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Single-pulse, Kerr-effect Mueller matrix LiDAR
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Abstract: We present a novel light detection and ranging (LiDAR) polarimeter that enables
measurement of 12 of 16 sample Mueller matrix elements in a single, 10 ns pulse. The new
polarization state generator (PSG) leverages Kerr phase modulation in a birefringent optical fiber,
creating a probe pulse characterized by temporally varying polarization. Theoretical expressions
for the Polarization State Generator (PSG) Stokes vector are derived for birefringent walk-off
and no walk-off and incorporated into a time-dependent polarimeter signal model employing
multiple polarization state analyzers (PSA). Polarimeter modeling compares the Kerr effect and
electro-optic phase modulator–based PSG using a single Polarization State Analyzer (PSA) and
a scattering sample yielding similarly good performance for both. We include results from an
experimental demonstration of the Kerr effect PSG.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Stokes vector and Mueller matrix polarimetry has been applied broadly in both laboratory
and remote sensing research. Polarimeters can be used to measure the state of polarization
of light (Stokes vector polarimetry) or to characterize the polarization dependent reflection,
transmission, and scattering of materials (Mueller matrix polarimetry). For example, laboratory
polarimetry has found utility in a diverse range of applications including biological tissue analysis
[1,2], nanostructure and metamaterial characterization [3,4] and materials characterization [5,6].
In the remote sensing domain, polarimetry has been employed for active imaging contrast
enhancement of scattering targets [7–9], characterization of airborne particles [10–12], and
vegetation classification [13,14].

Traditional Mueller matrix polarimeter designs, such as illustrated in Fig. 1(a), employ linear
polarizers and rotating quarter wave plates to measure the Mueller matrix of a sample [15,16].
In this design, a series of laser pulses are transmitted through the PSG with each pulse exiting
the PSG with a different polarization state due to the rotating quarter wave plate. Likewise,
in the PSA, different return polarization states are analyzed for each pulse due to the rotating
retarder. A sample’s Mueller matrix is estimated through serial measurements of the signal
transmitted/scattered from the sample, with each measurement employing a different illumination
polarization state and receiver analyzer state. In general, to measure the full Mueller matrix,
a minimum of 16 individual measurements is required and often results in a measurement
duration of seconds to minutes, depending on the polarimeter design. More recent designs have
employed electro-optic crystals and liquid crystals to produce the diversity of polarized transmit
and analyzer states necessary to measure the Mueller matrix [17–20]. Although these alternative
designs provide shorter measurement times compared to the rotating quarter wave design, they are

#388565 https://doi.org/10.1364/OE.388565
Journal © 2020 Received 22 Jan 2020; revised 1 Apr 2020; accepted 14 Apr 2020; published 22 Apr 2020

https://orcid.org/0000-0001-9540-7919
https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.388565&amp;domain=pdf&amp;date_stamp=2020-04-22


Research Article Vol. 28, No. 9 / 27 April 2020 / Optics Express 13695

ultimately limited by the need for multiple laser pulses for serial measurements. For measurements
requiring high temporal resolution or high spatial resolution from a moving platform, multi-pulse
measurement times may be unacceptable. Another drawback of conventional systems is the
complex opto-mechanical designs and control electronics which drive up cost, size, weight, and
power of sensors.

Fig. 1. (a) Conventional dual rotating wave plate polarimeter and (b) Proposed single pulse
LiDAR polarimeter design. The PSG exploits the Kerr effect by passing the pump laser
through a birefringent optical fiber. The detector processing chain uses a beam splitter (if
necessary) followed by one or more sub-PSA, each followed by a detector (D1, D2, D3).
Each sub-PSA may be composed of a rotated stationary quarter wave plate followed by a
linear polarizer or just a linear polarizer.

We propose a new architecture that simultaneously reduces hardware complexity and reduces
measurement time to nanoseconds, or less, depending on laser pulse width and PSA detector
bandwidth. The basic architecture is illustrated in Fig. 1(b); the PSG transmits a probe pulse with
a well-defined distribution of polarization states in time and the PSA analyzes the signal scattered
from the sample in time. If one knows the temporal polarization distribution of the probe pulse
and the temporal polarization distribution of the scattered signal measured through the PSA, the
intervening scattering sample Mueller matrix can be estimated. The probe pulse is produced by
coupling a linearly polarized pump laser to a birefringent optical fiber; through the nonlinear
Kerr effect, the time varying instantaneous pump power induces a time varying retardation in
the fiber, which produces a temporal distribution of polarization states. Recently, we analyzed a
more conventional way of producing this probe pulse through the use of an electro-optic retarder
[21]. In this approach a 20 ns high-voltage ramp is applied to a Pockels cell as a laser pulse
passes through. The voltage ramp induces a time varying retardation, which produces a probe
pulse with a time varying polarization state. In contrast to the Pockels cell approach, instead
of applying a time varying voltage, we apply a time varying pump laser power to produce a
time varying laser polarization. This is particularly interesting for a PSG as it is a very simple
opto-mechanical device with no electrical control and can be fusion spliced to a fiber laser to
create a monolithic PSG. In addition, as will be shown below, the fiber length, pump power, and
pump polarization angle can be tailored to optimize the probe pulse polarization distribution
relative to measurement accuracy.
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The general PSA system is of the division of amplitude type and is shown in Fig. 1(b); it
employs three sub-PSAs, which are generally sufficient to characterize the Stokes vector [22]. For
example, one may employ a linear polarizer at zero degrees, a linear polarizer at 45 degrees, and
a circular analyzer. In Fig. 1(b), each detector block measures both the transmitted and rejected
signals from each polarizer so that information about the two orthogonal states is available to
construct each Stokes vector element. The detector bandwidth is chosen to allow high fidelity
measurements of the polarization modulation at each sub-PSA. Due to the static birefringence
axes of the fiber and Pockels cell, both of these systems are limited to measuring 12 of 16
sample Mueller matrix elements [21]. As will be shown, reducing the PSA system to a single
elliptical analyzer, measuring right and left elliptically polarized light, enables measurement of
six Mueller matrix elements. An elliptical analyzer is a quarter wave plate at angle theta followed
by a linear polarizer. Although using just a single elliptical analyzer limits measurement of the
full Mueller matrix in general, using this concept in a monostatic configuration is consistent
with measuring the Mueller matrix of scattering surfaces that might be encountered in a remote
sensing application as their matrices tend to be diagonal [23–28]. In what follows, we will
begin with a general PSA design employing three sub-PSAs but then narrow the treatment to
the case focused on diagonal Mueller matrices. This is relevant to LADAR as the world is
generally composed of scattering materials having diagonal Mueller matrices and is also relevant
to laboratory applications requiring characterization of surfaces.

In the remainder of this paper we will develop the underlying theory describing the polarimeter
operation and experimentally analyze the concept. In Section 2 we will derive the Stokes vector
generated by the Kerr effect in the birefringent optical fiber and compare it to the Stokes vector
generated with a Pockels cell. In Section 3 we will develop a polarimeter system model and
consider the constraints linear algebra place on Mueller matrix measurement for a single PSA
receiver. In Section 4, the Cramer-Rao Lower Bound is employed to estimate measurement
accuracy and optimize system parameters. In Section 5. Monte-Carlo simulations are used to
quantify measurement accuracy versus signal to noise. Lastly, Section 6 outlines measurement
from an experimental demonstration.

2. Nonlinear optical polarization state generator

The Kerr effect is a well-known third order nonlinear optical process associated with processes
such as self-focusing, phase modulation, and four-wave mixing. Although considerable research
has focused on understanding the influence of self and cross-phase modulation on the polarization
state of a laser transmitted through an optical fiber, it is not clear that this knowledge has
transitioned to a useful application. As will be demonstrated below, phase modulation can
be leveraged as a polarization state generator to produce an optical pulse with time varying
polarization for an opto-mechanically simple, single pulse polarimeter PSG.
Consider the polarization maintaining fiber in Fig. 2; it has an indices of refraction nx and

ny along the x and y axes, respectively. The inherent birefringence in the fiber, δn = nx − ny,
results in a phase shift proportional to δn and fiber length L; it is independent of the laser power.
At sufficiently high pump laser power there occurs a nonlinear phase shift proportional to the
instantaneous optical power. Given the temporally varying power distribution, one can expect the
pump laser to induce a temporally varying relative phase shift, or polarization.
Now consider a field of the following form propagating in the fiber:

®E(x, y, z, t) =
[
x̂U(z, t) + ŷV(z, t)e−ik0(nx−ny)z

]
eikxz−iω0t (1)

where U, V represent slowly varying envelopes of z, t, k0 = 2π/λ0, kx = k0nx, and ky = k0ny. We
will use the following set of coupled differential equations corresponding to the limit of strong
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Fig. 2. Schematic of the experimental setup to obtain evolution of polarization along time
using a polarization maintaining fiber.

birefringence:

i
(
∂U
∂z
+

1
vgx

∂U
∂t

)
−
β′′0x
2
∂2U
∂t2
+ k0n2

[
|U |2 + A |V |2

]
U = 0 (2)

i
(
∂V
∂z
+

1
vgy

∂V
∂t

)
−
β′′0y

2
∂2V
∂t2
+ k0n2

[
|V |2 + A |U |2

]
V = 0 (3)

where vgx = c/ngx, vgy = c/ngy, with ngx and ngy representing the group refractive indices along
the x,y axes. β′′0x,y = d2k/dω2 denotes the dispersion coefficient evaluated at the carrier frequency
ω0, n2 stands for the nonlinear Kerr coefficient associated with silica glass, and A = 2/3 for glass
fibers.[29] We assume a monochromatic laser with a hyperbolic secant pulse shape of the form

P(t) = P0 sech2
(

t
τ0

)
(4)

where P0 = A2
0, A0 is the peak electric field strength, and τ0 is a temporal half-width parameter.

The pulse’s Full Width at Half Maximum (FWHM) is related to τ0 by

FWHM = 2 τ0 asech
(√

0.5
)
≈ 1.763 τ0. (5)

We will consider an optical pulse of approximately 10 ns in duration [FWHM], so the dispersion
coefficient in Eqs. (2) and (3) can be neglected. Now, we will analyze two cases: (1) a system
ignoring walk-off effects, and (2) a system including walk-off effects.

2.1. System without walk-off effects

In this case, the solution of Eqs. (2) and (3) is given by:

U(z, τ) = A0sech(τ) cosα exp
[
ik0n2 |A0sech(τ)|2

(
1 −

1
3

sin2 α
)

z
]

(6)

V(z, τ) = A0sech(τ) sinα exp
[
ik0n2 |A0sech(τ)|2

(
1 −

1
3

cos2 α
)

z
]

(7)

where τ = t/τ0 − z/(vgτ0), where τ0 is related to the FWHMwidth of the power envelope through
FWHM ∼ 1.76τ0, vg is the average group velocity, and α is the angle between the linearly
polarized field and the fiber x-axis (herein designated the “slow axis”) at the fiber input facet.
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2.2. System with walk-off effects

In this case, the solution of Eqs. (2) and (3) is given by:

U(z, τ) = A0sech(τ − ε) cosαeiψ (8)

V(z, τ) = A0sech(τ + ε) sinαeiφ (9)

where ψ and φ are given by:

ψ = lwk0n2 |A0 |
2

×
[
(τ + ε)sech2(τ − ε) cos2 α + A tanh(τ + ε) sin2 α + F(τ − ε)

] (10)

φ = lwk0n2 |A0 |
2

×
[
(τ − ε)sech2(τ + ε) sin2 α + A tanh(τ − ε) cos2 α + G(τ + ε)

] (11)

where lw = (τ0c)/(nx − ny) represents the walk-off length, ε = zδn/τ0c, and F(τ − ε), G(τ + ε)
are given by:

F(τ − ε) = −(τ − ε)sech2(τ − ε) cos2 α − A tanh(τ − ε) sin2 α, (12)

G(τ − ε) = (τ + ε)sech2(τ + ε) sin2 α + A tanh(τ + ε) cos2 α. (13)

Figures 3 and 4 show the evolution of the Stokes parameters, defined as:

S0 = |Ex |
2 +

��Ey
��2 (14)

S1 = |Ex |
2 −

��Ey
��2 (15)

S2 = ExE∗y + E∗xEy (16)

S3 = i
(
ExE∗y − E∗xEy

)
(17)

where Ex, Ey are obtained from Eq. (1). In Fig. 3, we observe that the walk-off effect is a slight
shift of the values of the Stokes parameters along time, and it does not represent a problem for
such large pulse duration (10 ns). Figure 4 shows the pulse polarization content on the Poincaré
sphere.
In the limit of no walk off, the Stokes vector can be written as

S = P(τ)



1

cos(2α)

cosψ sin (2α)

− sinψ sin (2α)


(18)

ψ =
k0z
3
(3δn + P(τ)n2 cos 2α) (19)

where we have written the instantaneous optical power as P(τ) = Ao2sech2τ and all Stokes
components are normalized to S0. The transverse coordinate z should be evaluated at the fiber
length L to obtain the Stokes vector at the fiber output. The term S1 is dependent only on the
optical power P(τ) and the input polarization orientation with respect to the fiber slow axis α.
S2 and S3 terms include phase shift due to the birefringence of the PM fiber (δn) and a time
varying phase term due to instantaneous power induced phase modulation (P(τ)n2 cos(2α)).
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Fig. 3. Evolution of the Stokes parameters (a) S1/S0, (b) S2/S0, and (c) S3/S0 in time at
the output of a 10 m PM fiber (δn = 3.0 × 10−4), for two cases: ignoring walk-off effects
and including walk-off effects. The initial conditions are: pulse duration 10 ns, peak power
500 W, angle 28.6o, beam size 3.85 µm, and wavelength of 1.06 µm.

Fig. 4. Polarization content generated throughKerr effect in a 10mPMfiber (δn = 3.0×10−4)
with pulse duration 10 ns, peak power 500W, angle 28.6o, beam size 3.85 µm, andwavelength
of 1.06 µm.

If a Pockels cell is used to generate the time varying polarization probe pulse, the resulting
PSG Stokes vector will have a form similar to Eq. (18) but the phase term in S2 and S3 will be
ψ(t) = k0δnz + πV(t)/Vπ . Here V(t) is the time varying voltage applied to the crystal and Vπ is
the half-wave voltage. The Kerr effect uses the time varying pulse power P(t) instead of voltage
V(t) to achieve time varying polarization [30].

Through the Kerr phase dependence on P(τ) ∗ z in Eq. (19), the temporal polarization
distribution can be controlled through peak power, pulse shape, and fiber length. For Mueller
matrix measurement, it is important to choose α to balance the energy partitioned between probe
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beam Stokes components in order to sample the target Mueller matrix components with sufficient
sensitivity. The polarization angle, α, yielding equal power in each of the Stokes polarization
states of Eq. (18) can be found from the conservation of energy

√
S21 + S22 + S23 = S0 and by

setting S1 = S2 = S3. From this consideration one finds α ≈ 27o. Lastly, although Eq. (18) is
written in the coordinate system of the fiber birefringence axes, it may be desirable to rotate the
coordinates by α into the laboratory reference frame [24,31], leading to

Slab = P(τ)



1

cos2(2α) + sin2 (2α) cosψ

− 1
2 sin (4α) + 1

2 sin (4α) cosψ

− sinψ sin (2α)


. (20)

2.3. Model of receiver hardware

The receiver diagram in Fig. 1 allows for the possibility of using a beam splitter followed by
multiple PSAs. There is a wide variety of PSAs that could be used; we consider only the following
options for brevity:

1. Horizontal/Vertical linear polarizers (denoted H/V).

2. Diagonal (+45o and −45o) linear polarizers (denoted P/M).

3. A Quarter-Wave Plate (QWP) rotated by θ = 45o relative to the lab frame followed by
an H/V linear polarizer (not rotated); this is effectively a left/right circular polarization
analyzer (denoted L/R) [24,31].

In each pair of outputs, the first (e.g. “H”) is the polarization which is transmitted through the
cube polarizer and the other (e.g. “V”) is rejected from the polarizer and is propagated on a
separate optical path to another detector. These three options provide direct measurement of the
Stokes vector elements. We will explore all three options when practical, though the nominal
configuration will be just option 3 with no beam splitter, with the QWP rotation angle θ left
unspecified, which allows for generalization to an elliptical L/R PSA rather than simply a circular
L/R PSA.
Considering the atmospheric transmission A(R), the transmitter efficiency Tt(p), the receiver

efficiency Tr(p), and the detector response Ddet, the terms affecting the received LiDAR signal
can be grouped as

k(R, p) =
1
R2 A(R) · Tt(p) · Tr(p) · Ddet (21)

where R is the one-way range to target and p denotes the detector polarization channel (H, V, P, M,
R, L). Note that the detector response here is the optical response; the temporal detector response
will be accounted for later. The terms Tt(p), Tr(p), and D can be calibrated at the instrument level.

Let D = 2R/c indicate the round-trip travel time to target, where c is the speed of light. The
signal exiting polarization channel p is

Srx(t, p) = k(R, p)Q(R) ·Mp ·M · Slab (t − D) (22)

where Q(R) is the laser beam-target overlap integral, Mp is the known Mueller matrix [24,31] of
polarization analyzer p, and M is the unknown Mueller matrix of the target. The scalar Q(R)
and the factor A(R) within k(R, p) are potentially unknown but can be canceled out later by
normalization the estimated Mueller matrix. Unless otherwise noted, throughout this section
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Slab can represent the transmitted Stokes vector from either the Kerr-based or Electro-Optic
(EO)-based transmitter.

Leaving θ unspecified for option 3, the Mueller matrices for the PSAs considered here are
[24,31]

Mh/v =
1
2



1 ±1 0 0

±1 1 0 0

0 0 0 0

0 0 0 0


(23)

Mp/m =
1
2



1 0 ±1 0

0 0 0 0

±1 0 1 0

0 0 0 0


(24)

Mr/l =
1
2



1 ± cos2 2θ ± cos 2θ sin 2θ ∓ sin 2θ

±1 cos2 2θ cos 2θ sin 2θ − sin 2θ

0 0 0 0

0 0 0 0


(25)

Now we can find the output intensities (i.e. the first element of the Stokes vector) from each
possible PSA pair. Let N ∈ {2, 4, 6} be the number of signals to be recorded by the fast detectors
in Fig. 1; for example, N = 2 for any single analyzer. We assume that the beam splitter evenly
divides the input intensity into N/2 equal streams, with a fraction 2/N of the intensity going into
each PSA pair. Using (23)–(25) the possible output intensities are

yh/v(t) =
kh/vQ

N

3∑
j=0

Slab,j(t − D)
(
M0j ±M1j

)
(26)

yp/m(t) =
kp/mQ

N

3∑
j=0

Slab,j(t − D)
(
M0j ±M2j

)
(27)

yr/l(t) =
kr/lQ

N

3∑
j=0

Slab,j(t − D)

×

(
M0j ±M1j cos2 2θ ±M2j cos 2θ sin 2θ ∓M3j sin 2θ

) (28)

The estimation process must be carried out using a discrete time representation. We will
model the conversion from continuous to discrete time by filtering the detector output though a
filter with impulse response h(t) and frequency response H(f ) and then instantaneously sampling
the filter output with sampling period T . We assume that the filter’s frequency response has
cut-off frequency Fc; ideally H(f ) will be a rectangle, but we need not assume that. Herein, we
use the term “detector bandwidth” to refer to Fc.
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We will use k to index the sample time and K samples are collected per polarization channel.
The effects of the detector filter, sampling, and additive noise v[k] can be represented by

yp[k] =
[
yp(t)? h(t)

] ��
t=kT + v[k] (29)

where ? denotes convolution. To account for the time dependence and the effects of this
convolution, define

sj(t,D) = Slab,j(t − D)? h (t) , j ∈ {0, 1, 2, 3} (30)
using the transmitted Stokes vector from (18), where j is the index of the four elements of the
Stokes vector. Then define sampled versions, stacked into four K × 1 vectors,

sj(D) =
[
sj (0 · T) , sj (1 · T) , . . . , sj ([K − 1] · T)

]T , j ∈ {0 . . . 3} . (31)

The samples from the polarization channel outputs can be represented in vector form by

yp =
[
yp(0), . . . , yp([K − 1]T)

]T (32)

y =
[
yTp1 , . . . , y

T
pN

]T (33)
Assume (temporarily) that all 6 polarization channels are used and that all 16 Mueller matrix
elements are to be estimated. Then counting both outputs of each of (26)–(28), there are six
output channels that are each sampled K times by the detectors. Stacking these samples per
(32)–(33), the overall system could be written as a linear model with respect to the unknown
elements Mij, in the form

y = H(D) · x + v (34)

x = Q [M00,M01,M02,M03,M10,M11, . . . ,M33]
T , (35)

where v is a vector of samples of the additive noise process. We have included the unknown
scale factor Q within the unknown vector x; the method for dealing with Q will depend on the
application for which the estimates of x will be used. A detailed inspection of (26)–(28) is
necessary to reveal the structure of H. It takes the form

H(D) = Hk ⊗ Hs(D) (36)

Hk =
1
N



kh kh 0 0

kv −kv 0 0

kp 0 kp 0

km 0 −km 0

kr kr cos2 2θ kr cos 2θ sin 2θ −kr sin 2θ

kl −kl cos2 2θ −kl cos 2θ sin 2θ kl sin 2θ


(37)

Hs(D) = [s0(D), s1(D), s2(D), s3(D)] (38)
where ⊗ denotes a Kronecker product. In a simpler scenario where only N of the 6 possible
polarization channels are used and only M of the 16 possible Mueller matrix elements are
assumed to be non-zero, we can omit rows and columns of H via

y = H(D) · xreduced + v (39)

H(D) = [(1PHk) ⊗ Hs(D)]1T
X (40)

xreduced = 1Xx (41)
where 1 denotes an “indicator” matrix. The N × 6 polarization channel indicator 1P is obtained
by deleting all but the N relevant rows of a 6 × 6 identity matrix, and the M × 16 Mueller matrix
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indicator 1X is obtained by deleting all but the M relevant rows of a 16 × 16 identity matrix.
Left-multiplying by 1P or 1X will select only the P or M rows of interest, and right-multiplying
by 1T

X will select only the M columns of interest.
Note that Hk depends strongly on the rotation of the receiver’s QWP, θ; and Hs depends heavily

on the transmitter parameters (i.e. for a Kerr system, the optical fiber parameters δn, n2, and α;
or for an EO system, the rotation of the transmitter’s EO retarder, α, as well as the voltage ramp
parameters Vmax and β, the ramp rate). Specifically, ignoring the detector’s temporal impulse
response,

Hs =
[
P P � cosψ P � sinψ

]
×


1 cos2 2α 1

2 sin 4α 0

0 sin2 2α −1
2 sin 4α 0

0 0 0 sin 2α


(42)

where � is Hadamard (element-by-element) multiplication; and P and ψ contain K samples of
the instantanteous optical power P(τ) and the phase argument from the S2 and S3 components of
(18), respectively. The time samples are evaluated at times

tn = (n − 1)T − D, n ∈ {1, . . . ,K} . (43)

2.4. Noise model

Since the detector output voltage is proportional to incident power, we define the Signal to Noise
Ratio (SNR) as a ratio of detector voltage values. However, additive Gaussian noise present
within the detector can cause the detector voltage to go negative. As such, we compute a ratio of
absolute values of average detector voltages, leading to

SNR =
1

NKT
∑N

p=1
∫

yp(t)dt
E {|v(t)|}

≈

1
N

∑N
p=1

∑K−1
k=0 yp[k]√

2
πKσ

(44)

where σ is the standard deviation of the detector noise v[k]. Since σ is in the same units as
the detector voltage, which is proportional to incident power, the denominator of (44) uses σ
rather than σ2, which ensures that this SNR definition is a power ratio. We have also made use
of the fact that the average magnitude of a Gaussian random variable is

√
2/π times the standard

deviation of that Gaussian. Note that this SNR definition is with respect to the received signal, so
factors such as atmospheric transmission and target reflectivity are included in the numerator.

In order to gain intuition as to how the various parameters affect the SNR, assume that during
the observation window, the detector captures all but a negligible amount of energy of the
received pulse, and that M00>>Mij for i, j , 0 in (26). The first assumption is necessary anyway
for accurate parameter estimation; the latter assumption is not strictly accurate, but M00 is always
the largest element and all of the other elements in the SNR computation will get multiplied
by various sines and cosines which will further attenuate their effects, so this assumption is
reasonable for the purpose of getting a sense of how various parameters affect the SNR. Using
these assumptions,

SNR ≈
QM00
NKTσ

√
π

2

∑
p kp

N

∫ ��Slab,0(t)�� dt. (45)

(There are two factors of N in the denominator; one is from within each yp(t) due to the beam
splitter, and the other is because the SNR numerator is defined as an average across the N
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polarization channels.) The zeroth element in the transmitted stokes vector is just the pulse power.
For the sech2 pulse model in (4),∫ ∞

−∞

��Slab,0(t)�� dt = P0

∫ ∞

−∞

sech2
(

t
τ0

)
dt = 2P0τ0. (46)

Thus, the SNR can be approximated as

SNR ≈
∑

p kp

N
QM00

√
π

2
2τ0

NKT
P0
σ

≈
1.42
N
·

∑N
p=1 kp

N
· Q ·M00︸                          ︷︷                          ︸

A

·
FWHM

KT︸   ︷︷   ︸
B

·
P0
σ︸︷︷︸
C

.
(47)

This holds for either the proposed Kerr system or for a similar EO-based system, so long as it
uses the same pulse shape. Each of the terms A, B, and C is unitless. Term A is essentially
the propagation loss through the optical path, term B is a ratio of the laser pulse width over the
duration of the range gate, and term C is the ratio of the pulse peak power over the standard
deviation of the detector noise. To maintain a unitless ratio, both P0 and σ should be represented
in the same units, such as via the detector voltages they induce. The propagation loss terms
k(R, p) from (21) should also be unitless. Due to the assumption that M00>>Mij for i, j , 0, the
SNR expression in (47) is only correct to within perhaps a factor of two, but it can be used to
gauge how key parameter values will affect the SNR. The simulations in Section 5 will use (44)
to evaluate the SNR for a given discrete time waveform.

3. Linear algebra analysis

We now consider linear algebra concerns that potentially limit receiver operation. Throughout,
we consider the special case where only the elliptical (R/L) polarization channels are used. In
that case,

1P = [02×4 I2×2] (48)

1PHk = (49)

1
2


kr kr cos2 2θ kr cos 2θ sin 2θ −kr sin 2θ

kl −kl cos2 2θ −kl cos 2θ sin 2θ kl sin 2θ

 (50)

Note that 1PHk has a rank of 2; but regardless of the value of α (for either an EO or Kerr-based
system), Hs only has three linearly independent columns rather than four. This comes from (42),
since the matrix has a factor with only 3 columns and thus has a maximum possible rank of
3. Thus, the overall rank of H is 2 × 3 = 6, meaning that the maximum number of Mueller
matrix elements we can recover is six. In order to transform this into a well-posed problem,
redundant columns of H must be removed by assuming some of the elements of the target Mueller
matrix are zero. In the remainder of this section, we discuss the possible ways this can be done.
Alternatively, the problem could also be resolved by adding additional polarization analyzers, at
the cost of increased receiver complexity.
Inspection of the 16 columns of H reveals that they are spanned by the six vectors listed in

the top row of Table 1. The terms cosψ and sinψ are shorthand for the length-K vectors of
samples of cosψ(t) and sinψ(t), and the scale factors of P(t) are omitted for notational brevity.
Table 1 also shows the dependence of each column of H on the six spanning vectors. A necessary
condition for a well-posed problem is that the elements depend on as many spanning vectors as
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Table 1. Dependence of the columns of H on the six basis vectors {bn }. The Mij notation indicates
the Mueller matrix elements corresponding to the indicated columns of H. Green entries are the

elements to be estimated when a diagonal Mueller matrix is assumed. Regarding the blue elements,
refer to the text between (52) and (53).

b1 =


1
1

 b2 =


cosψ

cosψ

 b3 =


sinψ

sinψ

 b4 =


1
−1

 b5 =


cosψ

− cosψ

 b6 =


sinψ

− sinψ


H [:, 1] ↔ M00 x

H [:, 2] ↔ M01 x x

H [:, 3] ↔ M02 x x

H [:, 4] ↔ M03 x

H [:, 5] ↔ M10 x

H [:, 6] ↔ M11 x x

H [:, 7] ↔ M12 x x

H [:, 8] ↔ M13 x

H [:, 9] ↔ M20 x

H [:, 10] ↔ M21 x x

H [:, 11] ↔ M22 x x

H [:, 12] ↔ M23 x

H [:, 13] ↔ M30 x

H [:, 14] ↔ M31 x x

H [:, 15] ↔ M32 x x

H [:, 16] ↔ M33 x

there are elements to be estimated. For example, we cannot estimate both M13 and M23 because
they both depend only on the same spanning vector, b6.

An obvious choice for reducing the parameter space is to assume that M is purely diagonal, i.e.
that all elements of x are zero except for #1, #6, #11, and #16. Columns of H corresponding to
null elements of x can be deleted, resulting in

Hdiag =

1
2


krs0 krs1 cos2 2θ krs2 cos 2θ sin 2θ −krs3 sin 2θ

kls0 −kls1 cos2 2θ −kls2 cos 2θ sin 2θ kls3 sin 2θ


(51)

xdiag = Q [M00,M11,M22,M33]
T . (52)

As mentioned in Section 1, it is generally accepted that the Mueller matrix for a scattering sample
is diagonal, so this is a reasonable assumption for analysis of scattering samples. The resulting
spanning vector dependence is highlighted in green in Table 1; limiting the problem to those four
elements results in dependence on four unique spanning vectors, so the problem is well posed.
This is why the special case considered in this section is our default configuration – it allows
recovery of the full Mueller matrix diagonal with only a single PSA and a single pair of detectors
for its two outputs.
Table 1 can also be used to show that it is (surprisingly) absolutely essential to retain both

outputs of the linear polarizer, even under the assumption of a diagonal Mueller matrix. If only
one polarization channel is retained, the basis vectors are each halved to only either the first K or
last K elements, which would make {b4,b5,b6} redundant with {b1,b2,b3}. As such, the rank
of H would be 3 yet there would be 4 unknowns, making the problem ill-posed.
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We may wish to recover additional Mueller matrix elements, since up to six can be recovered.
Inspection shows that the potential choices are extremely limited – we can include M03, and we
can include either M01 or M02; these elements are highlighted in blue in Table 1. Any other
choices lead to an ill-conditioned problem. These two choices can be formulated as

Hoption2 = H (:, [1, 2, 4, 6, 11, 16]) (53)

xoption2 = Q [M00,M01,M03,M11,M22,M33]
T (54)

Hoption3 = H (:, [1, 3, 4, 6, 11, 16]) (55)

xoption3 = Q [M00,M02,M03,M11,M22,M33]
T (56)

For readability, our notation assumes that one computes all 16 columns of H using the Kronecker
product structure of (40) and then deletes the columns corresponding to the removed elements of
x, though that is not necessarily the most computationally efficient approach.

In summary, for the default single PSA configuration, the only choices of Mueller matrix
elements to estimate that lead to a well-conditioned problem are the three choices in (52), (54), or
(56); or any subset thereof. All other Mueller matrix elements are implicitly assumed to be zero.
In Section 5 we will evaluate the effects of making that assumption when the assumed-to-be-null
values are small but non-zero.

4. Cramer-Rao bound analysis

We can use the Cramer-Rao Lower Bound (CRLB) to approximate the Mueller matrix estimation
performance. Throughout this section, we assume that the Mueller matrix is diagonal, and that
only the elliptical (R/L) channels are used.
As in prior work [21,32], we will assume the round-trip delay τ is known for the purposes

of the CRLB, though it will be considered unknown later. For a model of the form y = Hx + v
where v is white Gaussian noise, the CRLB is the inverse of the Fisher Information Matrix (FIM)
J, given by [33]

Cov [x̂] ≥ J−1, (57)

J = σ−2 HTH, (58)

where σ2 is the variance of the noise from (44).
We will use the CRLB to gain some intuition regarding the effects of the angle α (either the

EO retarder rotation or the Kerr fiber rotation) and the QWP rotation θ. Assuming kh = kv and
ignoring constants such as kh, kv, 1/2, and σ2, we have

H =

s0 s1 cos2 2θ s2 cos 2θ sin 2θ −s3 sin 2θ

s0 −s1 cos2 2θ −s2 cos 2θ sin 2θ s3 sin 2θ

 . (59)

For brevity of notation, define

cθ = cos 2θ, sθ = sin 2θ. (60)

Using these definitions,

J = 2



sT
0 s0 sT

0 s1 c4θ sT
0 s2 cθsθ −sT

0 s3 sθ

sT
0 s1 c4θ sT

1 s1 c4θ sT
1 s2 c3θsθ −sT

1 s3 c2θsθ

sT
0 s2 cθsθ sT

2 s1 c3θsθ sT
2 s2 c2θs

2
θ −sT

2 s3 cθs2θ
−sT

0 s3 sθ −sT
3 s1 c2θsθ −sT

3 s2 cθs2θ sT
3 s3 s2θ


. (61)
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Now we can gain some intuition by noting the dependence between the s vectors via the linear
dependence among the elements of (20). For example,

sT
0 s1 =

∑
k
(P(kT)) (−P(kT) sin φ(kT) sin 2α) (62)

= − sin 2α
∑

k
P2(kT) sin φ(kT) ≈ 0 (63)

assuming the sin φ(t) term oscillates faster than the rise and fall of the pulse shape. Using the
generic symbol # to indicate a non-zero value,

J ≈



# 0 0 0

0 # # 0

0 # # 0

0 0 0 #


. (64)

That is, elements M11 and M22 are coupled with each other, whereas M00 and M33 are uncoupled.
This is because element i, j of J−1 is a (very tight) bound on the covariance between Mi,i and Mj,j,
and the inverse of a block diagonal matrix maintains the same block diagonal structure. This will
be helpful in interpreting simulation results later.
Figures 5 and 6 show a numerical evaluation of the CRLB for the EO and Kerr systems,

respectively. The target Mueller matrix is known to be diagonal. The Mueller matrix data used
was for oak bark at λ = 1.06 µm, at normal incidence [6]. The SNR was set to 10 dB using
(44); since the SNR is system parameter dependent, the waveforms used to compute the noise
variance σ2 were generated using globally optimum values (α = 27.0o and θ = 18.8o for the
EO system and α = 28.6o and θ = 17.2o for the Kerr system). Both systems used FWHM
= 10 ns. The nominal values of the EO parameters were Vmax = 1344 V, and β = 0.1 ns−1,
based on Quantum Technology Starfire driver and LiTaO3 crystal. The nominal values of the
Kerr parameters were refractive index n0 = 1.45, bifrefringence δn = 3.5 · 10−4, nonlinear Kerr
coefficient n2 = 1.2 · 10−22 m2/V2, fiber length L = 1 m, fiber radius wi = 3.5 µm, and power
P = 5 kW.

Fig. 5. CRLB vs. EO retarder rotation α and QWP rotation θ, for SNR = 10 dB,
Vmax = 1344 V, and β = 0.1 ns−1. This assumes a purely diagonal Mueller matrix. The
middle and right plots are cross-sections of the contour data in the left plot. The plots are
symmetric every 45o in each angle, so only 0 ≤ αo ≤ 45o, 0 ≤ θo ≤ 45o is shown.

The first plot shows contours of the CRLB, averaged across the main diagonal of J−1
(corresponding to the four Mueller matrix diagonal elements), as a function of α and θ. The
second and third plots show cross-sections of the first plot, taken across the global minimum.
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Fig. 6. CRLB vs. Kerr fiber rotation α and QWP rotation θ, for SNR = 10 dB. This
assumes a purely diagonal Mueller matrix. The middle and right plots are cross-sections of
the contour data in the left plot. The plots are symmetric every 45o in each angle, so only
0 ≤ αo ≤ 45o, 0 ≤ θo ≤ 45o is shown.

Note that all plot values will scale linearly with σ; i.e. if the SNR was increased by a factor of
two (or 3 dB) because sigma was halved, then the mantissa would be halved but the curve shape
would remain the same. The plots are symmetric every 45o for each angle, so only ranges of
[0, 45o] are shown. Comparison of Figs. 5 and 6 indicates the EO (Pockels cell) and Kerr based
PSG systems perform similarly if proper system parameters are chosen.

5. Performance simulations

5.1. Parameter estimation algorithm

The parameter estimation method that will be employed is in the family of least squares (LS) and
Maximum Likelihood (ML) estimation; specifically, a separable least-squares style of estimation
can be used [33]. The idea is to assume candidate values for any unknown parameters that have a
nonlinear relationship with the observations (in this case, D), perform an LS or ML estimate of
the parameters with a linear relationship with the observations (in this case, x), and iterate this
approach across a range of values for D to find the value leading to the best overall fit. For the
case of additive white Gaussian noise, the ML estimate will always reduce to some variant of LS
fit (e.g. standard LS or nonlinear LS), so we use the two terms synonymously here.
Assuming white Gaussian noise, the ML estimate is(

x̂, D̂
)
= arg min

x,D
‖y −H (D) x‖2 . (65)

For a known (or tentatively assumed) value for D, Eq. (65) can be minimized over x using
standard multivariate calculus. Then Eq. (65) can be minimized over D via a line search. This
leads to

D̂ = arg min
D
‖y −H(D)x̂(D)‖2 (66)

x̂(D) =
[
HT(D)H(D)

]−1HT(D)y. (67)

The choice for H will be as in (51) if the target Mueller matrix is assumed to be diagonal, or (53)
or (55) if the six elements in (54) or (56) are assumed to be nonzero, respectively.

5.2. Feature estimation error

In the remainder of this section, we will simulate the transmitted waveforms and estimate different
subsets of Mueller matrix elements. The parameter settings are FWHM = 10 ns, a sampling
rate and detector bandwidth of 1 GHz, Vπ = 192 V, Vmax = 1344 V, β = 0.1 ns−1, αEO = 30o,
θEO = 18.3o, wavelength λ = 1.06 µm, a fiber length of L=1 m, birefringence δn = 3.5 · 10−4,
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nonlinear coefficient n2 = 1.2 · 10−22 m2/V2, αKerr = 26.9o, θKerr = 17.6o, P0 = 5 kW, a spot
size of wi = 3.5 · 10−6 m, and a core refractive index of n0 = 1.45.
The Mueller matrix was from oak bark, measured at 1.0607µm at normal incidence, and

normalized relative to M00:

Moakbark =



1.0000 0.0079 −0.0021 0.0024

−0.0132 0.1657 0.0011 −0.0008

−0.0006 0.0000 −0.1746 −0.0025

0.0011 0.0010 0.0006 −0.0230


(68)

For both systems, we assume M is diagonal and only estimate the four elements along the
diagonal. In order to remove the ambiguity caused by the unknown scale factor Q in (52), the
estimated elements of x are divided by the estimate corresponding to M0,0, resulting in three
normalized estimates:

M̂i,i =
x̂i

x̂0
, i ∈ {1, 2, 3} . (69)

The performance metric will be the Normalized Root Mean Squared Error (NRMSE). Given that
the true Mueller matrix and the estimates have each already been normalized by M0,0 and M̂0,0,
respectively, the NRMSE is

NRMSE of Mi,i =

√√√
1

Ntr

Ntr∑
ntr=1

(
M̂i,i,ntr −Mi,i

)2
, i ∈ {1, 2, 3} (70)

NRMSE (avg) =

√√√
1
3

3∑
i=1

(
NRMSE of Mi,i

)2, (71)

where ntr ∈ {1, . . . ,Ntr} indexes the Monte Carlo trials that average over noise realizations.
Figure 7 shows the NRMSE averaged over Ntr = 1000 Monte Carlo trials, for an EO system

[21] and the proposed Kerr-based system. There are two pairs of curves figures; in the two
labeled “(diag)”, the off-diagonal elements of M were set to zero when generating the waveforms;
whereas in the other two curves, the full Mueller matrix of (68) was used, so the diagonal
assumption is invalid. Either way, the estimator assumed the Mueller matrix was diagonal
and only estimated the four diagonal elements. Figure 7 shows that, in this case, the error
resulting from the assumption of a diagonal sample Mueller matrix has negligible effect on the
measurement accuracy, and the estimation accuracy of a truly diagonal sample Mueller matrix
has some marginal improvement as SNR increases. When the assumption of a diagonal Mueller
matrix is met, performance improves monotonically as SNR increases; whereas the presence of
residual off-diagonal elements causes modeling error that manifests as a “floor” on estimation
performance and high SNR. The EOM and Kerr results are extremely similar, though the Kerr
error in the M1,1 estimate is about 46% higher than that of the EOM system (except in the presence
of the error floor effect). However, this is offset by the fact that the EOM error is about 12%
higher in the M2,2 estimate, and even though that is a smaller percentage increase, the error in
that estimate is higher so the error averaged across all three elements is very comparable between
the EOM and Kerr systems. This comparison shows that the more compact and cost-effective
Kerr-based system produces results comparable to those from the larger and more cumbersome
EO system.
Note that the error floor is higher in elements M1,1 and M2,2 than M3,3. This is related to the

analysis surrounding (64). The performance of the estimators for these two elements are coupled,
so when one of them has increased error, so does the other.
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Fig. 7. Comparison of the NRMSE between the EO and Kerr systems, broken out by
diagonal elements of the target Mueller matrix. In this case, the true Mueller matrix was not
diagonal.

6. Experimental demonstration

In this section, we demonstrate the Kerr PSG with an experimental setup similar to Fig. 1,
but we implement the three PSAs serially, one pulse at a time. We employ a Keopsys fiber
laser with wavelength = 1.064 µm, 10 ns FWHM pulse width and linear polarization. We
used a Newport PM fiber with nominal parameters δn = 3.0 · 10−4 and mode field diameter
7.7 µm. The experimental demonstration is constrained by laser coherence length and the fiber
damage threshold. The optical path difference for the orthogonal polarization states in the fiber
is OPD= L · δn whereas the coherence length is Lcoh = (2 ln 2/π)1/2λ2/(n · δλ) for a Gaussian
spectral distribution. For loss of coherence to be negligible, we need fiber OPD� Lcoh, or
L � 18 m for our laser with linewidth δλ ∼ 0.07 nm. We chose L = 5 m and pump power 500 W
to achieve a reasonable level of polarization modulation with limited loss of coherence and risk
of damage in the fiber. From Section 2.2 we calculate ε ∼ 6 ps which is ∼ 0.1% of the pulse
width; this places the interaction in the “no walk-off” regime. Lastly, it should be pointed out that
the experimental laser pulse shape was not sech2(t) but had a more complicated shape as shown
by the grey line in the Fig. 8 S1 plot. The solution to the coupled differential equations depends
on the exact pulse shape employed. To get a first order estimate of the veracity of the model we
replace the sech2(t) power distribution in Eq. (4) with the measured pump power envelope.
A half-wave plate was used to orient the incident linearly polarized laser at 68o to the fiber

slow axis. Three PSAs were used to characterize the emission from the fiber; there were two
linear PSAs oriented at 0o and 45o to measure the S1 and S2 Stokes elements, respectively, and a
circular polarization analyzer was used to measure S3. Two, 1 GHz bandwidth, Thorlabs pin
detectors were used at each polarizer to record the orthogonal polarization signals and then
construct the Stokes elements from the difference of measured signals. Figure 8 shows the
recorded Stokes elements in comparison with the model predictions. The model was based on
Eq. (19) and (20) and also allowed for some small angular misalignment of the fiber, wave plate,
and polarizer. Reasonably good agreement between model and measurement is observed. The
quantities

√
S21 + S22 + S23 and S0 should be identical if the pulse is fully coherent. Inspection of

these quantities yields noticeable differences in pulse shape suggesting there is some loss of
coherence due to the long fiber length. Coherence could be maintained by employing a fiber with
end caps so that shorter fiber length and higher pump power could be employed. Future work
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Fig. 8. Comparison of measured and modeled Stokes elements; the elements were
normalized to the peak power of the incident pump pulse. In the S1 plot, the gray line is
pump envelope plotted on the negative S1 axis for comparison to S1. The red and blue lines
denote data and model fits, respectively.

will employ a pulse shape more consistent with the sech2(t) pump envelope and a short length of
end-capped fiber to maintain coherence.

7. Conclusion

We have developed and analyzed a radically new, single pulse Mueller matrix Light Detection and
Ranging (LiDAR) polarimeter based on a temporally multiplexed architecture and a PSG based on
the Kerr effect in a birefringent optical fiber. We have derived, to our knowledge, the first solution
describing the Kerr effect in a polarization maintaining fiber that includes walk-off effects. A
temporally multiplexed LiDAR polarimeter performance model was constructed for a PSG based
on the Kerr effect in PM fiber and a Pockels cell. The primary difference in the description of the
two PSGs is the phase function; proper selection of fiber and pump parameters can enable both
systems to produce similar temporal polarization distributions. Application of Cramer-Rao lower
bound and Monte-Carlo simulations enabled identification of optimum measurement parameters
and measurement accuracy dependence on signal to noise ratio. Simulations showed that samples
with a diagonal Mueller matrix could be measured with high accuracy measurements in a single
∼ 10 ns pulse at sufficient signal to noise ratio. Lastly, experimental demonstration of the Kerr
PSG showed good agreement with model predictions. Future work will employ the single-pulse
Kerr effect PSG in a polarimeter for Mueller matrix measurements.
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