PDE is used to find the melt time in Chapter 4.  With the same 

assumption in Section 3.2 and the same approach in Chapter 4, let’s solve the slipper’s one-

dimensional finite difference heat equation approximations using the backward time difference 

scheme (the implicit scheme). In Figure 27, the slipper is initially at ambient temperature,

293aT K= , throughout the entire the thickness.  The boundary condition at the top of the slipper 

holds the temperature at the ambient condition for the entirety of the calculation.  The second 

boundary condition is the frictional flux condition applied at the bottom edge of the slipper 

defined as  

 
0

( )
x

k Q tT
x =

− =
∂
∂

 . (7.5) 

Figure 27 shows that the heat flux is uniformly applied along the contact surface. 

 

Figure 28. Slipper's Melt Layer Due to Latent Heat Loss of Fusion 

Figure 28 describes the slipper’s temperature distribution through the thickness.  As time 

evolves, the surface temperature increases and the heat propagates into the slipper’s body due to 
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the addition of frictional heat energy at the surface.  When the slipper starts sliding along the rail, 

the heat flux shown in Equation (7.5) raises the slipper’s surface temperature.  Once the surface 

temperature reaches the melt temperature melt wear (melt removal) takes place.  Therefore, a 

new model must be considered.  First, the melt region is continuously removed and the latent 

heat of fusion must be included in the flux boundary condition, mathematically described as 

 
( )

( )
x t

T dQ t
x dt

k
σ

σρ
=

∂
= −

∂
−    (7.6) 

where ( )tσ  is the location of the melt front as a depth into the slipper, x is a depth into the 

slipper, and   is the latent heat of fusion.   

When the sled slides on the rail (with loading) the aerodynamic behavior creates the 

bounce effect.  Two boundary conditions at the sliding contact surface have to be considered.  

When the loading pressure exists, the slipper is in contact with the rail.  Therefore, the boundary 

condition has a heat flux as described in Equation (7.6).  When the loading pressure does not 

exist, the slipper is not in contact with the rail and a convective flux boundary condition more 

closely approximates the true physics of not-in-contact boundary condition.  The mathematical 

expression of this boundary condition is defined as  

 2 ( ) in contact

( ) not in contacta

dQ tT
dt

x h T T
k

ρ σ −∂ = ∂  −
−



   (7.7) 

where h is the convective heat transfer coefficient.  Since the slipper is not always in contact with 

the rail during the run, a switch function is used to indicate either the in-contact condition or not-
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in-contact condition.  Let the switch function be a function of a loading pressure (force) defined 

as 

 
Force 0
F

1,
orc 0

(
0, e

)m t =
>
≤





  (7.8) 

where the force is the function of time and this function’s output is the loading pressure.  

Therefore, if there exists a positive loading pressure at some time kt , ( ) 1km t = .  Otherwise, 

( ) 0km t = .   The convective and conductive flux boundary condition with the bounce effect, 

combined Equation (7.7) with Equation (7.8), can be represented by   

 [ ]3( ) ( ) (1 ( )) ( )T dm t Q t m t h T T
x dt

k σρ∂  = − + − − ∂  
− 

 . (7.9) 

This adds the complexity of either a convective flux boundary condition or bounce effect.  They 

assumed that the slipper was in contact with the rail for the duration of the wear event. 

Once the temperature at the contact boundary reaches the melt temperature, melt removal 

creates boundary movement.  The position of the boundary shifts with the value of ( ),tσ  the 

melt layer thickness.  The boundary conditions at the melt front and the top of the slipper are  

a) The slipper’s temperature at the melt front is melt temperature after it starts to 

melt, i.e. ( ),( ) mt tT Tσ =  where mt t≥  .   

b) The other end of slipper, the top of slipper, in a semi-infinite domain, is an 

ambient temperature, i.e. ( , ) aT x t T→  as x →∞ .   
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c) The melt layer does not occur until it reaches the melt time, i.e. ( ) 0tσ =  for 

0 mt t≤ < .   

For the purposes of truncating the computational domain, x has to be bounded so the 

boundary condition ( , ) aT x t T→  as x →∞  is replaced with *( t, ) aaT x T xxt = =  where *x  is a 

sufficiently large distance from the contact surface.  A reasonable choice of *x  may be given by 

the diffusion length for the total event time *t , i.e. * *x tκ= .     

 To establish a new scaled coordinate system with respect to the melt front, a new length 

scale is introduced and defined as *

( )x t
x
σξ −

= .  The temperature ( , )T x t  is made dimensionless 

by setting 

 ( , ) ) ( ),( m a aTT x t T w Ttξ= +−   (7.10) 

where mT  melt temperature and aT  ambient temperature.  From the boundary condition, this 

relation implies that as ,ξ →∞ ( ) 0,w tξ =  because of the boundary condition ( , ) aT x t T=  as 

x →∞ .  The boundary conditions at the melt front ( )x tσ=  and at the other end of slipper 

x →∞  become  

 
0 for

( , ) 0 as
(a) (

f
, ) 1 at

or 0(b)
mt t

w t t
w tξ ξ
ξ ξ ∞

= = ≥
→ → >

 . (7.11) 
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With Equation (7.10) and new length scale *

( )x t
x
σξ −

= , Equation (3.6) (the heat equation) and 

Equation (7.9) (a convective and a conductive flux boundary condition with the bounce effect) 

become 
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2

* 2 2 *
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− ∂
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<
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−


=
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−




 . (7.12) 

 The next section develops a numerical finite difference scheme for Equation (7.12). 

7.4 Numerical Model Development for One Dimensional Problem 

With the numerical approach, let 
1
N

ξ∆ =  where N is the number of partitions taken for 

depth.  Define ( 1) and ( ) ( , ) , 1, , 1i i ii v t w t i Nξ ξ ξ= ∆ − = = +
.  Using a second-order 

difference approximation for the spatial derivatives and the temperature above the top of the 

slipper setting as the ambient temperature 1( ) 0Nv t+ = , Equations (7.12a) and (7.12b) become 

 
( )

21 1 1 1
2 * 2 *

* *
2

0 3

1

1

( ( ) 2 ( ) ( )) ( ) ( )( )(a) ( ) ( )
( ) 2

1, 2,
2 ( ) 2 (1 ( ))(b) ( ) ( ) ( ) ( )) ( )

( )
( )   ( )

or

(

0

f

i i i i i
i

m a

N

v t v t v t v t v ttv t O
x

i N
x m t x h m tv t Q t v t t O

k T T k
c v t

x
κ σ ξ

ξ ξ

ξ ξρ σ φ ξ

+ − + −

+

− + −
= + + ∆

∆ ∆
=

∆ ∆ −
= − + − + ∆

−
=










 .      (7.13) 
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Appendix A.9 shows the calculation of Equations (7.13a) and (7.13b).  For simplicity, let 

* 2 2( )x
κα

ξ
=

∆
 and *

( )( )
2

tt
x
σβ

ξ
=

∆


.  Note that ( )tβ  is a function of time.  Then for 

, ,1, 2, 1i N N−=  , 
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.   (7.14) 

The matrix form of Equation (7.14) is  

 ( ) ( ) ( )t t t= +v A v f   (7.15) 

where ( ) 1 3
2 *(1,0, 0) ( ( )) ( ) ( ) (1 ( ))( )( ( ) ( ))
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a m
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To solve the matrix ( ) ( ) ( )t t t= +v A v f  using the forward difference time marching 

scheme, that is, replace ( )tv  with 
1n n

nt

+ −
∆

v v
 where the superscript represents the time step 

number, i.e. 1( ) andn
n n n nt t t t+= ∆ = −v v .  In the finite difference approximation, Equation (7.15) 

becomes 

 1 ( ( ))n n n
n n nt t t+ = + ∆ + ∆I A v fv   (7.16) 

with the initial condition 0 ( ,0)i iw ξ=v .,i.e. the thi  component of  the vector 0v  at 0t = .  

Because ( )ntσ  is unknown at each time step, ( )ntβ  is also unknown.  To mitigate this difficulty, 

Equation (7.16) must be solved iteratively.  The steps to find the values for ( )ntβ  are as follows.     

First, set 1( ) ( )n nt tβ β −= .  Since ( )tβ is defined as *

( )
2

t
x
σ

ξ∆


 in Equation (7.14) and no melt 

layer is created initially, we take 0( ) 0tβ = .  1
1
N+v  represents the first component of the vector 

1N +v , the temperature distribution at the contact surface boundary at ( 1)thN +  time step, for 

( ) ( , ) , 1, , 1i iv t w t i Nξ= = +
.  If 1

1 1n+ >v , then the temperature at the boundary has exceed the 

melt temperature, the melt front boundary condition (0, ) 1 for mw tt t= > , and Equation (7.11a) is 

not satisfied.  Thus, ( )ntβ  must be corrected such that 1 1
11 and 1n n

i iv v+ +
+≥ < .  The new 

approximation for ( )ntβ  is determined by 

 
1 1
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1 1
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n n n
n i i

i it
x t

β
+ +

+
+ +

+

+ − −
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∆ −
v v

v v
 . (7.17) 
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Now solve Equation (7.16), the corrected value for ( )ntβ , in both A and f and continue this 

process until 1
1
n+v  is sufficiently close to 1.  Once the converged value of Equation (7.17) is 

determined ( )ntσ is found as  

 ( ) 2 * ( )n n nt x t tσ ξ β= ∆ ∆  . (7.18) 

Before illustrating the results of Equation (7.18) the properties of the slipper and rail as 

well as the DADS data are examined.  The slipper begins at rest and is accelerated down the rail 

with a velocity profile described by the Dynamic Analysis Data System (DADS) data for the 

rocket sled test event.  The measured contact pressures along with the velocity are used to 

determine the bounce influence and calculate the slipper’s partitioned frictional heat energy at 

each time step.  The next chapter presents the results using Equation (7.18) to calculate the wear 

percentage for the current application problem, the Holloman High Speed Test Track Wear 

Project with their physical and material properties.   

At the Holloman High Speed Test Track, significant research has been conducted in the 

area of high-energy impact creating gouging at the interface of a slipper/rail boundary brought 

about by contact of the test sled on the track.  Table 1 shows the physical properties of slipper 

(VascoMax 300 maraging steel) and rail (AISI 1080 Carbon Steel) materials.  In Table 1, the rail 

and the slipper’s thermal conductivity and diffusivity values are given.  Using Equation (3.32), it 

is expected that 48.8% of the total frictional heat flux flows into slipper when the sled is not 

moving and just in contact, i.e. 
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 ( ) 0.487885 as ( ) and0 0.9527
1

s r

r s

kt v t
k

β κα β
β κ

= = → = =
+

 .           (7.19) 

 Graphs (a) and (b) in Figure 29 represent sled velocity profile and pressure profile of 

HHSTT.   

 

 

Figure 29. (a) Sled's Sliding Velocity, (b) Loading Pressure of the Wear Project (1) 

Graph (a) in Figure 29, sled’s velocity profile, shows that it accelerates for 5 seconds then 

steadily decelerates. The experiment is a three stage burn with the sled’s speed increasing at a 

constant rate, (accelerating linearly) during each burn and leveling off as the empty stage is 

severed before the ignition of the next stage. With the reduced mass of the sled after each burn-

out the overall effect is three increases in the slope of the time-velocity plot giving the illusion of 
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steadily increasing acceleration. On closer examination it is evident that it is nearly linear during 

a given burn. Bounce effects (chatter) become pronounced after third stage burnout due to 

aerodynamic effects or the loss of thrust torque.  Either way, bounce effects are the result of 

slipper wear that occurred earlier but was not a significant factor until burnout changed forces 

acting on the sled (directly or indirectly).  From Graph (b) in Figure 29, the loading pressure 

values increase substantially after passing 3000 m.  In Equation (3.1), the frictional heat energy 

is defined as ( )( )t tQ Pvµα= .  Since the loading pressure gets greater from the sliding distance 

3000 m or sliding time 5 seconds, it is expected to generate greater frictional heat energy and to 

raise the slipper’s surface temperature.  Moreover, it significantly influences the slipper’s melt 

layer process. 

In Section 7.5, the first sub-section shows the results using different constant frictional 

heat partition fraction values, the second sub-section using the hypothesized frictional heat 

partition fraction function, and the last sub-section using the analytical solution of frictional heat 

partition fraction function developed in Chapter 3.   

7.5 Numerical Results and Analysis 

Wear is a three-dimensional phenomenon.  To apply the dimensional results to this three 

dimensional problem, a simplifying assumption is made such that  

 WeMelt ar ( )
m

t

t

dA t dt
dt
σ

= ∫  . (7.20) 
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The melt depth is defined as the distance ( )tσ  that the melt front moves during the sliding time 

and A(t) is the melt region.  The melt wear volume was defined in section 3.1.  Here the melt 

wear percentage is defined as  

 wear volumewear percentage 100
slipper s volu

meltmel
me

t = ×
′

 . (7.21) 

Therefore, the melt wear percentage means the melt wear volume per slipper’s total volume not 

the total wear volume.  If the material does not reach the melt temperature then the melt layer 

does not yet exist and the melt front does not move.  

In this chapter, the numerical data with different frictional heat partitioning scenarios is 

compared and discussed.  Dynamics data, sled velocity, and loading pressure of the third state 

pusher sled for the 2008 HHSTT test mission is used to calculate the melt wear percentage.  The 

first scenario for calculating the slipper’s melt wear percentage uses three different heat partition 

fraction values for the slipper.  The second scenario uses the hypothesized heat partition 

function. The last scenario uses the analytical solution of slipper’s heat partition function 

developed in Chapter 3.  For the first and second scenarios, the constant sled velocity function  

𝑣(𝑡) = 10 m/sec is used to compare the melt wear percentage result with the result of the third 

scenario with (𝑡) = 10 m/sec . 

7.5.1 Calculating Melt Wear Percentage With Different Constant Values of α(t) 

When the sled slides along the rail at high speed, it creates dynamic behaviors, of chief 

interest is the bounce effect.  While two sliding surfaces of slipper and rail are separated, a 



158 

 

convective heat flow exists in the gap between the slipper and rail.  Otherwise, the frictional heat 

flows from one body to the other body via conductive heat flux.   

In Figure 29, the values of Force (Graph b) imported from DADS data determine 

whether the surfaces are in contact.  Due to high velocity and loading pressure, a large amount of 

frictional heat energy is generated by Equation (3.1), (( )) ) (q P t v tt µ= .  The surface temperature 

of the slipper will eventually reach the melting temperature.      

 

Figure 30. Melt Volume Removed for Different Heat Partition Values with Bounce  

Figure 30 shows the process of melt layer removal with three different constant heat 

partition values for the slipper while sliding with bounce effects.  Frictional heat generated 

during while sliding raises the slipper surface temperature.  The melt layer created at the contact 

surface of slipper is removed immediately. 

When the sled travels 3000+ m, slippers with constant heat partitioning values of 0.1 and 

0.12 yield a melt layer.  The sled’s sliding velocity decreases but the loading pressure increases 

when the sled reaches approximately 3000 m as observed in Figure 29.  This impact loading 
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pressure creates greater frictional heat energy which is then absorbed by the slipper and rail.  

With the slipper’s constant heat partition value of 0.06, only 6% of total frictional heat energy 

flows into the slipper.  The slipper’s surface temperature never reaches the melt temperature and 

the melt layer is never created.  So the slipper’s melt wear percentage remains zero.  However, 

when the slipper’s constant heat partitioning values are assumed 0.1 and 0.12, i.e. 10% and 12% 

of total frictional heat energy flows into the slipper, 0.71% and 3.93% melt wear of total 

slipper’s volume is observed.  This illustrates a key point: a slight increase in slipper’s heat 

partition fraction value makes a great difference in the melt wear.   

Another observation of Figure 30 is the monotonic-step increase of graphs due to bounce 

effect.  The loading pressure profile graph in Figure 29 shows that the pressure value is positive 

when two surfaces are in contact and zero when they are not in contact.  When the slipper and 

rail are in contact, frictional heat is generated and creates the melt layer.  However, when they 

are not in contact, the fraction does not apply and no heat flows into slipper which delays the 

melting process at the contact surface.  This physical process creates the monotone-step increase 

behavior of graphs, which is shown in Figure 30. 

 

7.5.2 Calculating Melt Wear Percentage With Hypothesized Function α(t)   

With the consideration of few characteristics to determine the slipper’s frictional heat 

partitioning function discussed in Chapter 3, it is hypothesized as a function of time 

25( ) 0.4 0.1tt eα −= + .  Because of the bounce effect, frictional heat energy is generated when in 

contact raising the slipper’s surface temperature.  However, the bounce effect produces 
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aerodynamic air flow between the slipper and rail surfaces (when not in contact) and the 

slipper’s surface may lose heat energy thereby decreasing the surface temperature.  As such, the 

slipper’s surface temperature increases for ( ) 0P t >  and decreases for ( ) 0P t ≤ .     

 

 

Figure 31. (a) Slipper's Surface Temperature, (b) Melt Wear % vs Sliding Time using 
25( ) 0.4 0.1tt eα −= +  

In Figure 31, Graphs (a) and (b) show the slipper’s surface temperature change and its 

melt wear percentage using a hypothesized function 
25( ) 0.4 0.1tt eα −= +  and bounce effect.  

During the first 5 seconds, the slipper’s surface temperature increases and it behaves as a step-

wise function due to bounce effect.  Since the frictional heat flux is determined by Equation (3.1) 

and the difference in loading pressure is much greater than the difference in velocity change (

6( ) 10PP t k= ×  and 3( ) 10vv t k= ×  for 0 , 10p vkk <<  ), greater frictional heat energy flows into 
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the slipper.  Accordingly, it raises the slipper’s surface temperature to melting temperature.  The 

melt wear percentage graph shows that the slipper’s surface undergoes melt layer formation after 

5 seconds.  The slipper’s surface temperature never exceeds the melt temperature because the 

melt layer is removed immediately and continuously.   

With a hypothesized heat partition fraction function 
25( ) 0.4 0.1tt eα −= +  and bounce 

effect, the total melt wear percentage of the slipper’s volume is 0.72%.  

7.5.3 Calculating Melt Wear Percentage With Analytical Solution α(t) 

The analytical solution of the heat partition function is developed in Section 3.2 and 

defined in Equation (3.40),  
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This analytical solution is derived with some assumptions.  The velocity and loading pressure 

profiles are uniform along the contact surface and constant during the sliding time, i.e. the sled 

moves at the same speed from the beginning to end and the slipper and rail are continually in 

contact all the time.  The program calculating slipper melt wear percentage considers the various 

velocity profiles and loading pressure profiles as a function of time.  With physical and material 
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properties of slipper and rail listed in Table 1, the program’s results for the frictional heat 

partition function are given below.  

 

Figure 32. Graphs of Slipper's Heat Partitioning Values at v(t)=5 and 10 m/sec  

From Figure 25 in Section 7.1, the fraction of frictional heat energy flowing into a slipper 

diminishes with higher velocities.  Figure 32 shows the same behavior.  Looking at the 1.5 

second mark, the slipper’s heat partitioning value for the velocity  𝑣(𝑡) = 10 m/sec is 0.1171 

while the slipper’s heat partitioning value at the velocity 𝑣(𝑡) = 5 m/sec  is 0.1650. To be clear: 

the faster the sled, the smaller the fraction of heat generated flowing into the shoe.  However, the 

total frictional heat generated by a sled traveling at the velocity 𝑣(𝑡) = 10 m/sec  is twice that 

of one traveling velocity (𝑡) = 5 m/sec .  This is observed in the heat flux equation defined in 

Equation (0.47) as (( )) ) (q P t v tt µ= , i.e.  
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The inequality in Equation (7.23) is the comparison of frictional heat flux for two different 

velocity profiles, 𝑣(𝑡) = 10 m/sec and (𝑡) = 5 m/sec .  With the result in Equation (7.23), the 

numerical results of slipper’s surface temperature and melt wear percentage for both constant 

velocity values are generated and presented in Figure 33. 

 

(a)                                                                                  (b) 

Figure 33. Surface Temperature and Melt Wear % vs Sliding Time  

 

Even though the slipper’s heat partitioning function at 𝑣(𝑡) = 10 m/sec  is smaller than 

at (𝑡) = 5 m/sec , Equation (7.23) shows that the sled generates frictional heat ( ) 10 ( )v tq t=  at 

( ) 10 / secv t m=  twice that generated ( ) 5 ( )v tq t=  at 𝑣(𝑡) = 5 m/sec .  This implies that the amount 

of heat flowing into the slipper at  𝑣(𝑡) = 10 m/sec  is greater than at (𝑡) = 5 m/sec .  For 

example, Figure 32 shows that at 0.1 second, 11.71% of the total frictional heat energy with the 
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velocity 𝑣(𝑡) = 10 m/sec  flows into the slipper while 16.50% of the total frictional heat energy 

with the velocity 𝑣(𝑡) = 5 m/sec  flows into the slipper, i.e. 
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The inequality in Equation (7.24) supports the numerical results in Figure 33.  The two 

graphs of slipper surface temperature at ( ) 10 / secv t m=  and ( ) 5 /t cv m se=  represent surface 

temperature changes over the sliding time based on the loading pressure profile and velocity.  

Since more heat energy flows into the slipper at a sliding velocity of 10 m/sec ( ( ) 10 / secv t m= ), 

the slipper’s surface temperature reaches melting temperature near instantaneously creating a 

melt layer.  However, if the sled moves at ( ) 5 /t cv m se= , the surface temperature achieves melt 

temperature in just over 2 seconds as illustrated in Figure 33.  The loading pressure profile in 

Figure 29, shows that pressure values decrease after the sled travels the first 1000 m and increase 

significantly when it hits the 3000 m mark (3rd stage rocket burnout).   This effects the amount of 

frictional heat energy defined in Equation (3.1) as (( )) ) (q P t v tt µ= .   

The surface temperatures for both velocity cases decrease after 1-2 seconds when the sled 

crosses the 1000 m mark and increase again after 5 seconds upon crossing the 3000 m mark.  We 

find the melt wear percentage graph in Figure 33 (a) ( ( ) 10 / secv t m= ), which has monotonic 

stepwise increases, i.e. the melt layer is a transient phenomena under experimentally measured 

loading conditions.  Figure 33 (b), the melt wear percentage graph at (𝑡) = 5 m/sec , shows 

stepwise behavior again. (Note y axis scale differences on these plots.)  A melt layer is created 
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briefly at around the 2 second mark and no melt layer is observed from 2 seconds to 6 seconds 

because the loading pressure decreases during this time period and the frictional heat energy is 

insufficient to raise the slipper’s surface temperature above the melting point.  After the loading 

pressure increases again, sufficient frictional heat energy is produced to raise the surface 

temperature and create a melt layer.  At the end of sliding event, the slipper’s total melt wear 

percentage with the analytical solution and experimental loads at ( ) 10 / secv t m=  is 1.03% while 

at 𝑣(𝑡) = 5 m/sec  the loss is 0.024%.   In Figure 31, the values of melt wear percentage with 

constant heat partition fractions ( ) 0.12tα =  and ( ) 0.06tα =  are 3.93% and 0%.  This shows that 

the results of analytical solutions lie between the results of two constant heat partition fraction 

function cases.  This implies that if a simple and constant heat partition fraction value is needed, 

it is reasonable to say that 0.06 and 0.12 may be the lower and upper bound respectivly of the 

constant heat partition fraction value.           

 

7.6 Conclusion and Further Study 

The primary objective of this research was to develop an analytical solution for frictional 

heat partitioning.  Two-dimensional conductive heat transfer partial differential equations were 

employed to find the surface temperature distributions of the slipper and rail with Green’s 

functions.  Using Jaeger’s method, the slipper and rail surface temperature distributions were 

averaged and surface temperatures matched.  After applying the Laplace Transform and using 

the Incomplete Gamma Function, the slipper’s frictional heat partitioning solution was developed 

in integral form.  Since the slipper’s frictional heat partitioning solution for the two-dimensional 



166 

 

heat transfer problem was valid for the pre-melt state, the slipper’s pre-melt problem was 

formulated and then the melt time formula of the pre-melt problem was found.  Numerical 

methods yielded the slipper’s frictional heat partitioning analytical function with varying 

parameters, such as velocity profile and thermal properties.  This results of the analytical solution 

closely matches Komanduri and Hou’s (32) discovery of the non-uniform distribution of the heat 

partition function using a curve-fit analysis approach with compensation terms discussed and 

presented in Section 1.6.2.  

The second objective of this research was to develop a numerical scheme for the two 

dimensional convection diffusion problem using ADI method and Strang’s Splitting method.   

With the numerical method, both internal and surface temperature distributions of slipper and rail 

were evaluated and the heat partitioning fraction calculated by matching the averaged surface 

temperature of two sliding materials.  Finally the numerical solution was compared with the 

analytical solution in Section 6.1.  The observations from Figure 24, two graphs closely 

approximate each other and both solutions represent the qualitative behavior of the heat 

partitioning values indicating that the analytical and numerical solutions are good representations 

of the slipper’s heat partitioning function.   

The last objective of this research was to produce the melt wear percentage for the 

present application: the Holloman High Speed Test Track slipper wear problem.  In the problem, 

the sled’s velocity is assumed to be constant at the maximum speed during the sliding time.  

Using the analytical solution of slipper’s heat partitioning function, the slipper’s melt wear 

percentage was evaluated and presented in section 7.5.3.   
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  Due to practical computational limits the numerical analysis was used to find the 

slipper’s heat partitioning values for velocity below 10 m/sec, and the analytical solution was 

used for velocities above 10 m/sec.   For velocities above 100 m/sec, excessive memory is 

required forcing alternative approaches either mathematically or computationally.  Daoud S. 

Daoud (58) encountered this problem and presented a new splitting approach for the numerical 

solution of the multi-dimensional convection diffusion equations.  His method combines additive 

and multiplicative splitting.  The method not only reduces the linear (or nonlinear) original 

problem into a series of one-dimensional and one physical operator linear problems, but also 

enables computation of one-dimensional problems using parallel processors.(58)  This could 

render the numerical calculation practical, enabling the code to evaluate the heat partitioning 

function at a higher velocity.  Studying Daoud’s method and developing a different numerical 

analysis using additive and multiplicative splitting is the next step to overcome the technical 

issues for velocity above 100 m/sec.   

Previous research (1) assumed constant contact and constant partitioning between slipper 

and rail for the entire experiment in analytical and computational work.  The analytical frictional 

heat partitioning function in this dissertation considers the physical parameters affecting the 

slipper’s heat partitioning value.  There are three factors; (a) motion of slipper (slipper moving 

into cooler region of rail), (b) pressure profile and material properties, and (c) varying velocity.  

With these considerations this research hypothesized the physics-based frictional heat 

partitioning function.  Using partial differential equations the analytical solution was developed 

with numerical methods, such as Strang’s Splitting method, Crank-Nicolson method and implicit 

numerical scheme.  The switch function was adopted to apply bounce effects to the numerical 
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model.  When the slipper is in contact, the conductive heat transfer is used with the actual value 

of loading pressure.  When the slipper is not in contact convective heat loss is considered.   

The numerical solution to the slipper’s frictional heat partitioning function represents the 

real nature of changes over time in a sliding system.  The slipper’s averaged surface temperature 

rises when in contact with high loading pressure and drops when the slipper is no longer in 

contact due to convective heat loss.  It also shows that the total melt wear volume percentage 

increases when the slipper is in contact and remains constant when the slipper is not in contact. 

The improved model using real HHSTT experimental data of loading pressure produces a 

more realistic demonstration of how the average surface temperature and total melt wear volume 

percentage evolves over time.  Since the analytical solution of the slipper’s frictional heat 

partitioning function implements physics based behavior rather than assuming a uniform 

constant value, the calculation of the slipper’s surface temperature and total melt wear volume 

percentage better approximates the behavior of HHSTT experiments. 
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Appendix 

A.1 Development of Green’s Function Solution to Differential Equation of Heat Conduction 

This appendix shows the derivation of the Green’s function solution to Differential 

equation of heat conduction, Equations (2.14)-(2.16), Section 2.5.  Let’s consider the part of the 

solid bounded by an imaginary cylinder of cross-section A whose axis is normal to the surface of 

the plate.  When the steady state of temperature has been reached, the quantity q of heat which 

flows up through the plate in t seconds over the surface S is equal to below 

 
( )lower upperTk T At

d
−

 , (10.1) 

where k is defined as the thermal conductivity and , ,lower upperT T d are the temperature of the lower 

surface and of the upper surface, and the thickness of the plate.  Generally speaking, the thermal 

conductivity of the substance is a constant depending upon the material of which it is made.  In 

other words, the flow of heat between these two surfaces is proportional to the difference of 

temperature of the surfaces.  But, in experiments, the conductivity k is not constant for the same 

substance because it depends upon the temperature.  However, the micro-scale of rubbing 

surfaces is of interest, so the range of temperature is limited and this change in k may be 

neglected.  Therefore, in the general mathematical expression of heat conduction it is assumed 

that the conductivity does not vary with the temperature. (In a real application or experiment, the 

thermal conductivity k is a function of velocity and specific heat.)     
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In the fundamental experiment, which was used to define the thermal conductivity above, 

the solid is supposed to be homogeneous and of such a material that, when a point within it is 

heated, the heat spreads out equally well in all directions.  Such a solid is said to be isotropic, 

that is a material whose structure and properties in the neighborhood of any point are the same 

relative to all directions through the point.  The rate of flow of heat per unit time per unit area in 

the direction of x increasing is  

 as 0x
T Tf k x
x x

k δ δ
δ

→−
∂

= − →
∂

 . (10.2) 

Consider the case of a solid through which heat is flowing, but within which no heat is 

generated.  Then, the mathematical equation for the heat conduction of a homogeneous isotropic 

solid whose thermal conductivity is independent of the temperature is 

 
2 2 2 2 2 2

2 2 2 2 2 20T T T T Tc T T
x y z k t x y z t

Tρ κ
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + − = → + + = ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 . (10.3) 

where ,cρ are the density and the specific heat, and κ is a constant called the thermal 

diffusivity, defined as k
c

κ
ρ

= .   

In the article A Problem In The Theory of Heat Conduction(2), the idea of a finite 

quantity of heat instantaneously liberated at a given point and time in an infinite solid has been 

well developed and showed the advantage of solving a large number of important physical 

problems to be written down from first principles.  The solution for Equation (10.3) the 

instantaneous point source in three dimensions (Green’s function) is  
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2 2 2[( ) ( ) ( ) /4

3/2
]( ) source in 3-D

8
( , , , ; ', ', '

(
) p n

)
oi tx x y y z z tT x y z t x y q

t
z t e κ

πκ
′ ′ ′− − + − + −=  (10.4) 

where q(t) is a heat flux at a point ( ), ,x y z′ ′ ′ .  Integrating Equation (10.4) with respect to the 

time produces the solution for the continuous point source, and integrating the solutions for point 

sources with regard to appropriate space variables gives solutions for instantaneous line, plane, 

and spherical surface sources.   

 

Figure 34. Different Heat Source in 3D Cartesian Coordinate System 

Let’s consider a distribution of instantaneous point sources, heat flux ( )q t  in Equation 

(10.4).  The line source is parallel to the z-axis and passing through the point ( , )x y′ ′  .  The rate 

of heat input is ( ) 'q t dz  at 'z  along the z-axis.  Integrating Equation (10.4) with respect to space 

variable z gives the temperature distribution for instantaneous line source in the x, y plane 

( 0)z = , 
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2 2 2

2 2

{( ) ( ) (0 ) /4
3/2

{( ) ( ) 4

}

}/

( , ( )
8( )

( ) line source in 2-D
4

,0, ; ', ', ') x x y y z t

x x y y t

q t dz e
t

q t e

T x y t x y z

t

κ

κ

πκ

πκ

∞ − − ′ + − ′ + − ′

−∞

− − ′ + − ′

= ′

=

∫
 .(10.5) 

By integrating Equation (10.5) with respect to the space variable y becomes the temperature 

distribution of instantaneous plane source, parallel to the plane 0x =  at 0y = ,  

 

2 2

2

{( ) (0 ) /} 4

( ) /4

( )
4

( ) plane sou

( ,0, ; '

r e
2

'

-D

)

c 1

x x y t

x x t

T x t x dyq t e
t

q t e
t

κ

κ

πκ

πκ

∞ − − ′ + − ′

−∞

− − ′

=

=

∫
 . (10.6) 

Let’s consider a temperature distribution, Equation (10.4), of instantaneous point sources 

of heat flux ( )q t .  Since integrating Equation (10.4) with respect to time t produces the solution 

for the continuous point source, the temperature distribution for continuous point source is  

 
2 2 2[( ) ( ) ( ) /4 ( ')

3/20

]( ')
8( ( '))

( , , , ; ', ', ', ') '
t x x y y z z t tq t eT x y z t x y z t d

t t
tκ

πκ
′ ′ ′− − + − + − −

−
= ∫  . (10.7) 

Integrating Equation (10.6) with respect to time t produces the temperature distribution of 

continuous plane source, parallel to the plane 0x =   

 
2( ) /4 ( ')

0

(( , ; ' ')
2 ( '

'
)

)
t x x t tq t e

t t
T x t x dtκ

πκ
− − ′ −=

−∫  . (10.8) 

Steps from Equation (10.4) to Equation (10.8) suggest that it is possible to reduce the 

three-dimensional heat conduction problem due to friction to component two or one dimensional 

problems and to express the heat source moment-to-moment as either a line or plane surface 
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source in steady-state conditions. Let’s consider the heat line source liberated at the rate q′  per 

unit time per unit length along the y-axis.  It is moving parallel to the axis of x with a velocity U, 

then the temperature distribution in the steady state at the point (x,y,z) is given (21) 

 

2 2 2[ ]/2

2 2 2

/2 2 2
0

4

[ / 2 ]
2

U x y z x

Ux

q dy e
k x y z

U
k

T

q e K x z

κ

κ

π

κ
π

∞ − + ′ + −

−∞

′ ′

+ ′ +

′
= +

= ∫
  (10.9) 

where 0( )K x  is the modified Bessel function of the second kind(3) of order zero.   

A.2 Derivation of the Green’s function solution for ,( ),rw ξ η τ   

 This appendix shows the derivation of the solution to Equation (3.17), Section 3.2.  Let’s 

recall the rail’s PDE system, Equation (3.7)  

3

2

3

for

as or |

(d) (

(a) for 0 , | | , 0

(b) I.C. : ( , ,0) | | , 0 , 0

(c) B.C. : ( , , ) |

,0,

( )(1 ( ( ), )) ( ( ), )

(1 ( )) ( ( ( ),0, )

)

((

r
r r r r

r

r
r a r

r
r r

r
r

r

r r
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Tc k T t x y
t

T x y T x y t
T x y t T y

x

h T

x
Tk t
y
m t x x t t q x x t t
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ρ

α

∂
= ∇ > ≤ ∞ <

∂
= ≤ ∞ −∞ < < =

→ → −∞ →∞

∂
=

∂

+

++

+

− +

−

−

4

) ) for | ( ) |
( ( ( ),0, ) ) f

, )
or | ( ) |

r
r

r a r

x x t l
h T x x t t x t l

t
T x

+




<
− ≥+


 +

(10.10) 

where 3 4( ( ), ) andrx x t tT h+  are defined as 3 3( ( ), ) (( , ))r a m ax x t tT TT T φ ξ τ−=+ −  and the thermal 

convective coefficient between the slipper and rail’s sliding interface when not in contact.  Using 

the Galilean coordinate transformation Equation (3.11), 
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 ( , , ) ( ( ), , )r r
r sx y t T x x t y tT = −  .                                 (10.11) 

This leads to  

and ·
r r r r r

r s s

T T T T x T
x x t x t t

∂ ∂ ∂ ∂ ∂ ∂
= = − +

∂ ∂ ∂ ∂ ∂ ∂
    (10.12) 

Introducing the dimensionless variables used in the slipper equations (i.e. sx
l

ξ = , 
*

y
y

η =  and 

*
t

t
τ = ) , then 

   
0

*( ) ( * ) ( * ) and ( (1 ) )tv v t t vdx
l dt

d
l

τ
τ τ τ ξ τ τ τ′ ′= = = ∫  .  (10.13) 

Along with ( ) ( , , )( , , )r r
ar m aTT x y t T T w ξ η τ= + − , Equations (3.7a) are reduced to  

   
2 2

* 2 2 2 * 2( ) ( )
(

1 ( 1 1
)

)r r r r
r r r

m a m a
w w v t w wc T kT

t l y
TT

l
ρ

τ ξ ξ η
   ∂ ∂ ∂ ∂

− − = − +   ∂ ∂ ∂ ∂   
. (10.14) 

After multiplying this equation by 
2*

( )r
m a

y
k T T−

 and recalling 
r

r
r r

k
C

κ
ρ

= , Equation (3.12) is 

obtained.  Continuing to simplify Equation (3.12) by replacing 2*y in the coefficient of the term 

rw
ξ

∂
∂

with 2 ** sy tκ= , results in   

 
2

2 2

* *( )
s r s r r r

r r

w t w y w wv t
l l

κ κ
κ τ κ ξ ξ η

∂ ∂ ∂ ∂ = + + ∂ ∂ ∂ ∂ 
 , (10.15) 
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Equation (3.7 d) in Section 3.2 is the rail’s boundary condition at the sliding contact 

surface.  With the definition of ( ( ), , ) ( ) ( , , )r
r r a m ax x t y t TT T T w ξ η τ+ = + −  and the dimensionless 

variables defined in Section 3.2, this boundary condition becomes 

4

3
3

* ( ,0, ) | | 1
( ,0, )

*(1 ( , )) ( , ) (1 [ ]) ( ,0, ) ( , ) | | 1

r
r r

r r
r

y h w
w k

y hC m q m w
k

ξ τ ξ
ξ τ

η α ξ τ ξ τ ξ τ φ ξ τ ξ

 >∂ = ∂  − + − − <


    (10.16) 

with 
(

*
)

r
r

m a

yC
Tk T−

= .  In general, the convective heat transfer coefficient for the forced air 

convection is in the range of 10-200 W/m2K.  Using a typical value of ℎ𝑖, say 

100 ( 1,2,3,4)i ih =≈ , and material properties given in Table 1, 

6
2* 9·10 ·8·100 3·10 ( )

31
i

r

y h
k

ε
−

−≈ ≈ = .  In Section 3.2, the value *y
l

ε≡  is very small so the 

influence of the terms with ( )ε  is negligible.  Therefore, with the consideration of neglecting 

term ( )ε , this boundary condition is simplified to  

2

0 | | 1
( ,0, )

(1 ( , )) ( , ) | | 1

(1 ) (1 ( , )) | | ,( , )

r

r

r

w
C m q

H C q

ξ
ξ τ

α ξ τ ξ τ ξη

ξ α ξ τ ξ τ ξ

>∂
=  − <∂ 
= − − ∞<

   (10.17) 

where ( )H ξ  is the Heaviside function.  In this research, only the continuous contact is 

considered, 1m = .  That is, it is assumed that the pressure is always positive. With Equations 

(3.14) and (10.17), the rail’s PDE system becomes 
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𝑅𝑎𝑖𝑙′𝑠 𝑃𝐷𝐸 ∶    
𝜕𝑤𝑟

𝜕𝜏
= 𝑣̅(𝜏)

𝜕𝑤𝑟

𝜕𝜉
+ 𝛾

𝜕2𝑤𝑟

𝜕𝜂2               |𝜉| < ∞ , 𝜂 < 0 , 𝜏 > 0  

                                𝐼. 𝐶. ∶     𝑤𝑟(𝜉, 𝜂, 0) = 0              |𝜉| < ∞  , 𝜂 < 0                                   (10.18) 

𝐵. 𝐶. ∶ (𝑎)𝑤𝑟(𝜉, 𝜂, 𝜏) → 0         𝑎𝑠       |𝜉| → ∞    𝑜𝑟    𝜂 → −∞  , 𝜏 > 0 

(𝑏) 
𝜕𝑤𝑟

𝜕𝜂
(𝜉, 0, 𝜏) = 𝐻(1 − 𝜉2)𝐶𝑟�1 − 𝛼(𝜉, 𝜏)�𝑞(𝜉, 𝜏)     |𝜉| < ∞  ,   𝜏 > 0 

where ( * ) *( ) v t tv t
l
τ

≡ , 
r

s

κγ
κ

=  and 
(

*
)

r
r

m a

yC
Tk T−

= .   

In order to reduce to one spatial variable, apply the complex Fourier Transform into 

( , , )rw ξ η τ  over | |ξ < ∞ (21), i.e.  

ℱ[𝑤𝑟(𝜉, 𝜂, 𝜏)] = 𝑤𝑟� (𝑝, 𝜂, 𝜏) = 1
√2𝜋 ∫ 𝑒𝑖𝑝𝜉𝑤𝑟(𝜉,𝜂,𝜏)𝑑𝜉∞

−∞                  (10.19) 

𝐼𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 ∶ ℱ−1�𝑤𝑟�  (𝜉, 𝜂, 𝜏)� = 𝑤𝑟(𝜉, 𝜂, 𝜏) = 1
√2𝜋

� 𝑒−𝑖𝑝𝜉𝑤𝑟� (𝜉,𝜂,𝜏)𝑑𝜉
∞

−∞
  

First, consider the boundary condition (b) in Equation (10.18).  In general, we shall 

define  
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                          (10.20) 

Recall the frictional heat flux , ( ,( )) ( )Pq vξ τ µ ξ τ τ=  given in Equation (4.24).  Three conditions 

for ( , )α ξ τ  and ,( )P ξ τ  will be considered for the effective heat flux.  The frictional heat 
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partitioning function is uniform across the interface contact in ξ , the pressure profile is uniform 

across the interface contact in ξ , and both the frictional heat partitioning function  and pressure 

profile are uniform across the interface contact in ξ .  Using the definition of the frictional heat 

flux, the uniform pressure in ξ  implies the uniform heat flux in ξ , i.e. 

( , ) ( ) ( ) ( ) ( )P v P v qµ ξ τ τ µ τ τ τ= = .  Next, let’s examine the boundary condition (b) of Equation 

(10.18) for each of the cases in the complex Fourier Transform,  

           ℱ�𝑤𝜂
𝑟(𝜉, 0, 𝜏)� = 𝑤�𝜂

𝑟(𝑝, 0, 𝜏) = 𝐶𝑟

√2𝜋 ∫ 𝑒𝑖𝑝𝜉�1 − 𝛼(𝜉, 𝜏)�𝑞(𝜉, 𝜏)𝑑𝜉1
−1 .           (10.21) 

First, consider the uniform frictional heat partitioning function across the interface 

contact in ξ , ( , ) ( )α ξ τ α τ= , then 
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 .                         (10.22) 

Second, consider the uniform pressure profile across the interface contact inξ , 

( , ) ( )P Pξ τ τ= , that means the uniform frictional heat flux across the interface contact in ξ , 

, ( ) ( ) ( )( ) Pq v qξ τ µ τ τ τ== , 
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Last, consider the uniform frictional heat partitioning function and pressure profile 

(frictional heat flux) across the interface contact inξ , ( , ) ( )α ξ τ α τ=  and

, ( ) ( ) ( )( ) Pq v qξ τ µ τ τ τ== ,  
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Further, using Equation (10.19) and integrating by parts, ℱ�𝑤𝜉
𝑟� = −𝑖𝑝𝑤� 𝑟.  Now, Equations 

(10.18) with the interface contact boundary conditions defined in Equations (10.22) – (10.24) 

become 
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B.C.: ( , , ) 0 as | or , 0

( , ) | | , 0

Rail's

|
( ,0, )

r r r

r

r

r

w v ip w w p

w p p
w p
w p p

p
p Q

τ ηη

η

γ η τ

η η

η τ η τ

τ τ τ

= − + < ∞ < >

= < ∞ <

→ →∞ →−∞ >

≤= ∞ >

  







 .         (10.25) 

Lemma A. 1  If 
0

( ) co2) s( f rr df β β β
π

∞
= ∫  for 0r ≥ , then ( ) ( )f r f r−=  for 0η <  where 

0
( ) cos2 ( )f r f r dη η η

π
−

−∞
= ∫ . 

Proof Let 
0

2( )[ ( )] ( ) cosc f f r df rβ β β β
π

∞
=≡ ∫  for 0r ≥ . For 0η < , let β η= −  and 

d dβ η= −  . If ( )f η  is only defined on 0η < , then  
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Lemma A.2  The Fourier cosine Transform along with the inverse transform are given by  

ℱ𝑐[𝑓(𝑥)] ≡ 𝑓(𝑟) = �2
𝜋

� 𝑓(𝑥) cos 𝑟𝑥 𝑑𝑥
∞

0
                      (𝑟 ≥ 0) 

                   ℱ𝑐
−1 �𝑓(𝑟)� ≡ 𝑓(𝑥) = �2

𝜋 ∫ 𝑓(𝑟) cos 𝑟𝑥 𝑑𝑟∞
0                   (𝑥 ≥ 0).                       (10.27) 

Let ( )h y  be defined for 0y ≤  then the followings are true, 

ℱ−𝑐[ℎ−(𝑦)] ≡ ℎ−(𝑝) ≡ �2
𝜋 ∫ ℎ−0

−∞ (𝑦) cos(𝑝𝑦) 𝑑𝑦                    (𝑝 ≤ 0)                   (10.28) 

ℱ−𝑐
−1�ℎ−(𝑝)� ≡ ℎ−(𝑦) ≡ �2

𝜋
� ℎ−

0

−∞
(𝑝) cos(𝑝𝑦) 𝑑𝑝                    (𝑦 ≤ 0) 

Proof Let ( )h y be defined for 0y ≤  and let y x= −  with 0x ≥ .  For 0p ≤ , let 

r p= −  with ( ) ( )f x h y−= , then the results follow.  Similarly with ( ) ( )r h pf −= .   

Next, consider the Fourier cosine Transform of ( , , )rw p η τ  over 0 η< < ∞  and its 

inversion formula 
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ℱ−𝑐[𝑤� 𝑟(𝑝, 𝜂, 𝜏)] = 𝑤� 𝑟(𝑝, 𝑟, 𝜏) = �2

𝜋 ∫ 𝑤� 𝑟(𝑝, 𝜂, 𝜏) cos(𝑟𝜂) 𝑑𝜂∞
0                      𝑟 > 0

Inversion Formula ∶    𝑤� 𝑟(𝑝, 𝜂, 𝜏) = �2
𝜋 ∫ 𝑤� 𝑟(𝑝, 𝑟, 𝜏) cos(𝑟𝜂) 𝑑𝑟∞

0                 𝜂 > 0
      (10.29) 

By Lemma A.1 and A.2, Equations (10.30a) and (10.30b) are equivalent, 

for 𝜂 > 0,       ℱ𝑐[𝑔(𝜂)] = 𝑔(𝑟) = �2
𝜋 ∫ 𝑔(𝜂) cos(𝑟𝜂)𝑑𝜂∞

0             𝑟 > 0     ⋯ (𝑎)

for 𝜂 > 0,       ℱ−𝑐[𝑔(𝜂)] = 𝑔𝑟(𝑟) = �2
𝜋 ∫ 𝑔(𝜂) cos(𝑟𝜂)𝑑𝜂∞

0         𝑟 < 0     ⋯ (𝑏)
              (10.30) 

If ( , , ) 0rw p η τ →  and ( , , ) 0rw pη η τ →  as η →∞ , applying Fourier cosine Transform to rwηη   

for 0η <  produces  

                              ℱ𝑐�𝑤�𝜂𝜂
𝑟 � = −𝑟2𝑤� 𝑟(𝑝, 𝑟, 𝜏) + ��2

𝜋
𝑤�𝜂

𝑟�
𝜂=0

 .                                     (10.31) 

Next, let’s define the forward and inverse Fourier cosine transform for 0η < , 

 

0

0

2( , , ) ( , , ) ( , , ) cos( ) for 0

2Inversion formula : ( , , ) ( , , ) cos( )

r r r
c

r r

w p w p r w r d

w p w p r r dr

η τ τ ξ η τ η η η
π

η τ τ η
π

∞

∞

−

−

  = = < 

=

∫

∫

  

 


 .           (10.32) 

By Equation (10.30), Equation (10.32) is true for 0η < .   

Applying the cosine Fourier Transform to the rail’s PDE in Equation (10.25) with Equations 

(10.31) and (10.32) produces the following result, 
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             �2
𝜋 ∫ 𝑤𝜏

𝑟�0
−∞ cos(𝑟𝜂)𝑑𝜂 = �2

𝜋 ∫ {𝑣̅(−𝑖𝑝)𝑤� 𝑟0
−∞ + 𝛾𝑤�𝜂𝜂

𝑟 } cos(𝑟𝜂) 𝑑𝜂    (10.33) 

where each term of Equation (10.33) becomes  

� 𝑤𝜏
𝑟�

0

−∞
cos(𝑟𝜂)𝑑𝜂 =

𝜕
𝜕𝜏

� 𝑤� 𝑟
0

−∞
cos(𝑟𝜂) 𝑑𝜂 = �

𝜋
2

𝑤𝜏�𝑟 

� 𝑣̅(−𝑖𝑝)𝑤� 𝑟
0

−∞
cos(𝑟𝜂) 𝑑𝜂 = 𝑣̅(−𝑖𝑝) � 𝑤� 𝑟

0

−∞
cos(𝑟𝜂) 𝑑𝜂 = �

𝜋
2

𝑣̅(−𝑖𝑝)𝑤� 𝑟 

∫ 𝛾𝑤�𝜂𝜂
𝑟 cos(𝑟𝜂) 𝑑𝜂0

−∞ = 𝛾�𝜋
2

[−𝑟2𝑤� 𝑟 + �2
𝜋

𝑤�𝜂
𝑟(𝑝, 0, 𝜏)]. 

Therefore, Equation (10.33) can be simplified as 

                                     𝑤𝜏�𝑟 = 𝑣̅(−𝑖𝑝)𝑤� 𝑟 + 𝛾[−𝑟2𝑤� 𝑟 + �2
𝜋

𝑤�𝜂
𝑟(𝑝, 0, 𝜏)]                          (10.34) 

Observe Equations (10.22) ~ (10.24).  Each equation shows the interface boundary conditions for 

three different cases in the complex Fourier transform domain.  Three cases are ①the uniform 

frictional heat partitioning value along the interface, ②the uniform pressure value along the 

interface, and ③ the uniform frictional heat partitioning value and pressure value along the 

interface.  For any case, 𝑤�𝜂
𝑟(𝑝, 0, 𝜏) = 𝑄𝑖(𝑝, 𝜏) , 𝑖 = 1, 2, 3.   After applying Fourier cosine 

transform over 0η−∞ < <  , the rail’s PDE system, Equation (10.34), becomes 

𝑃𝐷𝐸 ∶    𝑤�𝜏
𝑟 = −𝑖𝑝𝑣𝑤� 𝑟 − 𝛾𝑟2𝑤� 𝑟 + 𝛾�2

𝜋
𝑤�𝜂

𝑟(𝑝, 0, 𝜏) 
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                                     𝑤�𝜏
𝑟 + 𝑤� 𝑟(𝑖𝑝𝑣 + 𝛾𝑟2) = 𝛾�2

𝜋
𝑄(𝑝, 𝜏)                                 (10.35) 

𝐼. 𝐶. ∶ 𝑤� 𝑟(𝑝, 𝑟, 0) = 0 

where 𝑄(𝑝, 𝜏) any 𝑄𝑖(𝑝, 𝜏) as defined in Equations (10.22) ~ (10.24).  Multiplying Equation 

(10.35) by the integrating factor 2 2

0
exp[ ] exp[ ]( ) ( )ipv r d ip r

τ
γ τ ξ τ γ τ+ +=∫  reduces it to  

𝜕
𝜕𝜏

[(𝑒𝑖𝑝𝜉(𝜏)+𝛾𝑟2𝜏)𝑤� 𝑟] = (𝑒𝑖𝑝𝜉(𝜏)+𝛾𝑟2𝜏)𝛾�2
𝜋

𝑄(𝑝, 𝜏) 

𝑤� 𝑟 = �𝑒−𝑖𝑝𝜉(𝜏)−𝛾𝑟2𝜏� � �𝑒𝑖𝑝𝜉�𝜏′�+𝛾𝑟2𝜏′� 𝛾�2
𝜋

𝑄(𝑝, 𝜏′)
𝜏

0
𝑑𝜏′ 

                                     = 𝛾�2
𝜋 ∫ �𝑒−𝑖𝑝�𝜉(𝜏)−𝜉�𝜏′��−𝛾𝑟2(𝜏−𝜏′)� 𝑄(𝑝, 𝜏′)𝜏

0 𝑑𝜏′                          (10.36) 

 From Table of Integrals, Series, and Products (94), the formula 3.896.4 is 

∫ 𝑒−𝛽𝑥2 cos(𝑏𝑥)∞
0 𝑑𝑥 = 1

2 �
𝜋
𝛽

exp �− 𝑏2

4𝛽
�.  By letting 𝛽 = 𝛾(𝜏 − 𝜏′) and 𝑏 = 𝜂, 

∫ 𝑒−𝛾(𝜏−𝜏′) 𝑥2 cos(𝜂𝑥)∞
0 𝑑𝑥 = ∫ 𝑒−𝛾(𝜏−𝜏′) 𝑥2 cos(𝜂𝑥)0

−∞ 𝑑𝑥 = 1
2 �

𝜋
𝛾(𝜏−𝜏′) 

exp �− 𝜂2

4𝛾(𝜏−𝜏′) 
� because 

the integrant is an even function.  Using the inversion Fourier cosine transform formula in 

Equation (10.32), Equation (10.36) becomes 

𝑤� 𝑟(𝑝, 𝜂, 𝜏) = �2
𝜋

� 𝑤� 𝑟(𝑝, 𝑟, 𝜏) cos(𝑟𝜂)
0

−∞
𝑑𝑟 
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=
2
𝜋

𝛾 � [� 𝑒−𝛾𝑟2�𝜏−𝜏′� cos(𝑟𝜂)
0

−∞
𝑑𝑟]𝑒−𝑖𝑝�𝜉(𝜏)−𝜉�𝜏′��𝑄(𝑝, 𝜏′)

𝜏

0
𝑑𝜏′ 

                       = �𝛾
𝜋 ∫ 1

√𝜏−𝜏′ 
exp �− 𝜂2

4𝛾(𝜏−𝜏′) 
� 𝑒−𝑖𝑝�𝜉(𝜏)−𝜉�𝜏′��𝑄(𝑝, 𝜏′)𝜏

0 𝑑𝜏′                        (10.37) 

Next, apply the inversion formula for complex Fourier transform (Equation (10.19)) to Equation 
(10.37) to produce  

𝑤𝑟(𝜉, 𝜂, 𝜏) =
1

√2𝜋
� 𝑒−𝑖𝑝𝜉𝑤� 𝑟(𝑝, 𝜂, 𝜏)

∞

−∞
𝑑𝑝 

=
1

√2𝜋
� 𝑒−𝑖𝑝𝜉�𝛾𝜋 �

1
√𝜏 − 𝜏′ 

exp �−
𝜂2

4𝛾(𝜏 − 𝜏′) 
� 𝑒−𝑖𝑝�𝜉(𝜏)−𝜉�𝜏′��𝑄(𝑝, 𝜏′)

𝜏

0
𝑑𝜏′

∞

−∞
𝑑𝑝 

                   = √𝛾
√𝜋 ∫ 1

√𝜏−𝜏′ 
𝑒− 𝜂2

4𝛾(𝜏−𝜏′) 𝜏
0 [∫ 𝑒−𝑖𝑝�𝜉(𝜏)−𝜉�𝜏′�+𝜉�∞

−∞ 𝑄(𝑝, 𝜏′)𝑑𝑝]𝑑𝜏′.                  (10.38) 

In Equation (10.20), ( , )Q p τ  is defined with Heaviside function.  With this definition, rw  can be 

further simplified to 

𝑤𝑟(𝜉, 𝜂, 𝜏) = �𝛾
𝜋

𝐶𝑟 ∫ 1
√𝜏−𝜏′ 𝑒

−𝜂2

4𝛾�𝜏−𝜏′��𝐻(1 − 𝑧2)�1 − 𝛼(𝑧, 𝜏′)�𝑞(𝑧, 𝜏′)�𝑑𝜏′𝜏
0 .                  (10.39) 

where ( ) ( )z ξ τ ξ τ ξ′−= + , *
( )

r
r

m a

y
k T

C
T

=
−

and 
r

s

κγ
κ

= .   

A.3 Lemma  ( )
1

2

1

h h1 H(1 x h )dx H(1 )(1 )
2 2 2−

− + = − −∫ for 𝒉 ∈ ℝ 

This appendix derives the results for Equation (3.22), Section 3.2.  As observed in Figure 14 in 

Section 3.2, when 2( ) 1 ( ) 0y x x h= − + = , the x-intersection points are and1 1xx h h== −− +− .  

If the slipper’s length is assumed to be 2, the endpoints of slipper’s front and back are 1h− −  and 
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1h− + .  For 1 1x− ≤ ≤ , let’s evaluate  
1 2

1

1 (1 ( ) )
2

H x h dx
−

− +∫  in 1 1x− ≤ ≤  with varying h values.  

There are four cases to consider; i) | | 2h− > , ii) 0h− = , iii) 2 0h− < − <  and iv) 0 2h< − < .   

 

(i)                                                      (ii) 

 

 

(iii) 

Figure 35. Graphs of  2( ) 1 ( )y x x h= − +  for the Cases of i), ii) and iii) 

i) For | | 2 2 or 2h h h→ < −> >− , 
1 12

1 1

1 1(1 ( ) ) 0 0
2 2

H x h dx dx
− −

− + = =∫ ∫ . 

ii) For 0h− = , 
1 12

1 1

1 1(1 ( 1) ) 1
2 2

H x h dx dx
− −

− + = =∫ ∫ . 
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iii) For 2 0 0 2h h− < − < → < < ,

1 1

1 1

1 2 2 2

1 1 1

1 1

1 1(1 ( ) ) (1 ( ) ) (1 ( ) )
2 2

1
2
1 ( 1 1)

1

2 2

0

1

h

h

h

h

H x h dx H x h dx H x h dx

dx dx

hh

− − − +

− − +

− +

− +

 
  

 

− + = − + + − +

= +

− + +

 

== −



∫ ∫ ∫

∫ ∫  

iv) For 0 2 2 0h h< − < → − < < , similar to upper case but the lower boundary changes, 

1 1

1 1

1 2 2 2

1 1 1

1 1

1 1(1 ( ) ) (1 ( ) ) (1 ( ) )
2 2

1
2
1 (1 1)

0

2 2

1

1

h

h

h

h

H x h dx H x h dx H x h dx

dx dx

hh

− − − −

−

−

−

−

− −

−

− + = − + + − +

=

 
  

 
 +

+ += = +

 

∫ ∫ ∫

∫ ∫  

Therefore, 
1 2

1

| |1 for | 2|

for |

1 | | | |(1 ( ) ) (1 )(1 )2
2 2 20 | 2

h h h hH x h dx H
h

−

 − <− + = = − −
 ≥

∫ .   (10.40) 

A.4 Derivation of the Heat Partition Function in the Laplace Transform Domain   

This appendix shows the derivation of slipper’s heat partitioning function using the 

slipper and rail’s averaged interface temperature, which is the solution to Equation (0.66) in 

Section 3.2. 

In Section 3.2, the solutions to the rail and slipper’s temperature distribution in 2 

dimensions, Equations (3.10) and (3.17), were found.  Equation (3.20) shows the rail and 

slipper’s interface temperature distributions by letting 0η =  and Equation (3.21) shows that the 

integration along the contact interval 11 l− ≤ ≤   is used to calculate the averaged slipper and 
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rail’s interface temperatures.  Using the Carslaw and Jaeger assumption of matching the slipper 

and rail’s averaged interface temperature, the slipper’s heat partitioning function ( )α τ is found 

by solving Equation (3.23) in Section 3.2. This equation is further reduced by assuming the 

slipper is at constant velocity vo . The resulting equation is    

                        ∫ 1
√𝜏−𝜏′ �1 + 𝛽𝐾(𝐡)�𝛼(𝜏′)𝑞(𝜏′)𝑑𝜏′𝜏

0 = 𝛽 ∫ 1
√𝜏−𝜏′ 𝐾(𝐡)𝑞(𝜏′)𝑑𝜏′𝜏

0          (10.41) 

  where 𝛽 = √𝛾𝐶𝑟
𝐶𝑠

= 𝑘𝑠

𝑘𝑟 �𝜅𝑟

𝜅𝑟 and 𝐾(𝐡) = 𝐻(1 − 𝑣0�𝜏−𝜏′�
2

) �1 − 𝑣0|𝜏−𝜏|
2

� . 

Using the Laplace Transform as given by ℒ{𝑓(𝑡)} = ∫ 𝑓(𝑡)𝑒−𝑠𝑡∞
0 𝑑𝑡 = 𝐹(𝑠), and 

recognizing that Equation (10.41) is a convolution, produces  

ℒ{𝛼𝑞}ℒ �
1

√𝜏
+ 𝛽

𝐾(𝐡)
√𝜏

� = ℒ{𝑞}𝛽ℒ �
𝐾(𝐡)

√𝜏
� 

ℒ{𝛼𝑞} �ℒ �
1

√𝜏
� + 𝛽ℒ{

𝐾(𝐡)
√𝜏

}� = ℒ{𝑞}𝛽ℒ �
𝐾(𝐡)

√𝜏
� 

ℒ{𝛼𝑞} ��
𝜋
𝑠

+ 𝛽ℒ{
𝐾(𝐡)

√𝜏
}� = ℒ{𝑞}𝛽ℒ �

𝐾(𝐡)
√𝜏

� 

                                 ℒ{𝛼𝑞} = ℒ{𝑞}𝐵(𝑠)                                                 (10.42a) 

where  

 

( )

( )
( )

K
s

K
s

B s
β

τ
π

β
τ

 
 

=  
 

+  
 

h

h




 (10.42b) 
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and  ℒ �𝐾(𝐡)
√𝜏

� = ∫ 𝑒−𝑠𝜏 1
√𝜏

𝐻 �1 − 𝑣0|𝜏|
2

� �1 − 𝑣0|𝜏|
2

� 𝑑𝜏∞
0 . 

When the pressure and velocity are assumed to be constants 0 0andP v respectively, then 

0 0 0( ) Pq qvτ µ=  is constant and Equation (10.42) is reduced to  

𝑞0ℒ{𝛼} = 𝑞0
1
𝑠

𝐵(𝑠) 

                                             ℒ{𝛼} = 1
𝑠

𝐵(𝑠)  .                                         (10.43) 

A.5 Lemma  lim ( )s sF s π→∞ =  

This lemma proves the result used in Equation (3.35) in Section 3.2.   

Proof: From Equation (3.31) with 
0

2sx
v

=     

 lim ( ) lim ( )s xsF s xF x→∞ →∞=   

 and from Equation(3.30)  

 1 1 e( ) (1 ) ( , )
2

x

xF x x
x x
γ

−

= − + . 

Hence 

 1 1 e 1lim ( ) lim (1 ) ( , ) ( )
2 2

x

x xxF x x
x x
γ π

−

→∞ →∞= − + = Γ =  (10.44) 
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A.6 Lemma 
2 1

1/2

0

1 2 !( , ) where
2 (2 1)!

k
x k

k k
k

kx x e A x A
k

γ
+∞

−

=

= =
+∑  

This lemma is used in Equation (3.31) in Section 3.2.  After applying a series of 

integration by parts, the result to  1( , )
2

xγ  is expressed in the infinite sum as follows: 

1/2 1

0

1/2

0

1/2 1/2

0

11/2
1/2

1

1/2

0

1

0

1

1( , )
2

( )

parts
1/ 2 1/ 2

(by )

x t

rx

rx

rx rx

dt

xdr

x d

x e t

e xr

e r

r x ee drr

r

x

γ − −

− −

− −

− − −

=

  = + 


=

 

=

∫

∫
∫

∫

 

13/2
1/2 3/2

0
0

2

1

11/2 3/2

0

2
1/2

1 1 3 1 3
· ·

2 2 2 2 2

1
2

1 1 3 1 3 5 3
· · · 22 2 2 2 2 2

(by parts)
1/ 2 1/ 2 3 / 2 3 / 2

( )1
( )

x
rx rx

x x
rx

k
x

x r xe e r

xe x e r

xx x

ex dr

ex dr

e
k

x

−
− − −

− −
− −

− −

    = + +     
 
 

= + 
 
 

 
Γ 

= + + + + 
Γ +

+




+



∫

∫

  

 

 1/2

0 3 / 2
1( , )
2 ( )

x k

k
x ex x

k
πγ

∞
− −

=

=
Γ +∑  .                                         (10.45) 

 

Let’s observe the expression ( 3 / 2)k
π

Γ +  in Equation (10.45).  It can be rewritten as  
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2 1

( 3 / 2) ( 3 / 2) 1 1 1( )( )
(1/ 2) 2 2 2

2 1 2 1 2 3 3 2 1· · · ·
2 2 2 2 2 2

(2 1)!
2 !k

k k k k

k k k

k
k

π

+

Γ + Γ +
= = + −

Γ
+ − −

=

+
=



  .                                  (10.46) 

Therefore, using Equation (10.46), Equation (10.45) becomes 

 
2 1

1/2

0

1 2 !( , ) where
2 (2 1)!

k
x k

k k
k

kx x e A x A
k

γ
+∞

−

=

= =
+∑  .                                 (10.47) 

A.7 Lemma 
0 0

1
2( 1)( ) ( 1)
2 3

x j x j
j j

j j

jF x e A x e j A x
j=

∞ ∞
−

=

−
+

+
= +

+
=∑ ∑   

 This lemma shows the result to Equation (3.35) in Section 3.2. 

0

0

0

0

1

1

2

1

1

1 1 1 2 !( ) ( ) where
2 (2 1)!

11 ( )
2

11
2

)

1
2

(

1

k

k

k

k

k
x

k k k

x

k k

x
k k

k

x
k k

k
k k
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Using the definition for 1and,k kA A + , the terms 0
1(1 )
2

A− and 1( )1
2k kA A− −  in Equation 

(10.49) become as follows: 
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With Equations (10.50a) ~ (10.50c), Equation (10.49) is 1
1

2( )
2 1

x
k

k
k

e kF x A x
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=
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=
+∑ . 

Let 1k j= + , then Equation (10.49) becomes 
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 A.8 Evaluating ( )tα  using Branch Cut Integral 

This appendix shows the derivation of the slipper’s heat partitioning function, Equation 

(3.38) in Section 3.2, by inverting the Laplace Transform.  The Inverse Laplace Transform given 

in Equation (3.37) reduces to the evaluation of a branch cut integral. Recalling Equations (3.35) 

and (3.32) 

{ } { } { } * ( )( )
1 * ( )

sF sq q B s q
sF s

βα
β

= =
+

   .                       (10.52) 

Where *
s r

r s

k
k

κβ
πκ

= .  Assuming a non-zero constant heat flux function 0( )q qτ = , the heat 

partition function { }α in Laplace Transform domain was given in Equation (3.26b) as 
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sF s
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=
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  .                         (10.53) 

Equation (10.53) is a rational function with a removeable simple pole at s=0.  Further, the 

function1 * ( )sF sβ+  has no roots in complex plane.  Using the inverse Laplace Transform 

formula on Equation (10.53), the heat partition function is then given by 

 1 * ( )( )
2 (1 * ( ))

st

Br

e sF st ds
i sF ss

βα
π β

=
+∫                                           (10.54) 

where 1/2 3/2 0

0 0

1 2 2( ) ( , ) ( , )
2 2

3
2

vs sF s s s
v v

γ γ− −= − .  Set 0

2
vs x=  then, as observed in Equation (3.31),  

 1/20 0( ) ( ) ( ) ( )
2 2
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With Equation (10.55), Equation (10.54) becomes 
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                                        (10.56) 

Because Equation (10.56) contains x , it has a branch point at x=0 and we shall take the 

branch cut along the negative real axis in the complex x plane.  Thus, introducing a loop contour 

around the branch cut integral along the negative real axis in the complex x plane is equivalent to 

evaluating Equation (10.56) for the heat partition function ( )tα .    
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Figure 36. Branch Cut Integration Along the Negative Complex Axis 
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Using the upper and lower branches in Equation (10.57), Equation (10.56) becomes 
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Some observations about the function ( )F z  would be useful here. Using Equation 

(3.27b) with the substitution 2

0

2sz
v
ξ= , we find 

1
2 2

0 00

2 2( ) 2 exp( )(1 )sF s d
v v

ξ ξ ξ= − −∫ .  

Referring to Equation(10.55) and replacing 02s v with z results in the equation 



193 

 

 

2
1

2

0
3/2( ) 2 ( 1 (2 1

2
1 ) ) ( )z

ze z erf zz
z

F e d
z

ξ ξ ξ π−
−

+ −= − =∫  (10.59) 

Integrating this representation for ( )F z  by parts also leads to the series given in Equation 

(10.51). Further, we see that for all real values of x , ( )F x is real and ( ) 0F x > .  Now by the 

Schwarz Reflection Principle, it follows that  ( *) *( )F z F z= . Here, * is the complex conjugate 

operator.  

A.9 Derivation of ( )iv t and 0 ( )v t  

This appendix derives to the expression for ( )iv t , 0 ( )v t and 1( )Nv t+ in Equation (7.13), 

Section 7.4 from Equation (7.12).  First let ( ) ( , )i it w tv ξ=  , then 
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Into Equation (7.12a) produces 
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  From the boundary condition in Equation (7.12c) 11 ( , ) (1,) )( 0NNv wt t w tξ+ += = = , and 

from Equation (7.12b) 
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Solving Equation (10.61) for 0 ( )v t  produces 

 ( )
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0 1 2)2 ( ) 2( ) ( ) (1 ( ))( ( ) ( )
( ) a

m a

x m t xv t Q t h m t v t T v t
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A.10 Time to Reach the Melt Temperature Formulas  

 In this appendix the solution to the problem of time required to reach the melt 

temperature at the interface at the interface is developed. Two different velocity cases are 

considered and Equations (4.28) and (4.30) in Section 4.3 are derived.  The numerical results 

using the material’s with physical and thermal properties given in Table 1, are presented in Table 

2 and 3 in Section 4.3.   

Equation (4.25) states 

00 0
( ) (0, , ) ( ) (0,0, )mt

m m mT G t d Q G t d T
k
κξ ξ ξ τ τ τ

∞
+ − =∫ ∫ .   (10.63) 

If 0 ( ) aT Tξ =  , then 
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With 0(( )) P tQ t q aαµ= +  and (0,0, ) 1
( )m
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G
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t τ
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−

 , Equation (10.64) becomes 
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Let mt τ β− =  , which implies d dβ τ= −   and mtτ β= −  .  Then, Equation (10.65) is rewritten as 
the following 
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If 0a =  , then  
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If 0a ≠  , then let 2
mt s= .  Then, Equation (10.67) 
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