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A. Setup

For these simulations, we generated a zeroth-order dark beam
with β � 1 and α � −1 using both the source’s coherent-mode
representation [3] and our genuine CSD criterion method. To
validate the higher-order beam analysis in Section 2.C, we also
generated a higher-order dark beam with β � 1, α � −0.5, and
n � 4. We discretized these sources using 512 × 512 computa-
tional grids with grid spacings equal to 78.125 mm as we show
in Code 1, Ref. [33].

When generating the zeroth-order beam using the source’s
coherent-mode representation, we used 50 coherent modes,
i.e.,

W � � 1, � 2� �
X50

m�−50

	1� α�−1�m
Jm�βρ1�

× exp�−jmϕ1�Jm�βρ2� exp�jmϕ2�, (24)

to approximate the infinite series in Eq. (4). For both the zer-
oth-order and n � 4 higher-order dark sources realized using
the genuine CSD criterion, we generated 100,000 optical field
instances to form the dark beams. From these 50 coherent

modes and 100,000 field realizations, we computed the spectral
densities S and CSD functions W �x1, 0, x2, 0�.

The theoretical S and W for zeroth-order and higher-order
dark and antidark beams are given in Eqs. (2) and (23) (for S)
and Eqs. (15) and (20) (for W ), respectively. The stochastic
field realization that produces both zeroth-order and higher-or-
der beams is given in Eq. (18), with the v drawn from Eq. (15)
for zeroth-order beams and Eq. (20) for higher-order beams.

To quantify the convergence and performance of our
approach, we computed the root-mean-square errors (RMSEs)
and correlation coefficients ρ, i.e.,
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(25)

where N 2 � 5122 was the number of pixels in an image, k was
a discrete pixel index, and S̄ was the average value of the spectral
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Fig. 2. Zeroth-order dark beam results with α � −1 and β � 1. (a) S theory [Eq. (2)], (b) S 50 coherent modes [Eq. (24)], (c) S genuine CSD
criterion 100,000 field realizations [Eqs. (18) and (19)], (d) W �x1, 0, x2, 0� theory [Eq. (1)], (e) W �x1, 0, x2, 0� 50 coherent modes [Eq. (24)],
(f )W �x1, 0, x2, 0� genuine CSD criterion 100,000 field realizations [Eqs. (18) and (19)], (g) two-dimensional root-mean-square error (RMSE) and
correlation coefficient ρ for the coherent modes S computed against S theory versus mode number, and (h) two-dimensional RMSE and correlation
coefficient ρ for the genuine CSD criterion S computed against S theory versus trial number.
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density, versus the Monte Carlo trial number or coherent-mode
number (whichever was applicable).

We performed these simulations using MATLAB R2017a.
The MATLAB scripts (.m files) can be found in Code 1,
Ref. [33].

B. Results and Discussion

Figures 2 and 3 show the zeroth-order and n � 4 higher-order
dark beam results, respectively. Figures 2(a)–2(c) show the
theoretical, coherent modes, and genuine CSD criterion
spectral densities S, respectively. Figures 2(d)–2(f ) show the
same results forW �x1, 0, x2, 0�. Lastly, Figs. 2(g) and 2(h) show
the RMSE and ρ results versus mode and Monte Carlo trial
numbers, respectively. Figure 3 is organized in the same way
as Fig. 2, except there are no coherent modes results.
Figures 2(a)–2(c), 2(d)–2(f ), 3(a)–3(b), and 3(c)–3(d) are
plotted on the same false color scales represented by the color
bars above the respective subfigure groupings.

As evidenced by Figs. 2(a)–2(f ) and 3(a)–3(d), the
simulated results are qualitatively in excellent agreement
with the theoretical predictions. The quantitative results in

Figs. 2(g) and 2(h) show unequivocally that the coherent modes
approach converges much faster and to a much smaller residual
error (and higher ρ) than the genuine CSD method. The
“knees” in the ρ curves are at approximately 25 modes for the
zeroth-order coherent modes result [Fig. 2(g)], and at approx-
imately 250 trials for both the zeroth-order and higher-order
genuine CSD results [Figs. 2(h) and 3(e), respectively]. The
“stair-step” behavior of the coherent modes RMSE and ρ results
[Fig. 2(g)] is due to the fact that when α � −1, the even m
eigenvalues are zero; therefore, those terms of the series do
not contribute to reducing the RMSE or increasing ρ.

The observation that coherent modes is in many respects
superior to the genuine CSD approach, insofar as it pertains
to dark and antidark beams, is not surprising. The coherent
modes—Bessel beams—look much more like the dark and
antidark CSD function than tilted plane waves. This generally
explains the convergence and error results.

We note that the benefit of the genuine CSD approach is its
simplicity. The generation of higher-order dark and antidark
beams is a good example of this. The same field realization that
produces a zeroth-order beam also produces a higher-order dark
and antidark beam. This is not the case for the coherent modes
approach, where only the coherent-mode representation for the
zeroth-order dark and antidark beam is known.

4. CONCLUSION

In this paper, we presented a method to generate dark and
antidark beams using the genuine CSD function criterion.
To date, these partially coherent sources have been generated
using the source’s coherent-mode representation and by trans-
forming a J0-Bessel correlated source using a wavefront-folding
interferometer. We generalized these sources, producing
higher-order dark and antidark beams. The stochastic field in-
stance that produced these partially coherent sources was sim-
ply a weighted sum of randomly tilted “forward” and “reverse”
propagating plane waves.

To validate our analysis, we performed wave-optics simula-
tions in which we generated traditional, zeroth-order, and
higher-order dark beams. We compared the simulated results
to the corresponding theoretical predictions and found them to
be in excellent agreement. In addition, we found, not surpris-
ingly, that generating zeroth-order dark and antidark beams
using the source’s coherent-mode representation was superior
to our genuine CSD criterion approach. Although the coherent
modes method converged faster and to a smaller residual error,
the benefit of our approach was its simplicity—the same field
instance that produced a zeroth-order beam also produced a
higher-order dark and antidark source. This was not the case
for the coherent modes approach.

Dark and antidark beams, being the incoherent weighted
sum of randomly tilted plane waves, can easily be synthesized
in practice using a spatial light modulator or, simpler still, two
tip-tilt, fast steering mirrors. The dark and antidark beam syn-
thesis approach presented here will be useful in any application
that uses these sources. These applications include, but are not
limited to, optical trapping of atoms, particle manipulation,
and medicine.
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Fig. 3. Higher-order dark beam results with α � −0.5, β � 1, and
n � 4. (a) S theory [Eq. (23)], (b) S genuine CSD criterion 100,000
field realizations [Eqs. (18) and (20)], (c) W �x1, 0, x2, 0� theory
[Eq. (22)], (d) W �x1, 0, x2, 0� genuine CSD criterion 100,000 field
realizations [Eqs. (18) and (20)], and (e) two-dimensional root-
mean-square error (RMSE) and correlation coefficient ρ for the genu-
ine CSD criterion S computed against S theory versus trial number.
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