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We develop a method to synthesize any partially coherent source (PCS) with a genuine cross-spectral density (CSD)
function using complex transmittance screens. Prior work concerning PCS synthesis with complex transmittance
screens has focused on generating Schell-model (uniformly correlated) sources. Here, using the necessary and suf-
ficient condition for a genuine CSD function, we derive an expression, in the form of a superposition integral, that
produces stochastic complex screen realizations. The sample autocorrelation of the screens is equal to the complex
correlation function of the desired PCS. We validate our work by generating, in simulation, three PCSs from the
literature—none has ever been synthesized using stochastic screens before. Examining planar slices through the
four-dimensional CSD functions, we find the simulated results to be in excellent agreement with theory, implying
successful realization of all three PCSs. The technique presented herein adds to the existing literature concerning
the generation of PCSs and can be physically implemented using a simple optical setup consisting of a laser, spatial
light modulator, and spatial filter.

https://doi.org/10.1364/JOSAA.381772

1. INTRODUCTION

Generating partially coherent sources (PCSs) has been an
active area of research for the past two decades. This research
is motivated by the plethora of applications in which control
over spatial coherence is advantageous. These include, but are
not limited to, free-space/underwater optical communications,
optical trapping, medicine, and remote sensing [1–5]. A survey
of the literature reveals three main PCS synthesis techniques:
Van Cittert–Zernike theorem (VCZT), coherent modes or
pseudo-modes, and complex transmittance screen or phase
screen methods.

VCZT-based techniques generally involve propagating a
quasihomogeneous PCS [5,6] through a linear optical system,
where the desired PCS is produced at the output. The details
of the individual optical systems vary; however, all generally
rely on the Fourier transforming properties of spherical lenses
and the generalized VCZT [6,7] to produce the desired source
[3,4,8–14].

The primary benefit of VCZT approaches, vice the other
two, is that the desired PCS is generated in near real time, as the
quasihomogeneous PCS fed into the optical system is typically
a spatially incoherent source, e.g., a thermal source, light emit-
ting diode, or multimode fiber fed by a temporally incoherent
(broadband) light source [15–19]. While not theoretically lim-
ited, VCZT techniques are practically restricted to producing
only Schell-model (uniformly correlated) sources, which can
be synthesized using paraxial, shift-invariant (or isoplanatic)

optical systems. To synthesize non-uniformly correlated PCSs,
the corresponding optical systems must be anisoplanatic, which
are very difficult to design and build.

Coherent mode approaches rely on the coherent mode
decomposition [5,6] of the PCS. Using a laser and a spatial light
modulator (SLM), each mode of the expansion is synthesized
with the proper weight and summed incoherently at the detec-
tor [20–22]. This approach can produce any PCS (uniformly
or non-uniformly correlated) for which the coherent modes
representation is known. Unfortunately, there are relatively few.

For PCSs with unknown coherent mode decompositions,
pseudo-modes can be used [23–29]. In contrast with coherent
modes, pseudo-modes are generally not orthogonal and there-
fore require more modes to accurately synthesize the PCS. We
last note that since the coherent modes or pseudo-modes are
generated serially, these approaches require time averaging.

Complex transmittance screen or phase screen methods
(hereafter referred to as complex screen methods) generate
stochastic screens with the proper spatial statistics by filtering
circular complex Gaussian random numbers (CCGRNs) [5,30–
37]. These screens are then commanded to a SLM, which, in
combination with a laser, produces a stochastic field realiza-
tion (a realization drawn from the statistical ensemble) of the
desired PCS.

Similar to coherent mode approaches, complex screen PCSs
are formed from the incoherent sum of many statistically
independent stochastic field realizations and therefore require
time averaging. On the other hand, unlike coherent mode
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approaches, complex screen methods produce PCS field realiza-
tions with thermal or pseudo-thermal light statistics [7] (useful
in some applications) and can easily (relatively speaking) be gen-
eralized to produce electromagnetic PCSs [34,38]—qualities
shared with VCZT methods.

Like VCZT techniques, complex screen methods have been
used to generate only Schell-model sources. For Schell-model
sources, the filters—used to “color” the “white” CCGRNs—are
shift invariant, and the filtering operation simplifies to convolu-
tion, which can be efficiently performed using the convolution
theorem and fast Fourier transforms (FFTs).

In a few instances, complex screens have been used to synthe-
size non-uniformly correlated sources [34,39,40]. In Ref. [34],
the authors used Cholesky factorization [41] to produce non-
uniformly correlated screens—a computationally intensive
procedure in terms of both memory and processing power. In
Refs. [39,40], the authors generated non-uniformly correlated
screens by nonlinearly transforming Gaussian Schell-model
[5,6] screens.

Here, we extend the existing PCS synthesis literature by
demonstrating how to synthesize general PCSs with complex
screens. In the next section, using the genuine cross-spectral
density (CSD) function criterion [42], we derive a superposi-
tion integral to produce a complex screen realization. We then
apply that integral to generate (in simulation) stochastic field
realizations for three PCSs from the literature. Using these field
realizations, we compute several planar cuts through the associ-
ated four-dimensional (4D) CSD functions and compare those
results to theory. Last, we conclude with a brief summary.

Before proceeding, we do not claim that the generalized
complex screen method presented herein is superior to the
others summarized above. The question of which technique is
superior ultimately depends on the application. For example,
in free-space optical communications (FSOC) using PCSs,
the rate at which the PCS produces statistically independent
field realizations must be significantly larger than the commu-
nications modulation frequency. This ensures that the optical
detector incoherently sums or integrates many independent
field realizations per digital bit thereby reducing turbulence-
induced scintillation and ultimately decreasing bit-error rate.
Since FSOC data rates are gigabits to terabits per second, a
VCZT method, with near real-time synthesis of the PCS, is the
superior option [43,44].

Therefore, the purpose of this paper is twofold: (1) to gen-
eralize complex screen approaches to produce any PCS with a
genuine CSD function and (2) to provide another option for
generating PCSs, in particular, non-uniformly correlated PCSs,
with a simple optical setup consisting of a laser, SLM, and 4 f
spatial filter.

2. THEORY

In the analysis to follow, we assume that the CSD function W
can be expressed as

W
(
ρ1, ρ2

)
= τ

(
ρ1

)
τ ∗
(
ρ2

)
µ
(
ρ1, ρ2

)
, (1)

where ρ = x̂ x + ŷy , τ is, in general, a complex function and
physically manifests as the source’s shape, and µ is the complex
correlation function [6].

We begin our analysis by recalling the necessary and sufficient
condition for a genuine W :

W
(
ρ1, ρ2

)
=

∫∫
∞

−∞

p (v) H
(
ρ1, v

)
H∗

(
ρ2, v

)
d2
v, (2)

where v = x̂vx + ŷvy , p is a positive function, and H is an arbi-
trary kernel [23,42]. Here, we assume that H takes the form

H (ρ, v)= τ (ρ) h (ρ, v) . (3)

If we let H be a realization of an optical field parameterized by
random vector v, then taking the autocorrelation of Eq. (3), we
recover Eq. (2), where p becomes the joint probability density
function of v = (vx , vy ) [24,26,27]. Comparing the resulting
autocorrelation to Eq. (1), we see that the complex correlation
functionµ is

µ
(
ρ1, ρ2

)
=

∫∫
∞

−∞

p (v) h
(
ρ1, v

)
h∗
(
ρ2, v

)
d2v. (4)

We now consider the form of a stochastic field generated
by passing a deterministic beam through a random complex
transmittance screen T, i.e.,

U (ρ)= τ (ρ) T (ρ) , (5)

where T is the complex screen generated from CCGRNs [32–
34]. Taking the autocorrelation of Eq. (5) and comparing to
Eq. (1) reveals

µ
(
ρ1, ρ2

)
= 〈T

(
ρ1

)
T∗
(
ρ2

)
〉. (6)

Equations (4) and (6) imply

〈T
(
ρ1

)
T∗
(
ρ2

)
〉 =

∫∫
∞

−∞

p (v) h
(
ρ1, v

)
h∗
(
ρ2, v

)
d2v;

(7)

however, this expression provides little insight into how to
generate T. To gain this insight, we briefly assume we are
interested in generating Schell-model (uniformly correlated)
sources [5–7].

For Schell-model sources, the kernel h in Eq. (3) is h(ρ, v)=
exp(jv · ρ) [42], and

T (ρ)=
∫∫

∞

−∞

r ( f )
[

1

2
8 ( f )

]1/2

exp
(
j2π f · ρ

)
d2 f , (8)

where f = x̂ fx + ŷ f y is the spatial frequency vector, and r
is a delta-correlated function composed of zero-mean, unit-
variance, CCGRNs [32–34]. Also in Eq. (8), 8 is the source’s
spatial power spectrum and equal to

8 ( f )=
∫∫

∞

−∞

µ
(
ρd

)
exp

(
−j2π f · ρd

)
d2ρd , (9)

where ρd = ρ1 − ρ2. Substituting h(ρ, v)= exp(jv · ρ) into
Eq. (7) and taking the autocorrelation of Eq. (8) produces∫∫

∞

−∞

8 ( f ) exp
(
j2π f · ρd

)
d2 f

=

∫∫
∞

−∞

p (v) exp
(
jv · ρd

)
d2v. (10)
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To arrive at the left-hand side of Eq. (10), we use

〈r
(

f 1

)
r ∗
(

f 2

)
〉 = 〈r r ( f 1

)
r r ( f 2

)
〉 + 〈r i ( f 1

)
r i ( f 2

)
〉

+ j
[
〈r i ( f 1

)
r r ( f 2

)
〉 − 〈r r ( f 1

)
r i ( f 2

)
〉
]

= 2δ
(

f 1 − f 2

)
,

(11)

where superscripts “r” and “i” correspond to the real and imagi-
nary parts, and δ is the Dirac delta function.

From Eq. (10), it is clear that 8 is proportional to p , and h
(a Fourier kernel) gives rise to the Fourier kernel in Eq. (8). We
can now generalize the Schell-model expression for T given in
Eq. (8) to that of any PCS whose W can be expressed as Eq. (1):

T (ρ)=
∫∫

∞

−∞

r ( f )
[

1

2
(2π)2 p (2π f )

]1/2

h (ρ, 2π f ) d2 f ,

(12)

where the (2π)2 comes from enforcing the requirement that the
volumes under both8 and p be unity.

Note that Eq. (12) is equivalent to passing CCGRNs
through a filter, whose impulse response h is shift variant.
Computationally, this is equivalent to a matrix–vector product,
and therefore requires O(N2) operations. This is an improve-
ment over Cholesky decomposition, which requires an initial
O(N3) operation to compute the Cholesky factor, and then
O(N2) operations (a matrix–vector product) to generate T
[34,41]. As we show in the next section, in many instances, we
can take advantage of the form of h to evaluate the integrals in
Eq. (12) more efficiently than computing the matrix–vector
product, i.e., by reducing dimensionality (significantly reducing
N), or by using FFTs [complexity O(N log N)].

3. EXAMPLES

Here, we apply the theory in Section 2 to generate complex
transmittance screens T for three PCSs from the literature. We
simulate the generation of these beams and compare the simu-
lated second-order statistical moments to their corresponding
theoretical CSD expressions.

A. Im-Bessel Correlated Beam

We begin with an Im-Bessel correlated source, which was first
introduced by Ponomarenko [45] in 2001 and only recently
synthesized in Refs. [20,27]. The CSD function for an Im-Bessel
correlated source is

W
(
ρ1, ρ2

)
=
ξ−m/2

1− ξ
exp

(
−

1+ ξ

1− ξ

ρ2
1 + ρ

2
2

σ 2

)

× exp
[
−jm (φ1 − φ2)

]
Im

(
4
√
ξ

1− ξ

ρ1ρ2

σ 2

)
,

(13)

where m is an integer and the topological charge of the vortex,
Im is an mth-order, first-kind, modified Bessel function, σ is
the size of the source, and 0< ξ < 1 is a measure of the spatial

coherence of the field (ξ→ 0 is a coherent field; ξ→ 1 is an
incoherent field) [5,20,27,45]. In Ref. [27], the author found
that letting

τ (ρ)=

√
ξ−m/2

1− ξ
exp

(
−jmφ

)
exp

[
−

(
1−
√
ξ
)2

1− ξ

ρ2

σ 2

]
,

p (v)=
1

π

σ 2

8

1− ξ
√
ξ

exp

(
−
σ 2

8

1− ξ
√
ξ
v2

)
,

h (ρ, v)= Jm (ρv), (14)

where Jm is a mth-order Bessel function of the first kind,
produced [via Eq. (2)] an Im-Bessel correlated source.

With this, we can apply Eq. (12) to produce T, which, in
combination with τ , yield stochastic Im-Bessel correlated beam
realizations. We note that sinceµ is rotationally invariant, T and
subsequently r must be as well. Applying this to Eq. (12), trans-
forming the integrals into polar coordinates, and evaluating the
trivial integral over angle produces

T (ρ)= (2π)3/2
√
σ 2

8

1− ξ
√
ξ

∫
∞

0
f r ( f ) exp

×

[
−

1

2
(2π)2

σ 2

8

1− ξ
√
ξ

f 2

]
Jm (2πρ f ) d f . (15)

Taking the autocorrelation of T yields

〈T (ρ1) T∗ (ρ2)〉 = (2π)
3 σ

2

8

1− ξ
√
ξ

∫∫
∞

0
f1 f2〈r ( f1)r ∗ ( f2)〉

× exp

[
−

1

2
(2π)2

σ 2

8

1− ξ
√
ξ

(
f 2
1 + f 2

2

)]
× Jm (2πρ1 f1) Jm (2πρ2 f2) d f1d f2.

(16)

The moment 〈r ( f1)r ∗( f2)〉 = δ( f1 − f2)/(π f1) for Eq. (16)
to simplify to the desiredµ. Subsequently, Eq. (16) becomes

〈T (ρ1) T∗ (ρ2)〉 =µ (ρ1, ρ2)= (2π)
3 1

π

σ 2

8

1− ξ
√
ξ

×

∫
∞

0
f exp

[
−(2π)2

σ 2

8

1− ξ
√
ξ

f 2

]
× Jm (2πρ1 f ) Jm (2πρ2 f ) d f . (17)

Unfortunately, we cannot numerically generate CCGRNs
with the above autocorrelation function because of the singu-
larity at f1 = 0. We can work around this difficulty by slightly
modifying Eq. (15), such that

T (ρ)= (2π)3/2
√
σ 2

8

1− ξ
√
ξ

∫
∞

0
r ( f )

√
f

× exp

[
−

1

2
(2π)2

σ 2

8

1− ξ
√
ξ

f 2

]
Jm (2πρ f ) d f .

(18)
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Fig. 1. Im-Bessel correlated field realization: (a) |U | and (b) arg(U).

The autocorrelation of the above expression equals Eq. (17) or
equivalently µ, if 〈r ( f1)r ∗( f2)〉 = δ( f1 − f2)/π . CCGRNs
with that autocorrelation function are easy to create with a
Gaussian random number generator, and we can use Eq. (18) to
produce T.

Because Eq. (18) will be computed numerically, we express it
in discrete form:

T [i ]= 2π

√
σ 2

8

1− ξ
√
ξ

N−1∑
n=0

r [n]
√

n1 f

× exp

[
−

1

2
(2π)2

σ 2

8

1− ξ
√
ξ

(
n1 f

)2

]

× Jm
(
2π in1s1 f

) √
1 f , (19)

where r is a one-dimensional array of zero-mean, unit-variance
CCGRNs, i is the discrete radial index, n is the discrete f index,
1s is the sample spacing in the spatial domain,1 f is the spacing
in the f domain, and N is the number of discrete points in the
array. Note that the integral (sum) is now one dimensional vice
two, and therefore, it is not prohibitive to directly compute
what is equivalently an mth-order Hankel transform. After
computing Eq. (19), to produce an Im-Bessel correlated beam
realization, we need to transform the one-dimensional T into a
two-dimensional (2D), rotationally invariant screen and then
multiply the screen by τ given in Eq. (14).

Figure 1 shows an example Im-Bessel correlated field realiza-
tion generated using the above procedure. As we show in Code
1, Ref. [46], we used computational grids that were N = 512
points per side with1s = 18.2 µm and1 f = 107.4 m−1. The
Im-Bessel correlated source parameters were ξ = 0.7, m = 3,
andσ = 1 mm.

Figure 2 shows the theoretical [computed using Eq. (13)]
and simulated spectral densities [S(ρ)=W(ρ, ρ)] [5,6] and
W(x1, y1, γ, γ ), whereγ is

γ =

√
σ 2

8

1− ξ
√
ξ
= 211.7 µm. (20)

The simulated moments were computed using 100,000 Im-
Bessel correlated field realizations. Figure 2(c) shows the 2D
correlation coefficient C for the simulated spectral density ver-
sus trial number. The inset shows C from trials 100–100,000.
This plot is included to quantitatively show convergence. The
simulated results are in excellent agreement with theory.

Fig. 2. Im-Bessel correlated source simulation results: (a) S theory,
(b) S simulation, (c) 2D correlation coefficient C for S simulation
versus trial number, (d) real (top) and imaginary (bottom) parts of
W(x1, y1, γ, γ ) theory, and (e) real (top) and imaginary (bottom)
parts of W(x1, y1, γ, γ ) simulation.

B. Rectangular Hermite Non-Uniformly Correlated
Source

We now show how to generate rectangular Hermite non-
uniformly correlated (RHNUC) source field realizations. To
our knowledge, RHNUC beams have never been synthesized
before.

RHNUC beams were introduced in Ref. [47] and have the
following W :

W
(
ρ1, ρ2

)
= exp

(
−

x 2
1 + x 2

2

4σ 2
x

)
1

H2m (0)
H2m

[
f (x1, x2)

δ2
x

]

× exp

[
−

f 2 (x1, x2)

δ4
x

]
exp

(
−

y 2
1 + y 2

2

4σ 2
y

)

×
1

H2n (0)
H2n

[
g (y1, y2)

δ2
y

]
exp

[
−

g 2 (y1, y2)

δ4
y

]
,

(21)

https://doi.org/10.6084/m9.figshare.10058318
https://doi.org/10.6084/m9.figshare.10058318
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where m and n are integers, H2m is a 2mth-order Hermite
polynomial, σx and σy are the radii of the beam in the x and y
directions, and δx and δy are related to the correlation widths in
the x and y directions, respectively. Also in Eq. (21), f and g are

f (x1, x2)= (x1 − x0)
2
− (x2 − x0)

2,

g (y1, y2)= (y1 − y0)
2
− (y2 − y0)

2, (22)

where x0 and y0 are shift parameters in the x and y directions.
The τ , p , and h that when substituted into Eq. (2) yield the
RHNUC source W are

τ (ρ)= exp

(
−

x 2

4σ 2
x

)
exp

(
−

y 2

4σ 2
y

)
,

p (v)=

(
δ4

x/4
)m+1/2(

δ4
y/4
)n+1/2

0 (m + 1/2) 0 (n + 1/2)
v2m

x v2n
y

× exp

(
−
δ4

x

4
v2

x

)
exp

(
−
δ4

y

4
v2

y

)
,

h (ρ, v)= exp
[
−jvx (x − x0)

2] exp
[
−jvy (y − y0)

2] , (23)

where0 is the gamma function.
We can now apply Eq. (12) to generate T and ultimately a

RHNUC source field realization. Substituting the above p and
h into Eq. (12) and simplifying yields

T (ρ)=

(
δx/
√

2
)2m+1(

δy /
√

2
)2n+1

√
20 (m + 1/2) 0 (n + 1/2)

(2m)m+1/2(2n)n+1/2

×

∫∫
∞

−∞

r ( f ) | fx |
m
∣∣ f y

∣∣n exp

(
−

1

2
π2δ4

x f 2
x

)

× exp

(
−

1

2
π2δ4

y f 2
y

)
exp

[
−j2π fx (x − x0)

2]
× exp

[
−j2π f y (y − y0)

2] d fx d f y .
(24)

The integrals in Eq. (24) can be evaluated using FFTs. The
transform domain coordinates, ξ and η, are related to the spatial
domain coordinates, x and y , by

ξ = (x − x0)
2,

η= (y − y0)
2. (25)

Assuming square computational grids, the grid size in the (ξ, η)
plane is

Lξη = 2

[
Lxy
√

2
+max (|x0| , |y0|)

]2

, (26)

where Lxy is the grid size in the (x , y ) plane, which must be large
enough to comfortably “fit” the beam shape τ . Equation (24) in
2D discrete Fourier transform (DFT) form is

Fig. 3. RHNUC field realization: (a) |U | and (b) arg(U).

T [i, j ]=

(
δx/
√

2
)2m+1(

δy/
√

2
)2n+1

√
20 (m + 1/2) 0 (n + 1/2)

(2m)m+1/2(2n)n+1/2

×

N/2−1∑
k=−N/2

N/2−1∑
l=−N/2

r [k, l ]

∣∣∣∣ k
L ξη

∣∣∣∣m∣∣∣∣ l
L ξη

∣∣∣∣n

× exp

[
−

1

2
π 2δ4

x

(
k

L ξη

)2
]

exp

[
−

1

2
π 2δ4

y

(
l

L ξη

)2
]

× exp

(
−j

2π

N
ki
)

exp

(
−j

2π

N
l j
)

1

L ξη
,

(27)

where i, j are the discrete ξ, η indices.
It is clear from Eq. (25) that ξ, η≥ 0; therefore, after evalu-

ating Eq. (27), we need only the first quadrant of the resulting
T(ξ, η) screen. To form T(x , y ), we must then interpolate the
first quadrant of T(ξ, η) to the full spatial (x , y ) grid using the
relations in Eq. (25). The last step is to multiply T(x , y ) by τ in
Eq. (23).

Figure 3 shows an example RHNUC field realization. The
RHNUC source parameters are σx = 1.5 mm, σy = 1 mm,
δx = 1.25 mm, δy = 1.1 mm, x0 = 0.5 mm, y0 =−0.6 mm,
m = 2, and n = 1. We used grids that were 512 points per side
with an (x , y ) plane spacing equal to 19.5 µm [46]. The asso-
ciated (ξ, η) plane grid size and spacing were Lξη = 1.18 cm2

and 0.23 mm2, respectively.
Figure 4 shows the theoretical [computed using Eq. (21)] and

simulated spectral densities S as well as W(x1, 0, x2, 0). As in
the previous example, the simulated moments were computed
using 100,000 field realizations. Figure 4(c) shows C for the
simulated S versus trial number; the inset shows C from trials
100–100,000. Overall, the agreement between simulation
and theory is excellent. Note that the visually conspicuous
differences between Im(W) theory and simulation in Figs. 4(d)
and 4(e) are in fact quantitatively small. The color scale of these
images is [−0.005, 0.005], which is two orders of magnitude
smaller than the corresponding color scale of Re(W).

C. Twisted Anisotropic Gaussian Schell-Model
Source

For our final example, we show how to generate a twisted
anisotropic Gaussian Schell-model (TAGSM) source field reali-
zation. Twisted Gaussian Schell-model (TGSM) beams were
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Fig. 4. RHNUC source simulation results: (a) S theory, (b) S
simulation, (c) 2D correlation coefficient C for S simulation ver-
sus trial number, (d) real (top) and imaginary (bottom) parts of
W(x1, 0, x2, 0) theory, and (e) real (top) and imaginary (bottom)
parts of W(x1, 0, x2, 0) simulation.

first introduced by Simon and Mukunda [48] and were physi-
cally realized shortly thereafter [49]. Since that time, twisted
beams have been extensively studied and generalized [50–54].

Despite much theoretical work, only two groups of
researchers have actually realized TGSM beams, and both used
a similar approach, namely, passing an anisotropic Gaussian
Schell-model beam through a system of rotated cylindrical
lenses [49,55]. No one, to our knowledge, has ever generated a
TGSM beam using a complex transmittance screen, which in
practice, can be achieved using a simple optical setup consisting
of a laser, SLM, and a 4 f spatial filter [33].

A TAGSM source has the following W :

W
(
ρ1, ρ2

)
= exp

(
−

x 2
1 + x 2

2

4σ 2
x

)
exp

[
−
(x1 − x2)

2

2δ2
x

]

× exp

(
−

y 2
1 + y 2

2

4σ 2
y

)
exp

[
−
(y1 − y2)

2

2δ2
y

]

× exp
[
ju (x1 y2 − x2 y1)

]
, (28)

where u is called the twist parameter [50]. The τ , p , and h that
when substituted into Eq. (2) yield the TAGSM source W are

τ (ρ)= exp
(
−σρ2) ,

p (v)=

√
αβ

π
exp

(
−αv2

x

)
exp

(
−βv2

y

)
,

h (ρ, v)= exp
[
−j
(
x − jαuy

)
vx
]

exp
[
−j
(
y + jβux

)
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]
,

(29)

whereα,β, andσ are

1

4σ 2
x
= σ −

βu2

2
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4
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1
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1
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2
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4
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1

4β
. (30)

With Eq. (29), we can now produce TAGSM T using
Eq. (12), namely,

T (ρ)=
√

2π(αβ)1/4
∫∫

∞

−∞

r ( f )

× exp

[
−

1

2
(2π)2

(
α f 2

x + β f 2
y

)]
× exp (−2παuy fx ) exp

(
2πβux f y

)
× exp

(
−j2πρ · f

)
d2 f . (31)

The integrals in Eq. (31) can be evaluated using FFTs. For con-
venience, we express Eq. (31) in DFT form:

T [i, j ]=
√

2π(αβ)1/4
N/2−1∑

m=−N/2

N/2−1∑
n=−N/2

r [m, n]

× exp

[
−

1

2
(2π)2α

(
m
L x

)2
]

exp

(
−2παu j

L y

Ny

m
L x

)

× exp

[
−

1

2
(2π)2β

(
n
L y

)2
]

exp

(
2πβui

L x

Nx

n
L y

)

× exp

(
−j

2π

Nx
mi
)

exp

(
−j

2π

Ny
nj
)
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,

(32)

where Nx , Ny and L x = Nx1x , L y = Ny1y are the x and y
dimensions of the grid in points and meters (1x , 1y are the grid
spacings), respectively.

To use FFTs to compute the above matrix–vector product,
we first evaluate the exponential terms containing the twist
parameter u at a desired discrete x , y (i.e., i, j ) location. We
then compute the 2D FFT of the resulting matrix. The value
of the 2D FFT at the i, j location where the twist parameter
exponentials were evaluated is the true value of the screen T.
We repeat this procedure for all i, j . The last step is to multiply
the resulting T by the τ in Eq. (29) to form a TAGSM field
realization.
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Fig. 5. TAGSM field realization: (a) |U | and (b) arg(U).

Fig. 6. TAGSM source simulation results: (a) S theory, (b) S
simulation, (c) 2D correlation coefficient C for S simulation ver-
sus trial number, (d) real (top) and imaginary (bottom) parts of
W(x1, 0, 0, y2) theory, and (e) real (top) and imaginary (bottom)
parts of W(x1, 0, 0, y2) simulation.

An example TAGSM field realization is shown in Fig. 5. The
TAGSM source parameters are σ = 41 mm−2, α = 0.1 mm2,
β = 0.2 mm2, and u =−20 mm−2, corresponding to physical
parameters σx = 0.5 mm, σy = 0.11 mm, δx = 0.15 mm, and
δy = 0.21 mm [46].

For these proof-of-concept simulations, we used 70× 70 fre-
quency domain grids with a spacing1 f = 250 m−1 [46]. Since
we must evaluate the twist parameter exponentials at each i, j ,

we expanded the grids to 70× 70× 4900, where f y (discrete
index n), fx (discrete index m), and x , y (discrete indices i, j )
corresponded to dimensions 1, 2, and 3 of the grids, respectively.
We then fast Fourier transformed the three-dimensional (3D)
array along dimensions one and two. The mapping from the
transformed 3D arrayT to T was simply

T [i, j ]= T [i, j , N ( j − 1)+ i ] , (33)

where N = 70 was the number of grid points. We note
that by using FFTs and with N = 70 and 1 f = 250 m−1,
1x =1y = 57.14 µm and L x = L y = 4 mm. As a last step,
we interpolated the 70× 70 screens to 512× 512T with
1x =1y = 7.81 µm.

Figure 6 shows the theoretical [computed using Eq. (28)]
and simulated S and W(x1, 0, 0, y2). As in the previous two
PCS examples, the simulated moments were computed using
100,000 field realizations. Figure 6(c) shows C for the simu-
lated S versus trial number, and the inset shows C from trials
100–100,000. The agreement between simulation and theory is
excellent, implying successful realization of the beam.

4. CONCLUSION

We presented a method to produce stochastic complex transmit-
tance screens for synthesizing general PCSs. With the exception
of a few recent papers, complex screen or phase screen methods
have been used solely to synthesize Schell-model PCSs.

Here, using the genuine CSD function criterion, we derived
a superposition integral to produce complex screen realizations
for both uniformly (Schell-model) and non-uniformly corre-
lated PCSs. We demonstrated and validated our method by
generating, in simulation, three PCSs from the literature. Using
100,000 stochastic optical field realizations, we computed 2D
slices through the corresponding 4D CSD functions. We com-
pared the simulated results to theory and found them to be in
excellent agreement.

In closing, the method presented in this paper adds to
the existing literature concerning PCS synthesis. Using this
approach, any PCS with a genuine CSD function can be realized
using a simple optical system consisting of a laser, SLM, and 4 f
spatial filter.
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