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Abstract: In this paper we present a design concept for 3D plasmonic scatterers as high-
efficiency transmissive metasurface (MS) building blocks. A genetic algorithm (GA) routine
partitions the faces of the walls inside an open cavity into aM x N grid of voxels which can be
either covered with metal or left bare, and optimizes the distribution of metal coverage needed
to generate electric and magnetic modes of equal strength with a targeted phase delay (Φt) at
the design wavelength. Even though the electric and magnetic modes can be more complicated
than typical low order modes, with their spectral overlap and equal strengths, they act as a
Huygens source, with the accompanying low reflection magnitude. Square/hexagonal voxels
inside square/rectangular cavities are thoroughly analyzed for operation at 8 µm, although the
technique can be applied to different cavity geometries for operation across the electromagnetic
spectrum. Results from full-wave simulations show the GA routine can repeatedly pinpoint
scatterer geometries emitting at anyΦt value across 2π phase space with transmittances of at least
60%, making these MS building blocks an attractive plasmonic alternative for practical optical
applications. Full-scale metasurface devices are calculated from near-fields of the individual
elements to validate the optical functionality.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The engineering of a surface for localized control of the phase of emitted light has been
employed for decades; known early developments resided in the radio frequency (RF) regime
for the advancement of low-mass beam control [1]. In the past seven years, however, these
concepts have re-emerged as a topic of interest under the overarching “metasurfaces” moniker,
with simulation and fabrication advances encouraging developments at frequencies previously
considered infeasible. Since the seminal two-dimensional (2D) plasmonic works in infrared (IR)
and telecom wavelengths [2–4], metasurface research has expanded to nearly every possible
corner of electromagnetic design. In terms of spectrum, efforts have spanned RF [5–7], THz
[8,9], IR [2,10,11] and near-IR/visible regimes [12–14]; in terms of application, aside from the
multitude of lensing and beamsteering functions, metasurfaces have been implemented for other
novel wavefront manipulations, such as compound lensing, optical vortex beam formation, and
polarization conversion [15,16]; in terms of constituent material base, plasmonics have generally
ceded popularity to dielectrics, as interests have shifted towards optical applications in the visible
regime [17]; and finally, in terms of architecture, 2D works dominated early, whereas high-aspect
ratio dielectrics [18–20] and stacked multi-layer pseudo-3D plasmonics now reign.

Despite the wide range of materials, architectures and designs, a primary challenge still remains
in attaining an efficient comparison to conventional bulk optics. Single layer 2D plasmonics
have fared the worst in this, as it can be shown by applying the surface equivalence principle
to Fresnel coefficient equations that mono-modal scatterers illuminated by linearly polarized
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light cannot attain the full 2π phase control necessary for beam control, nor can any multi-modal
scatterer reach an efficiency greater than 25% if linear-to-linear polarization conversion is required
[21,22]. On the other hand, much higher efficiencies have been reported for multi-layer plasmonic
structures, with the most successful of these having incorporated multiple Huygens-like source
elements. A Huygens source is derived from the equivalence principle, which states that a surface
exhibiting equal electric and magnetic current amplitudes with appropriate phase can completely
eliminate backward wave propagation [23]. These behaviors are emulated in a metasurface
through the subwavelength superposition of electric and magnetic responses, demonstrated
in various designs using independent capacitive/inductive circuit elements or cascaded sheet
admittances acting as control mechanisms [8,23–34].
However, a majority of Huygens metasurfaces have been designed for operation at THz

and lower frequencies. At higher frequencies, Ohmic loss is significant and often the lumped
circuit elements utilized are dimensionally challenging to fabricate or the precise control of
resistive/reactive elements are functionally difficult to implement (e.g., placing passive resistive
elements into LC circuits to control phase [27]). Due to these challenges, attempts to attain full
phase coverage at IR frequencies using plasmonic Huygens’ sources have been sparse, and have
often required a different design approach: in addition to attempts at the sheet admittance approach
[32,33], optical lumped LC circuits [20], nanoparticle arrays [33] and coupled waveguides [35]
have been proposed to provide the out-of-plane (OOP) features necessary for proper mode
generation. None of these metallic Huygens source designs have delivered a high transmittance
(> 40%) across the entire 2π phase space, in practice; therefore, a continued pursuit of metasurface
design concepts is warranted.

In this work, we present an alternative design approach for a plasmonic metasurface architecture,
one which does not need explicit modal controls input by a designer and is viable at high
frequencies. The metasurface design is focused on a “blank slate” approach, where there are no
a priori constraints on the manner in which the electric and magnetic modes are formed or how
many modes are necessary to produce the desired phase retardation. This is executed via a 3D unit
cell that is populated with voxelated binary grids both in-plane and out-of-plane, and a genetic
algorithm (GA) routine which evolves the voxel material into the scatterer topologies needed for
generation of electric and magnetic modes to provide the desired performance metrics (target
phase retardation, maximum transmittance, and minimum reflectance). This means multiple
modes of each kind can coexist locally within a single unit cell, and the result is a metasurface
element that looks nothing like a conventional scatterer, topologically. The concept that a GA
implementation can develop effective—but exotic—scattering elements has been proven, notably
in works on 2D planar metamaterials [36–41]; however, this is the first known implementation of
this theory for a realizable 3D metasurface element, and boasts an extremely modular design,
extendable to an arbitrary number of grids made of arbitrary voxel tessellations inside an arbitrary
volumetric geometry.

The transmissive elements can attain any phase value by design, spanning the entirety of the
0-2π phase space and with simulated transmission efficiencies of at least 60%, and thus have
great potential to serve as building blocks for metasurface applications. While our examples are
presented at long-wave infrared (LWIR) wavelengths, the approach is scalable to any spectral
regime. We first examine the proposed design methodology; then, we validate the GA routine
numerically through an example design optimized for a 180◦ phase shift from the 0◦ phase
reference and demonstrate the capability of the GA routine to target any arbitrary phase.

2. Unit cell design

While the concept of a plasmonic Huygens source is straightforward (e.g., see supporting
information for [27,33]), the means of modifying a specific architecture to access a full 2π phase
space can be challenging. The solution presented in previously mentioned works is generally the
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same conventional framework: control the capacitive/electrical response via dipole-like surface
currents along the sheets, and control inductance/magnetic response via circulating currents
between (planar) or along (out-of-plane) the sheets. Design methods which do not begin with a
pre-supposed solution can also be used to design the meta-atoms. Neural networks can be used
to design atoms [42]. Rather than assuming some determinable combination of dipole lengths
and loop radii are ideal for phasing the Huygens’ sources, we decided to pursue an evolutionary
optimization approach, where the scatterer begins as a random geometry and evolves into the
most effective design by means of a genetic algorithm, in a binary manner similar to previous
electromagnetics approaches [36–42].
The unit cell model employed for this endeavor is based on a 3D fabrication phenomenology

termed “membrane projection lithography” (MPL), developed at Sandia National Laboratories
[43,44]. The baseline structure consists of an array of silicon (Si) boxes with cubic cavities of
air open on one side. In principle, up to four vertical internal faces and the horizontal floor can
be decorated with gold (Au) scatterers. Each face is broken into a grid of voxels with a given
resolution, with a single voxel being made of either air or Au and representing the fundamental
building block for constructing the scatterer geometries. To show the available diversity in the
design architecture, Figs. 1(a), 1(b) and 1(c) give examples of a 7× 9 square grid with rectangular
spacing, a 7× 10 hexagonal (“hex”) grid containing n= 82 voxels (counting half-voxels) inside a
cubic cavity and a 7× 9 offset square (“brick”) grid containing n= 68 voxels inside a rectangular
cavity, respectively. Both the hex grid and brick grid avoid the issue of having “corner-to-corner”
voxels touching. Fabrication resolution limits prohibit the formation of sharp corners, making
it difficult to resolve such features, so that designs that depend on these features can suffer by
the formation of bridges or voids in the as-fabricated structure. By opting for the hex and brick
patterns, these patterns are avoided.

Each face in the interior of the unit cell could be independently optimized, potentially resulting
in up to five iterations of the MPL fabrication process, a time-consuming endeavor. One approach
to manage the fabrication complexity is to use designs which require a single membrane pattern,
evaporated multiple times within the unit cell. For instance, in Fig. 1(a) the two vertical faces and
the floor are decorated with a single pattern as a demonstration. Note that the pattern structure is
projected, so that for the right and left faces the top and bottom of the pattern are reversed. In
this case, even though three faces are decorated, only a single pattern is optimized. The simplest
alternative is to optimize a single pattern for a single face. For the balance of this work, only a
single face will be decorated with plasmonic structures.
Since it was expected that this MPL-based 3D design approach would generate non-analytic

solutions with complex geometries, the finite element analysis (FEA) software suite COMSOL
Multiphysics with its LiveLink for MATLAB module was employed to generate the total field
phase and amplitudes needed for the MATLAB-based GA calculations. Thus, a specific design is
evolved through the interplay of the FEA and GA processes, as summarized in the following. A
large initial population of models (“individuals”) are generated, each with random allocations of
voxels (“chromosomes”) on any or all faces. Each individual is uniquely defined by a string of n
parameters, with each element representing a single voxel and possessing a binary value of either
“1” for Au or “0” for air. The initial population is evaluated, performing an infinitely periodic
unit cell analysis to extract the S-parameters for the total field. Their transmittance (T= |S21 |

2,
co-polarized transmission) and phase values (Φ=∠S21) are compared against a two-valued
fitness function which seeks to maximize T at some targeted phase value (Φt), given as:

F(Φ,T) =
(
wΦ

σ2

|Φ − Φt |
2 + σ2

+ wT
|Φ − Φ0 |

|Φt − Φ0 |

)
T − Tlow
T0 − Tlow

(1)

where w is the weight applied to Φ or T, σ is a standard deviation defining a Lorentzian
distribution centered at Φt , Φ0/T0 is the phase/transmittance of the bare (unmetalized) Si cavity
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Fig. 1. (a) Model of the 3D unit cell, with identical 7× 9 square voxel layouts on two Si
walls and the floor of a cubic cavity. Examples of the (b) hexagonal and (c) brick voxel
layouts. (d) Fitness function F from Eq. 1 as a function of phase (Φ) and transmittance (T)
Φ0 = 62°. The contours of a particular solution are shown in black lines. The trajectory tends
to follow segments of constant fitness (denoted by =) and segments of increasing fitness (+).

array, and T low is a minimum acceptable value for T, chosen to be 0.3. Additional constraints
were applied to Eq.(1), setting F= 0 for any solutions to mitigate the possibility of solutions with
high T /low Φ and low T /high Φ from dominating. This accounts for the null region T > 0.7 As
can be seen from an example modified fitness function in Fig. 1(d) using the values Φt = 120◦
(red, dashed), Φ0 = 62◦ (black, dashed), solutions of constant F form contours (black, solid)
of increased curvature towards the desired solution (F → 1). The solution trajectory across
generations follows regions of constant fitness (denoted by the ‘=’) and regions where it cuts
across contours toward increasing fitness (+).
The population is ranked according to highest fitness F and competes in a steady-state,

tournament-style selection process, where ideally the fittest individuals are chosen as parents for
creation of a new generation of children. A single-point crossover takes a fraction f of a string
from one parent and a fraction (1 - f ) from the other parent to form the new child string; this
process is repeated Npop times to form the new generation, and then a mutation is applied to the
child string, randomly flipping a low percentage of the bits (nominally 2-3%) from 1→0 or 0→1
. The result is a new set of voxel allocations which are fed into the FEA computation as new
models and solved, iterated Niter times until a threshold variance from Φt and/or T0 is reached.

3. Simulation and analysis

3.1. Validation of genetic algorithm and MPL design

To validate the binary GA optimization, a series of elements were produced that enable full phase
coverage at a high transmittance. Using the reference phase of the unmetalized MPL cavity
of Φ0 = 62◦, the 2D solution spaces of a 8 hex layout in a rectangular cavity for an 8-element
discretization of Φt are arrayed in Figs. 2(a)–2(f), showing relative phase shifts from Φ0 of ∆Φ
=(a)-150° and -105°, (b) -60°, (c) -15°, (d) 30°, 75° and 120°, and (e) 165°. Element numbers are
linked to their grid layout below (blue=metal), with elements 1, 2 and elements 5, 6, 7 taken from
the same GA runs, as shown in Figs. 2(a) and 2(d). Dashed lines show the baseline transmittance
of the unmetallized cavity T0 = 0.746 (red), Φ0 (blue) and Φt (black), while yellow dots indicate
the performance metrics of the optimal elements chosen for experimental validation, presented in
a linear plot in (f). The cross-polarized transmission (Tcp)is negligible, indicated by the dashed
red curve near the origin in Fig. 2. (f). The grey dots in Fig. 2. (a)–Fig. 2. (e) are intermediary
generations. All of the GA runs have very similar characteristics: the same clustering of initial
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populations around Φ0 and T0 and final populations (white dots) around Φt ; large groupings
from which a near-continuum of Φ values can be extracted (improving computation efficiency),
and formation of a loose Pareto front—keep in mind some fronts are less well-defined than
others due to hitting a termination threshold before it could solidify. Generations will evolve
towards+ 180° or -180°, depending on which direction is the smallest ∆Φ; as can be seen in (e),
this sometimes means passing over the negative phase boundary to reach a positive phase value,
and vice-versa. The lowest transmittance was< T>= 0.60 (#7), while the average transmittance
was< T>= 0.66 and the average reflectance was<R>= 0.03. Finally, in this work we did not
enforce fabrication-specific constraints. Some of the evolved designs had closed loops in them
which cannot be suspended during fabrication. These designs are the dots on the target phase line
with transmittance greater than the chosen design, and were eliminated by inspection. Ultimately,
these fabrication constraints can be built into the evolution process.

Fig. 2. Results of GA optimizations of a 5× 8 hex grid, targeted for 45° relative phase
shifts from the reference phase of Φ0 = 62° (blue dash),(a) -150°, -105°; (b) -60°; (c) -15°;
(d)30, 75° and 120°; (e) 165°;Their associated grid designs are shown at the bottom. (f)
No element generated a smaller transmittance than T= 0.60 nor a reflectance larger than
R= 0.075, and all phase targets were reached to within 1°.

The source of the phase shifts can be explained through examination of the near-fields around
an example 7× 10 hex scatterer targeted at Φt = 65°, shown in Fig. 3 the (a) Hx and the (c) Ez
field components around the metasurface interface. Insets provide 4X scaling of (b) Hx and
(d) E for an enlarged unit cell, along with current densities (arrows). Wherever there is strong
rotation in the induced surface currents, there exists strong magnetic modes which can exhibit
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strong spatial variation in phase; likewise at narrow gaps in the scatterer geometry there are
strong electric modes. By the relation Z=Ez /Hx for a propagating plane wave, we can scale the
H-field by the impedance Z in terms of V /m, and we find that the mode strengths of the two
components are of the same order. With the close proximity of the electric and magnetic modes,
and their near-equal strengths, the Huygens criteria are achieved, and the resulting transmitted
total field (left of the unit cell in (a),(c)) is also of near-equal strength. These factors, along with
the demonstrated high transmittance and low reflectance (T= 0.63/R= 0.02 for this example),
strongly indicate the elements are behaving as Huygens’ sources.

Fig. 3. Near field distributions for the (a) transverse magnetic (Hx) and (c) co-polarized
electric fields (Ez) of an example optimized design, along with zoomed unit cells of (b) Hx
and (d) the normalized E. All fields are shown in terms of V /m to show that the electric and
magnetic modes are resonating at near-equal relative strengths, with (b,d) scaled down 4x to
better detail gradients in the modes.

As seen in Figs. 2(a)–2(e), early generations tend to swarm around the baseline solutions,
as sparsely populated grids will tend to poorly exhibit the resonant coupling needed for phase
retardation. However, as the voxels begin to evolve into capacitive and inductive geometries,
coupling improves and the continuum of Φ/T values becomes more accessible. This can be
seen by tracking the evolution of the individual with the highest F over several generations, as
seen in Fig. 4. The design layout (gold) of the randomized initial (i= 1) population is the least
ordered, and provides very few geometries for interaction with the incident light. As the grid
evolves to more contiguous topologies, with out-of-plane curvatures and close-packed capacitive
sub-elements, the localized modes appear. The GA routine advances designs where these modes
meet the phase and amplitude requirements, and suppress designs which do not. The parameter
space is vast: in this case, the hex layout consists of 82 unique voxels, and each voxel is a
parameter with a possible value of 1 or 0. To sweep the entire space of possible arrangements
would, by the Rule of Product, require 2n ≈ 5× 1024 solutions! The GA routine generally solves
in 2000-4000 individuals, or about 30-40 generations. While not an exhaustive search of the
space, given these considerations, our approach is an efficient means to generate acceptable
non-intuitive solutions out of an enormous solution space for a complex, 3D design in relatively
few iterations.

3.2. Full-scale device simulation

Full-scale metasurface devices cannot be efficiently modeled from such complex individual
unit cells using FEA solvers, so to simulate the response of a large array a vectoral diffraction
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Fig. 4. Evolutions of the voxel layouts (gold) from the highest F designs from an example
GA routine, from the initial population (i= 1) to where the “best” solution was determined at
generation i= 39. The transverse Hx field strength is underlaid. As voxel density increases
and coalesces into the early framework of scattering geometries, mode formation and strength
increases, and greater phase shifts are attained.

formulation of the Huygens principle was employed, namely a Stratton-Chu far-field projection:

Ē(r̄) = r̂ × i
1
2λ

∫∫
[n̂ × Ē′ − Zr̂ × (n̂ × H̄′)]ei

2π
λ r̄′ ·r̂dS̄′ (2)

where the tangential fields’ are taken from a homogeneous, closed boundary S, a distance λ0/4
away from the metasurface, n̂ is the unit normal to S, r , is the vector from the origin to S, Z is
the impedance µ/E, and r̂ is the unit vector from the origin to the point r. To ease the calculation,
the surface integrals can be discretized into i j uniformly-spaced (∆x, ∆z,) summations. For
projection onto a 2D-plane at x= 0 from a 1D metasurface, the field contribution from the kth

element in the device located at zk can be calculated at any point in the plane:

Ēk(x, y, z) = −i
e−i

2π
λ0

√
y2+(z−zk)2

2λ0(y2 + (z − zk)2)
∆x′∆z′

×
∑5

i,j=1



(
Ei,j
x′ y +

z√
y2+(z−zk)2

Hi,j
z′ (y

2 + (z − zk)2)
)
x̂(

Ei,j
z′ (z − zk) +

z√
y2+(z−zk)2

Hi,j
x′ y(z − zk)

)
ŷ(

−Ei,j
z′ y −

z√
y2+(z−zk)2

Hi,j
x′ y

2
)
ẑ


(3)

The resulting intensity profiles of (a) a 2mm beamsteerer and (b) a 3.8mm diameter lens are
shown in Fig. 5, operating at 8 µm. The beamsteerer consists of 108 supercells of eight unit
cells based on a square voxel tessellation and designed to emit at 23.5° to the surface normal,
with each supercell linearly arrayed in pairs of four distinct phase discretizations spanning 0°,
90°, 180°, and 270° relative phase shifts, whereas the lens was based on an 8-element hex voxel
tessellation and spans 3 complete phase cycles of 2π, with a designed focal length of f 0 = 7.5 cm.
While the beamsteerer emits at 25.8° (9% error) and the lens focuses at 7.35 µm (2% error), both
discrepancies can be attributed to the truncation of the device, and show trends of improvement
as the diameter increases. The lens is diffraction-limited to within 0.1%.
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Fig. 5. Calculated full-scale devices derived from far-field projections of near-field
simulations, at λ0 = 8 µm. (a) The 2mm beamsteerer is 9% off the designed angle of 23.5°,
and (b) the 3.8mm diameter lens is 2% off the designed focal length of 7.5mm, both due to
truncation.

4. Conclusion

In this paper, we proposed novel 3D plasmonic scatterer design concepts for use as building
blocks in practical metasurface applications. Using the real-world MPL structure as a basis, we
showed that by mating a GA optimization routine into a full-wave FEA solver we could generate a
scatterer with a Huygens-like response across the entire 2π phase space, and calculated full-scale
devices to confirm proper optical function. When normalized to the scattering losses of the
unmetalized rectangular cavities, transmittances of at least 60% were attained for any targeted
phase value. This is an unprecedented result for transmissive plasmonic metasurfaces operating
at high frequencies, and can be attributed to the OOP voxel distributions allowing multiple
distinct, but spatially-localized modes operating at near-equal strengths, disrupting the notion
that singular electric and magnetic modes must be controlled through independent mechanisms.
Our proposed OOP metasurface building blocks have great potential to produce highly-efficient
and extremely versatile low-profile optical devices.
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