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Reference dependence of the two-determinant coupled-cluster
method for triplet and open-shell singlet states
of biradical molecules

Jesse J. Lutz,1,2,a) Marcel Nooijen,3 Ajith Perera,2 and Rodney J. Bartlett2
1Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio 45433, USA
2Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
3Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

(Received 7 February 2018; accepted 9 April 2018; published online 24 April 2018)

We study the performance of the two-determinant (TD) coupled-cluster (CC) method which, unlike
conventional ground-state single-reference (SR) CC methods, can, in principle, provide a naturally
spin-adapted treatment of the lowest-lying open-shell singlet (OSS) and triplet electronic states.
Various choices for the TD-CC reference orbitals are considered, including those generated by the
multi-configurational self-consistent field method. Comparisons are made with the results of high-
level SR-CC, equation-of-motion (EOM) CC, and multi-reference EOM calculations performed on
a large test set of over 100 molecules with low-lying OSS states. It is shown that in cases where
the EOMCC reference function is poorly described, TD-CC can provide a significantly better quan-
titative description of OSS total energies and OSS-triplet splittings. Published by AIP Publishing.
https://doi.org/10.1063/1.5025170

I. INTRODUCTION

Single-reference (SR) methods based on the exponen-
tial wavefunction ansatz of coupled-cluster (CC) theory are
the most successful electronic structure methods for the cal-
culation of energies and properties of atomic and molecu-
lar systems in their ground and excited states.1–3 Notable
strengths of CC theory when compared with other ab ini-
tio methods, and first-principle but not ab initio ones like
Kohn-Sham (KS) density functional theory (DFT), are that
it is size-extensive, it provides a good balance of static and
dynamical correlation, and it converges systematically to the
full configuration interaction (CI) limit. The most widely
used CC approximations are CC with singles and doubles
(CCSD)4 and its extension including a perturbative correc-
tion for triple excitations known as CCSD(T).5–7 In the past,
CC methods were severely limited by their well-known steep
polynomial scaling (N 6–N 7) of the serial computing cycles
with the number of correlated orbitals (N ). Fortunately,
this polynomial scaling, which makes performing calcula-
tions prohibitively expensive for most extended systems, is
rapidly being overcome through massively parallel comput-
ing algorithms8,9 plus orbital localization schemes.10–16 These
advances, which make CC-quality energies and properties
obtainable at near-DFT cost,17 provide a new stimulus for
the further development of CC methods that are likely to
find renewed interest within a more computationally tractable
framework.

A major obstacle to the direct application of the SR-CC
formalism to excited states is its inability to treat open-shell

a)Electronic mail: jesse.lutz.ctr@afit.edu

states such as open-shell singlet states (OSSs), the most com-
mon type of excited state. Though there is great flexibility in the
starting point for SR-CC, in practice the ansatz requires that the
zeroth-order initial guess of some single determinant be a “suf-
ficiently accurate” starting approximation to the overall wave-
function expansion. The variety in use—restricted Hartree-
Fock (RHF), unrestricted Hartree-Fock (UHF), restricted
open-shell Hartree-Fock (ROHF), Brueckner (B), the first nat-
ural determinant, Kohn-Sham, quasi-restricted Hartree-Fock
(QRHF), and CC orbital optimized—provide important flexi-
bility in this choice. However, open-shell states require more
than one determinant in the zeroth-order to form a spin-adapted
configuration state function (CSF). Thus, the pursuit of open-
shell states within CC theory normally leads to either (1)
multi-reference (MR) CC methods of either the Fock space
or Hilbert space (HS) variety18 or (2) excited-state SR-CC
methods like the equation-of-motion (EOM) CC where exci-
tation (or de-excitation) operators are applied to a related
SR-CC function to form the target low-spin state.19 Due to
the complications which arise in the formulation and applica-
tion of MR-CC methods,18 the EOMCC approaches20–22 have
become widely adopted for routine use.

EOMCC and its linear-response CC counterparts23–28

build the desired excited-state information using as a refer-
ence the SR-CC ground state wavefunction. The EOMCCSD
method can be extended to achieve greater accuracy, in analogy
to the ground-state case, by adding triple excitations pertur-
batively, as in the EOMCCSD(T) method,29–32 or iteratively,
from EOMCCSDT-n to the full EOMCCSDT. The results of
the EOMCCSD method depend on the quality of the cor-
related ground state reference that, ideally, should be such
that the excited-state function is accessible by largely sin-
gle excitations out of the reference. Although orbital choice

0021-9606/2018/148(16)/164102/11/$30.00 148, 164102-1 Published by AIP Publishing.
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in SR-CCSD and beyond has very little effect on the ground
state, it might affect the quality of the EOMCCSD target states.
For example, employing KS orbitals has been shown to be a
viable alternative for systems with nearly degenerate states.33

Additionally, other orbital choices, such as those taken from
Brueckner theory,34,35 may also be advantageous in certain
situations.

If instead high-spin states are of interest, standard SR-
CC theory can be employed in a straightforward manner by
using as a reference the UHF or ROHF wavefunctions,7,36,37 or
any of the others mentioned above in their high-spin variants.
The UHF reference leads to a lowering of the total energy as
compared with the restricted variants and it introduces impor-
tant spin-polarization effects on the spin density, but a price is
paid for allowing α-spin electrons to occupy different spatial
orbitals than the β-spin electrons. First, the resulting refer-
ence determinant is not an eigenfunction of spin, 〈Ŝ2〉, and
second, having to treat different orbitals for different spins
usually requires ∼3 times the computer time as in the RHF
reference case. The situation is not much better for the spin-
symmetry-preserving ROHF-based formalism. The reference
determinant is an eigenfunction of spin but the CC wavefunc-
tion is not, just as in the UHF-CC case, so the multiplicity,
2S + 1 ≈

√
1 + 4〈S2〉, should be monitored.38 One exception is

the EOMCCSD approach of Szalay and Gauss,39 which creates
EOMCC states based upon a ROHF ground-state CC solution
that are proper spin-eigenfunctions. However, most methods
based upon ROHF wavefunctions encounter formidable and
problematic symmetry-breaking issues which cause additional
complications.40

An alternative approach to EOMCC for directly obtain-
ing the open-shell singlet and its Ms = 0 triplet partner is
provided by the two-determinant (TD) CC method, the sub-
ject of this paper. The TD-CC method is a special case of the
state-universal (SU) HS MR-CC method initially formulated
by Kucharski and Bartlett41 but is specifically geared toward
describing OSS states.

TD-CC has several attractions:

(1) It is the simplest-possible, justified starting-point for an
open-shell singlet. (SR-CC with UHF low-spin states
provides a 50-50 mixture of the singlet and triplet.)

(2) Unlike EOMCC which uses a linear operator, R̂k , to
describe the target state, it uses an exponential form. It
is thus fully linked and size-extensive.

(3) It introduces selected triple excitations efficiently as sin-
gle and double excitations from the second determinant,
rather than having to add R3 into EOMCC.

(4) It provides the Ms = 0 singlet and triplet pairs simulta-
neously.

(5) It is highly interpretive as it identifies a particular exci-
tation from i → a (occupied orbital i to unoccupied
orbital a) as the zeroth-order function for the TD-CC
wavefunction.

(6) In principle, TD-CC can provide spin-pure open-shell
states, but the current ACESII42 implementation is a
spin-orbital one.

(7) The TD-CCSD approximation has the same (N6) com-
putational scaling as conventional SR-CCSD.

(8) Low-spin doublet states and others that are fixed by spin-
symmetry could be similarly described as in the TD-
CCSD theory presented below.

The TD-CCSD method has been applied previously
to methylene,43 cyclobutadiene,44 water,45 and ketene and
diazomethane.46 Analytic gradients were also implemented,
enabling a thorough analysis of the energies, geometries,
and frequencies of trans-butadiene and ozone.47 Efficient and
general spin-orbital implementations of TD-CCSD are cur-
rently available in the ACESII, CFour,48 and MOLCAS49

software packages. A related orthogonally spin-adapted for-
mulation of TD-CCSD was derived, implemented, and applied
by Piecuch et al.,50–56 but those codes were not distributed
publicly.

In this work, we return to examine the accuracy and for-
mal properties of TD-CCSD as it is currently implemented in
ACESII. Of particular interest is the performance of TD-CCSD
relative to the ROHF/SR-CCSD results for lowest-lying triplet
states (T0) and relative to the RHF/EOMCCSD results for both
T0 states and their companion OSS states. In the following, we
will abbreviate OSS states as S1, while noting that in certain
cases, a multi-reference closed-shell singlet may lie between
the closed-shell ground-state singlet (S0) and the S1 state (see,
e.g., Ref. 57). The energy gap between them, the singlet-triplet
(S1 � T0) splitting, also warrants attention. The quality of the
results will be investigated in terms of the accuracy of absolute
and relative energetics.

For these tests, we have chosen a variety of computation-
ally tractable systems commonly known to have ground-states
with a significant biradical character (see also, Ref. 58). For
such states SR-CCSD will usually provide a poor ground-state
description, and consequently the RHF/EOMCCSD has dif-
ficulty adequately recovering some correlation effects. It is
thus an interesting question whether direct application of the
CC ansatz to the relevant excited state can produce a better
description than RHF/EOMCCSD. Hence, this paper provides
TD-CCSD energies for a large set of demanding molecules.

The purpose of this study is to benchmark the TD-CCSD
approach and the choice of reference energy values is delicate.
The TD-CCSD approach does not include triple excitations
and for this reason the most meaningful comparison would
be against a multi-reference approach that works with similar
small active spaces as TD-CCSD, which includes singles and
doubles only. Our method of choice is the MREOM approach
which has shown to give excellent results for atomic excita-
tion spectra,59 excitation spectra of organic molecules,60 and
a limited set of transition metal compounds.61

In MREOM, a sequence of similarity transformations
of the Hamiltonian is performed and the final state energies
are obtained by a compact diagonalization over the complete
active space (CAS) plus 1-hole + 1-particle excitations. The
similarity transformations account in a size-extensive way for
all other excitations, and many electronic states can be obtained
in a balanced way based on a single state-averaged (SA)
CAS to define the orbitals and a single set of transformation
amplitudes.

The structure of this paper is as follows. Section II
describes the theory underlying the TD-CCSD method and a
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formal justification is given that builds an expectation for good
performance when employing particular reference orbitals.
Section III describes procedural details and approximations
used in this work, including the choice of basis set and elec-
tronic structure packages employed. Section IV outlines the
systems studied, compares TD-CCSD results generated using
a variety of reference orbitals, and provides a comparative eval-
uation of the performance of TD-CCSD for producing triplet
and OSS energies. Section V recapitulates our conclusions.

II. THEORY

Here we briefly summarize and discuss the derivation and
implementation of the equations for the TD-CC energy and
amplitudes. This is done primarily to point out the key approx-
imations made during the procedure. The full derivation of the
energy and analytic derivative equations, including full expres-
sions for the renormalization terms for CASs and incomplete
active spaces (IAS) can be found in Ref. 47. We conform to
that notation in the following.

The formulation of the TD-CC equations begins with the
construction of an appropriate reference space, P, which for the
special case of TD-CC is restricted to be the two determinants
that define the OSS and associated triplet wavefunction,

A
Φ = n̄†m†

∏
i

i† |vac
〉
, B
Φ = n†m̄†

∏
i

i† |vac
〉
.

Here lower-case letters with daggers mean creation operators,
with i, j, . . . designating occupied spin orbitals and a, b, . . .
designating virtual spin orbitals, m and n represent open-shell
spin-orbitals (unbarred with α spin and barred with β spin),
and |vac〉 is the true vacuum.

The Bloch equation used in MR-CC62 is

HΩ = ΩHΩ = ΩHeff ,

where Ω is the waveoperator, which transforms a model func-
tion defined in the model space spanned by P to the exact
wavefunction. Heff = PHΩP, which in this case will be a
2 × 2 matrix.

The two “model” functions are thus

S
Ψ0 =

1
√

2
(A
Φ + B

Φ), T
Ψ0 =

1
√

2
(A
Φ − B

Φ)

of singlet and triplet multiplicity, respectively. Because they
are of different spin symmetries, the Heff will block into two
solutions, an OSS part, 〈SΨ0|Heff|SΨ0〉, and a triplet part,
〈TΨ0|Heff|TΨ0〉.

To form the MR-CC singlet (triplet) state, the SΨ0 (TΨ0)
reference function is operated on using the conventional
Jeziorski-Monkhorst (JM) waveoperator63 that here takes the
form

Ω̂ = [eTA |AΦ〉〈AΦ |] + [eTB |BΦ〉〈BΦ |],

with TA(TB) being the usual cluster operator of CC theory
defined with respect to the Fermi vacuum AΦ(BΦ). At this
point, a term is explicitly removed from the equations, which
corresponds to the active-active double excitation creating BΦ

from AΦ and vice-versa, because that would be a redundant
(internal) determinant.

Solutions for these equations are obtained in the usual way
by choosing a level of truncation for the cluster operators. Here
we choose to truncate the cluster operator to include only single
and double excitations. Thus after enforcing the projectors in
the waveoperator, the expressions for the OSS state correlation
energy is

∆E = 〈AΦ |HN eTA |AΦ〉 + 〈AΦ |HN eTB |BΦ〉

≡ ∆EA + W ,

while the corresponding triplet correlation energy is ∆E
= ∆EA � W. Projections onto the subspaces of singly and dou-
bly excited determinants produce equations for the determina-
tion of the t1 and t2 amplitudes, respectively, and they are given
as

Qa
i = 〈

A
Φ

a
i |HN eTA |AΦ〉C −

(
〈AΦa

i |e
TB |BΦ〉〈BΦ |HN eTA |AΦ〉

)
C

≡ 〈AΦa
i |HN eTA |AΦ〉C + Ma

i W = 0

and

Qab
ij = 〈

A
Φ

ab
ij |HN eTA |AΦ〉C −

(
〈AΦab

ij |e
TB |BΦ〉〈BΦ |HN eTA |AΦ〉

)
C
− P(ij, ab)

[
〈AΦa

i |e
TA |AΦ〉

×
(
〈AΦb

j |e
TB |BΦ〉〈BΦ |HN eTA |AΦ〉

)
C
− R̂(ia)〈BΦa

i |e
TB |BΦ〉

(
〈AΦb

j |e
TB |BΦ〉〈BΦ |HN eTA |AΦ〉

)
C

]

≡ 〈AΦab
ij |HN eTA |AΦ〉C + Mab

ij W = 0,

where the subscript C means that only connected terms are
included, R̂(ia) = (1− δinα )(1− δimβ )(1− δamα )(1− δanβ ), i.e.,

the effect of operator R̂ is that in all preceding terms only inac-
tive (double occupied and virtual) labels are included. Explicit
expressions for calculation of the renormalization terms, Ma

i

and Mab
ij , can be found in Ref. 47. The Hamiltonian is normal

ordered with respect to determinant AΦ,

H = 〈AΦ |H | AΦ〉 +
∑
pq

f pq{p
†q} +

1
4

∑
pqrs

〈pq| |rs〉{p†q†sr},

where {} means normal ordering, f pq is the matrix element
of the usual Fock operator, and 〈pq||rs〉’s are antisymmetrized
two-electron integrals.

At this point, a second set of equations can also be derived
using BΦ in the projections to obtain as many equations as
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amplitudes in TB as in TA, but this is not necessary. As orig-
inally suggested in Ref. 46, since AΦ and BΦ are related by
a single spin flip, so too should be the TA and TB operators.
This relation leads to implementing the method in a fashion as
close as possible to the SR-CC theory, basing it upon only one
determinant, and effects reduction in the computation time by
a factor of two in the current ACESII implementation. It can
be verified computationally that identical results are obtained
whether the user initially forms AΦ or BΦ as the effective
“single” reference.

Methods based on the HS-MRCC framework fall into
various categories based on symmetry classifications of the
determinants included in the model space. Consequently, the
TD-CC approach can be one of two variants. If the active TD-
CC orbitals are chosen to be of different spatial symmetry
(ab-type), then all possible excitations (two) of a given sym-
metry involving the active orbitals are included in the model
space, making it a CAS. On the other hand, if the active TD-
CC orbitals are chosen to be of the same spatial symmetry
(aa-type), only two of the four CAS determinants are included,
making it an IAS variant. The latter was formulated by Meiss-
ner et al.,64 where intermediate normalization was relaxed and
certain terms made zero to guarantee size-extensivity.

The SU-HS-MRCC method as originally formulated41

and used41,44,64,65 always employed a CAS model space and
consequently the JM waveoperatorΩ always produced excited
configurations outside the reference space.63 As addressed by
Meissner et al. above, and later shown by Li and Paldus, the
exclusion of internal excitations from the cluster operators is
not valid for incomplete model spaces.66 The exclusion of
internal excitations from TA in an IAS method is equivalent to
their exclusion from Ω, which can cause an incidental intro-
duction of disconnected-cluster terms that otherwise would
normally be canceled by connected-cluster terms in the CAS
analog. Disconnected terms could cause other formal aspects
of the theory to be disrupted as well. A similar omission is
chosen in the λ equations for the analytic derivatives. Here,
we use the Meissner IAS formulation. Li and Paldus have also
developed a generalized model space SU-MRCC method to
address such deficiencies.40,66–74

III. COMPUTATIONAL DETAILS

For the computation of the TD-CCSD OSS wavefunc-
tion, a zeroth-order CSF is constructed using a procedure
involving QRHF determinants (meaning determinants where
the orbitals are chosen non-variationally) that was demon-
strated to be adequate in previous studies.43–47 Conventionally
the QRHF reference orbitals have been generated by com-
puting the RHF determinant for a related S0 state, followed
by promotion of an electron from an alpha occupied to an
alpha virtual, with the direct product of the symmetries of the
orbital pair having the desired spatial symmetry of the target
state. For all calculations performed in this work, the appro-
priate transition corresponds to the energetically highest-lying
occupied molecular orbital (HOMO) and lowest-lying unoccu-
pied molecular orbitals (LUMO) of the appropriate symmetry,
though it should be noted that the QRHF/TD-CC approach
is broadly applicable to non-HOMO/non-LUMO transitions

as well. In general, TD-CCSD can target and converge upon
a number of excited states. However, here the QRHF proce-
dure uses a predetermined orbital occupancy (singly occupied
HOMO and LUMO), so the intended excited state is uniquely
described by simply specifying reference orbitals together with
the method (e.g., RHF/TD-CCSD). This short-hand notation
is convenient when comparing different CC methods that use
the same set of reference orbitals (e.g., RHF/TD-CCSD and
RHF/SR-CCSD).

Several methods are tested for the generation of non-HF
reference orbitals. The first is KS-DFT applied to the S0 state
with orbitals obtained using the B3LYP functional. Unlike the
RHF method, the KS-DFT approach uses the same potential
for the generation of the occupied and the virtual orbitals. Since
the TD-CC active space always involves both occupied and vir-
tual orbitals, it is feasible that improved energetics could result
from an improved description of the active orbitals. Another
method is a simple yet physically motivated unitary transfor-
mation of the canonical RHF orbitals, replacing them by a set

determined by applying an averaged N � 1 potential (V
N−1

),75

which is also a kind of generalized Fermi-Amaldi factor.76

It is well-known that SR-CC is invariant to similarity trans-
formations applied to occupied-occupied and virtual-virtual

orbitals. By contrast, application of the V
N−1

potential can
have an effect on the TD-CC energetics because within the
QRHF procedure, it causes a mixing of one of the occupied
orbitals with the virtual space.

To address the question of using multi-configurational
(MC) self-consistent field (SCF) reference orbitals, we also
generate natural orbitals of the CASSCF method with two
electrons in two orbitals CAS(2,2). Natural orbitals are pro-
duced from (1) the OSS CSF,77 (2) the triplet (Ms = 0)
CSF, which in the field-free case is energetically equivalent
to the ROHF (Ms = ±1) determinant,78 and (3) the SA-CAS,
formed by mixing equally the lowest-lying triplet and OSS
two-determinant CSFs.79 For clarity, here we refer to (1) as
TD-SCF, (2) as ROHF, and (3) as SA-MCSCF(2,2). Because
this study is primarily interested in S1 � T0 gaps, we focus
on results found using the SA-MCSCF(2,2) reference orbitals
since it contains no bias toward either of the two states of inter-
est. For systems with more orbital degeneracy, specification of
larger SA-MCSCF active spaces can improve the description
of severely multi-reference triplet and OSS configurations.

The DZP basis set of Dunning was used throughout,80,81

with the hydrogen p exponent set to 0.7, the carbon d exponent
set to 0.654, the fluorine d exponent set to 1.58, and the sil-
icon d exponent set to 0.28. All correlated calculations were
performed with core orbitals frozen. The SR-CC, EOMCC,
and TD-CC calculations were performed using ACESII on
the University of Florida HiPerGator cluster or ACESIII on
the AFRL DSRC SGI Ice X Thunder. In the MREOM calcula-
tion, the orbitals are obtained from the SA-MCSCF calculation
including the S1 and T0 states. The amplitudes included in the
transformation step of MREOM include T, S, and U, such that
the final diagonalization in MREOM is over CAS + 1-hole + 1-
particle excitations. The calculations are performed using the
MRCC extension to ACESII developed by the Nooijen group
in Waterloo.



164102-5 Lutz et al. J. Chem. Phys. 148, 164102 (2018)

IV. RESULTS AND DISCUSSION

In the following, we examine the results of computa-
tions performed on a large set of biradical systems taken from
Ref. 82. The systems are sketched in Fig. 1 and included among
them are several functionalized variants of the following
molecule classes: (a) carbenes, (b) silylenes, (c) cyclobutane-
1,3-diyls, (d) cyclopentane-1,3-diyls, (e) ortho-xylylenes, (f)
meta-xylylenes, and (g) para-xylylenes. The cyclobutanediyls
and cyclopentanediyls are abbreviated here as cyclo 4s and
cyclo 5s and the xylylene prefixes are abbreviated. This set of
systems serves to vary both the number of correlated electrons
and the symmetry of the states. Additionally, the configu-
rational isomers of xylylene give insight into the effect of
independently varying the level of the non-dynamical cor-
relation. The electronic structure of m-xylylene has signifi-
cant static correlation, as discussed in detail in Refs. 83 and
84. There it is suggested that, unlike for o-xylylene and p-
xylylene, a CAS(2,2) calculation alone is inadequate for the
determination of the S1 � T0 splitting of m-xylylene, and they
advocate that active spaces as large as (8,8) must be used
instead.

As noted in Ref. 82, the four monochlorinated cyclopen-
tanediyl systems were optimized to poor geometries at the
UB3LYP/6-31G∗ level, producing structures with C–Cl bonds
that were extended so far (2.4 Å) as to be effectively broken.
For this reason, we have re-optimized these four structures
using MBPT(2)/6-31G∗ and obtained RC–Cl values which are
shorter by at least 0.6 Å for each molecule. Testing the per-
formance of TD-CCSD along single-bond-breaking potential
wells is outside the scope of the present work, but we intend to
further address this topic in a subsequent study. In the follow-
ing, we will use these newly optimized geometries for these
four species in our analyses.

A. Consequences of employing non-standard orbitals
or the Brueckner variant

In Sec. II, it was mentioned that, unlike SR-CCSD, where
the Thouless condition usually guarantees orbital invariance
even when mixing occupied and virtual orbitals, employing
alternate reference orbitals in the TD-CCSD method might

FIG. 1. The full set of molecules (a)–(g) for which singlet-triplet splittings
were computed.

provide an opportunity for improvement. With the objective of
obtaining the lowest possible energies within the TD-CCSD
scheme, we tested several alternatives for the generation of the
reference orbitals. In addition, we tested the effect of Brueck-
ner orbital-optimization. Forcing t1 amplitudes to become van-
ishingly small in the B/CC procedure provides another useful
check for our study of TD-CCSD since many t1 amplitude-
dependent terms are effectively eliminated from the equations
for the energy, amplitudes, and gradients.

Table I collects raw errors and mean unsigned errors
(MUE) in the T0 energy as produced by several coupled-
cluster approaches, with benchmark values produced using the
ROHF/SR-CCSD(T) method. The first 15 rows provide results
for the individual carbenes, while the lower rows provide
MUEs including several subsets and the full set of biradicals
sketched in Fig. 1. Here it is possible to examine errors side-by-
side corresponding to both the aa-type and ab-type transitions,
which represent fundamentally different model spaces in the
SU-HS-MRCC theory. We note that, as expected, there is no
apparent bias in the TD-CCSD errors toward systems with the
ab-type classification, reaffirming that the method satisfies the
Meissner IAS formulation.

To determine which TD-CC variants are worthwhile
for compiling the full set, we first computed smaller sub-
groups of the biradical systems, starting with the carbenes
and silylenes [(a)–(b)]. For this set, the ROHF/SR-CCSD,
UHF/SR-CCSD, ROHF/B/SR-CCSD, RHF/EOMCCSD, and
RHF/EOMCCSD(T) methods all give MUEs within ∼15% of
the lowest MUE, 0.229 eV, produced by ROHF/SR-CCSD.
Meanwhile the TD-CCSD method performed similarly well

using reference orbitals from the RHF, RHF(V
N−1

), ROHF,
TD-SCF, and SA-MCSCF theories, with the best value, 0.182
eV, given by ROHF/TD-CCSD. The KS/TD-CCSD approach
returned a very large MUE, and as such we did not continue
compiling those values for the remaining systems. Consider-
ing next the first four system classes [(a)–(d)], very similar
MUEs were returned for each of the RHF-based TD-CCSD
approaches, including RHF/TD-CCSD, RHF/B/TD-CCSD,

and RHF(V
N−1

)/TD-CCSD. The additional expense of the
RHF/B/TD-CCSD approach seemed unwarranted, so it was
not considered for the full set. For this larger (a)–(d) subgroup,
ROHF/TD-CCSD again performed best, giving an MUE 4.2%
lower than ROHF/SR-CCSD.

When the full set of biradical systems [(a)–(g)] was ana-
lyzed, MUEs of 1.052, 1.165, and 1.195 eV were returned by
the ROHF/SR-CCSD, RHF/EOMCCSD, and RHF/TD-CCSD
methods, respectively. For the TD-CCSD method, it was found
that switching from conventional RHF orbitals to optimized
ROHF orbitals resulted in an improvement of over 20%, with
ROHF/TD-CCSD providing the best overall MUE of 0.954.
The SA-MCSCF(2,2)/TD-CCSD approach, which is the focus
of the current study, returned 1.098 eV, which is still lower
than the RHF/EOMCCSD MUE by ∼5.0%. Further compar-
isons of the quality of these methods are made in Subsections
IV B–IV D.

The significant improvement in T0 energies found when
moving from RHF/TD-CCSD to ROHF/TD-CCSD suggests
that optimization of the reference orbitals in the TD-CCSD
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active space is indeed important, as discussed in Sec. II.
Using ROHF/SR-CCSD(T) values as benchmarks, we find that
ROHF/TD-CCSD significantly outperforms the ROHF/SR-
CCSD method, indicating that effects normally attributable to
triples in the SR framework are being folded in by the multi-
reference framework of the TD-CCSD approach. Furthermore,
it is worth mentioning that, just as the optimal orbitals for
triplet states (ROHF) provide the best TD-CCSD triplet ener-
gies, the optimal orbitals for OSS states (TD-SCF) provide the
best TD-CCSD OSS energetics.

For convenience, the remainder of this study will only
compare the TD-CCSD results generated using the conven-
tional RHF orbitals and the SA-MCSCF orbitals. The latter
are chosen over ROHF or TD-SCF because they give an unbi-
ased description of the two states of interest for obtaining S1

� T0 gaps within a single TD-CCSD calculation. To further
explore trends in the TD-CCSD data used to compile Table I,
Secs. IV B and IV C adopt a graphical approach for data
analysis.

B. Comparison of TD-CC, EOMCC, and SR-CC
triplet energies

In Sec. IV A, it was shown by comparison against
ROHF/CCSD(T) energy benchmarks that TD-CCSD ener-
gies are dependent upon the reference orbitals. However,
ROHF/CCSD(T) T0 energies are a somewhat poor choice
of benchmark due to the resulting large MUEs, often of the
order of 1.0 eV. The similar magnitude of MUEs produced by
the ROHF/SR-CCSD, RHF/TD-CCSD, and SA-MCSCF/TD-
CCSD methods invites a more direct comparison of the three
sets. In Fig. 2, the relative performance of RHF/TD-CCSD and
SA-MCSCF/TD-CCSD is again considered, this time using
both ROHF/SR-CCSD(T) and ROHF/SR-CCSD T0 energies
as benchmarks.

The correlation plot in Fig. 2(a) compares TD-CCSD
errors produced using the RHF and SA-MCSCF reference
orbitals, with ROHF/SR-CCSD(T) energies used as bench-
marks. The resulting large MUEs and mean signed errors
(MSEs) differ by only ∼10% and the best-fit line, which can
be used as another metric for evaluating relative performance,
has a strong coefficient of variation (r2 = 0.99), a slope only
slightly smaller than unity ( dy

dx = 0.95), and an intercept of
�0.02 eV. These results downplay the reference-dependence
of the TD-CCSD energies.

Figure 2(b) differs from Fig. 2(a) in that the reference
values are ROHF/SR-CCSD rather than ROHF/SR-CCSD(T).
Here, due to the appropriate error magnitude, the superior per-
formance of SA-MCSCF/TD-CCSD is immediately evident
from the near-horizontal ( dy

dx = 0.01) best-fit line with an inter-
cept of 0.01 eV. Using the ROHF/SR-CCSD benchmarks, the
TD-CCSD MSE is reduced by an order of magnitude switch-
ing from the RHF to SA-MCSCF reference orbitals, while the
MUE is reduced by a factor of three. Each data subset is clus-
tered closely about the zero of the ordinate, with the exception
of the m-xylylenes, which were previously identified to have
a significant multi-reference character.

Since the ROHF/SR-CCSD method cannot generate the
OSS of interest in this work, comparisons need to be made
with a method that can, hence, RHF/EOMCCSD. In the first
instance, we examine its performance for producing T0 total
energies. Figure 3 plots the correlation between T0 energy
errors for RHF/EOMCCSD and TD-CCSD using RHF and
SA-MCSCF reference orbitals. All values are again taken with
respect to the ROHF/CCSD benchmark T0 values, as was done
in Fig. 2(b), to maintain small error magnitudes for easier
interpretation.

The correlation plot in Fig. 3(a) compares TD-CCSD
and EOMCCSD T0 energy errors with the same RHF refer-
ence orbitals employed in both cases. The resulting MSEs and
MUEs indicate that RHF/EOMCCSD outperforms RHF/TD-
CCSD by 38% and 25%, respectively. The best-fit line is again
almost horizontal with an intercept ∼0.1 eV, signifying a sys-
tematic overestimation by RHF/TD-CCSD, but this is not too
meaningful given that the coefficient of determination is nearly
zero (r2 = 0.01).

In Fig. 3(b), the TD-CCSD reference orbitals are
changed from RHF to SA-MCSCF(2,2). Remarkably,
Fig. 3(b) completely reverses the trends of Fig. 3(a),
showing SA-MCSCF/TD-CCSD significantly outperforming
RHF/EOMCCSD. Comparing Figs. 3(a) and 3(b), it is clear
that many inaccurate RHF/TD-CCSD T0 energies are cor-
rected by changing the reference orbitals, with most points
in Fig. 3(b) being neatly clustered about the ordinate zero (r2

= 0.50). The TD-CCSD MSE is an order of magnitude lower
than that for RHF/EOMCCSD, while the MUE is also less by a
factor of two. The small slope (0.39) and intercept (�0.02 eV)
of the best-fit line provide supporting evidence of the excellent
performance of SA-MCSCF/TD-CCSD.

FIG. 2. Correlation between T0 energy
errors produced by TD-CCSD used
with the RHF and SA-MCSCF ref-
erence orbitals. The least-squares fit-
ted line of SA-MCSCF/TD-CCSD data
is provided (solid) to be compared
with the hypothetical perfectly corre-
lated line (dashed), corresponding to the
RHF/TD-CCSD values. Errors are taken
with respect to ROHF/CCSD(T) values
in (a) and ROHF/CCSD values in (b).
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FIG. 3. Correlation between T0 energy
errors produced by RHF/EOMCCSD
and TD-CCSD using (a) the RHF
and (b) the SA-MCSCF reference
orbitals. The least-squares fitted line
of SA-MCSCF/TD-CCSD data is pro-
vided (solid) to be compared with
the hypothetical perfectly correlated
line (dashed), corresponding to the
RHF/TD-CCSD values. Errors are
reported with respect to ROHF/CCSD
values.

In Fig. 3(b), the most extreme outliers are cycloalka-
nediyls and m-xylylenes. The poor performance of
RHF/EOMCCSD for these species can be understood by
examining the quality of the RHF/CCSD references used to
construct the RHF/EOMCCSD states. For many of these sys-
tems, the magnitude of the underlying RHF/SR-CCSD t2

amplitudes from the HOMO to LUMO determinant are 0.175
or more. This large static (non-dynamic) correlation effect
in the S0 state means that the RHF/SR-CCSD wavefunction
might be poorly represented and, consequently, the resulting
RHF/EOMCCSD state might not offer as good an approx-
imation as normal. Though not strictly comparable because
of the difference in the reference state, the amplitudes rel-
ative to the reference TD state are much smaller, with the
largest RHF/TD-CCSD t2 amplitude for a m-xylylene sys-
tem being only 0.118 and the largest SA-MCSCF/TD-CCSD
t2 amplitude being only 0.079.

C. Comparison of TD-CC, EOMCC, and MREOM
for open-shell singlet energies and S1 − T0 gaps

Open-shell singlet states make up the other half of the S1

� T0 splittings, and good benchmarks for such states must be
generated using a reliable MR method, in this case MREOM.
In this section, MREOM benchmark values are generated
using the SA-MCSCF(2,2) reference orbitals. The expense of
generating even the smallest (2,2) SA-MCSCF(2,2) reference
orbitals limits our MREOM consideration to xylylene species
with X = Y = H (see Fig. 1). Some cyclo 4 and cyclo 5 species
also had to be omitted due to convergence issues.

Correlation plots examining the orbital-dependence of
TD-CCSD are again shown in Fig. 4, this time with MREOM
providing the benchmark values. Here, TD-CCSD and SA-
MCSCF(2,2)/MREOM S1 energy differences are very large,
hindering data analysis similar to the situation in Fig. 2(a).
Although it is not shown, comparison of TD-CCSD and
MREOM T0 energies produces a quantitatively similar corre-
lation plot to Fig. 4(a). This similarity of the correlation plots
for T0 and S1 energy errors indicates that S1 � T0 gap errors
may be much smaller and therefore more interpretable.

In Fig. 4(b), S1 � T0 gap errors are plotted, again compar-
ing the TD-CCSD performance using the two reference orbital
choices. As expected, errors are much smaller than those in
Fig. 4(a), and, somewhat surprisingly, RHF/TD-CCSD out-
performs SA-MCSCF(2,2)TD-CCSD, with the best-fit line
having a slope of 1.46, an intercept of 0.06 eV, and a
relatively tight scatter (r2 = 0.80). The MSEs and MUEs
for RHF/TD-CCSD are also ∼50% better than those for
SA-MCSCF(2,2)TD-CCSD.

The SA-MCSCF(2,2)/MREOM benchmarks are also use-
ful for directly comparing the performance of TD-CCSD and
EOMCCSD for generating S1 � T0 gaps, which are the subject
of the correlation plots in Fig. 5. Figure 5(a) compares TD-
CCSD and EOMCCSD with each employing RHF reference
orbitals, while Fig. 5(b) compares SA-MCSCF/TD-CCSD and
RHF/EOMCCSD. Both plots show TD-CCSD outperform-
ing RHF/EOMCCSD, with the best-fit lines in Figs. 5(a) and
5(b) having slopes of 0.34 and 0.56 and intercepts of 0.02
and 0.10 eV, respectively. Considering instead the MSE and
MUE values, RHF/TD-CCSD performs over twice as well as

FIG. 4. Correlation between (a) open-
shell singlet energy errors and (b) the
singlet-triplet splitting errors, as pro-
duced by TD-CCSD using the RHF
and SA-MCSCF reference orbitals. The
least-squares fitted line of RHF/TD-
CCSD data is provided (solid) to be
compared with the hypothetical per-
fectly correlated line (dashed). All
errors are reported with respect to SA-
MCSCF(2,2)/MREOM values.
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FIG. 5. Correlation between singlet-
triplet splitting errors, as produced by
RHF/TD-CCSD and RHF/EOMCCSD
approaches. The least-squares fitted line
of the TD-CCSD data is provided (solid)
to be compared with the hypothetical
perfectly correlated line (dashed). All
errors are taken with respect to SA-
MCSCF(2,2)/MREOM values.

RHF/EOMCCSD, while SA-MCSCF/TD-CCSD also beats
out RHF/EOMCCSD by over 10%.

In Fig. 5, the cycloalkanediyls and xylylenes are again
shown to be problematic for the RHF/EOMCCSD method.
In Sec. IV B, similar discrepancies for T0 energies were
thought to originate from a poorly described RHF/SR-CCSD
energy baseline. When the underlying RHF/SR-CCSD is a
poor approximation, RHF/EOMCCSD triplet and OSS states
will both be malformed and, since the resulting energy errors
can be additive, S1 � T0 gap errors can grow as large as 1.0
eV, as shown in Fig. 5. For comparison, the S1 � T0 gaps gen-
erated by the reference MREOM method are themselves only
3.0–4.5 eV, so a 1.0 eV error is quite large. In Sec. IV D, addi-
tional EOMCC, TD-CC, and MREOM approaches are tested
for their ability to generate S1 � T0 gaps.

D. Effect of enlarging the active space in TD-CCSD
and MREOM calculations

One possible reason for the broad scatter in Figs. 4
and 5 is that a more definitive set of S1 � T0 benchmarks is
needed. Improved accuracy is achievable for MREOM calcu-
lations by systematically increasing the active space specified
in the calculations. To alleviate the steep computational costs

associated with such calculations, structures with X = Y = H
were reoptimized within the appropriate point group and at the
MBPT(2)/6-31G∗ level. This enables MREOM calculations
using (2,2) to (8,8) active spaces.

Table II collects S1 � T0 gaps for the newly symmetrized
structures. For CH2 and SiH2, energy differences between
all methods considered differ by less than 0.02 eV, but for
other systems more interesting trends emerge. Considering
instead the two cycloalkanediyl systems, RHF/TD-CCSD pro-
duces significantly better S1 � T0 gaps as compared with
RHF/EOMCC methods, and, as before, switching to the
SA-MCSCF reference orbitals further refines the TD-CCSD
results. The poor performance of RHF/EOMCCSD can again
be explained by the large t2 amplitudes in the underlying
RHF/CCSD references. We thus recommend that when large
t2 amplitudes are found in the RHF/CCSD reference function,
there is significant static correlation present that may be better
handled by TD-CCSD or other MRCC methods.

Values for the three xylylene configurational isomers in
Table II reinforce that these are particularly difficult cases
requiring large active-space references. According to the
MREOM calculations, o-xylylene is the only isomer requiring
the largest (8,8) reference space, while the m- and p-xylylenes

TABLE II. Calculated S1 � T0 gaps for symmetrized structures reported as raw values (upper) and as differences
relative to the highest level of theory considered (lower), in eV.

Method Reference CH2 SiH2 cyclo 4 cyclo 5 xyl o xyl m xyl p

EOMCCSD RHF 1.897 1.344 3.882 4.897 2.783 1.616 3.697
EOMCCSD(T) RHF 1.895 1.324 3.865 4.897 2.792 1.454 3.729
TD-CCSD RHF 1.885 1.347 3.657 4.287 2.702 1.427 3.749

MREOM

SA-MCSCF(2,2) 1.904 1.341 3.594 4.252 2.719 0.596 3.753
SA-MCSCF(4,4) . . . . . . . . . . . . 2.475 1.129 3.820
SA-MCSCF(2,2) 1.824 1.291 3.277 3.888 2.740 �0.020 3.791
SA-MCSCF(6,6) . . . . . . . . . . . . 2.494 1.174 2.396
SA-MCSCF(8,8) . . . . . . . . . . . . 2.295 1.163 2.306

EOMCCSD RHF 0.073 0.053 0.605 1.009 0.488 0.453 1.391
EOMCCSD(T) RHF 0.071 0.033 0.588 1.009 0.497 0.291 1.423
TD-CCSD RHF 0.061 0.086 0.380 0.399 0.407 0.264 1.443

MREOM

SA-MCSCF(2,2) 0.080 0.050 0.317 0.364 0.424 �0.567 1.447
SA-MCSCF(4,4) . . . . . . . . . . . . 0.180 �0.034 1.514
SA-MCSCF(2,2) . . . . . . . . . . . . 0.445 �1.183 1.485
SA-MCSCF(6,6) . . . . . . . . . . . . 0.199 0.011 0.090



164102-10 Lutz et al. J. Chem. Phys. 148, 164102 (2018)

require at least a (6,6) reference space to reach satisfactory
agreement (<0.1 eV). Methods employing the RHF reference
orbitals, including EOMCC and TD-CC methods, perform
poorly, overestimating these S1 � T0 gaps by 15%–63%.

Further improvement of the TD-CCSD reference orbitals
was also tested. Enlarging the active-space of the reference
CSF from SA-MCSCF(2,2) to SA-MCSCF(4,4) improves the
xylylene S1 � T0 gaps in almost all cases, with m-xylylene
improving by 0.5 eV (46%). Only for the p-xylylene system
does the energy worsen, but by a relatively small amount.
This provides strong evidence that when the static correla-
tion is properly described at the level of the reference orbitals,
TD-CCSD provides an excellent treatment of the dynami-
cal correlation required to accurately describe OSS excited
states.

V. SUMMARY

A large set of biradical systems was considered to evaluate
triplet and open-shell singlet total energies and S1 � T0 split-
tings produced by the TD-CCSD method. When using the con-
ventional RHF reference orbitals, TD-CCSD triplet total ener-
gies were shown to be comparable in quality to those produced
by ROHF/SR-CCSD. By performing TD-CCSD computations
starting with several other sets of reference orbitals, it was
found that absolute and relative TD-CC energies are influenced
significantly by the reference orbitals chosen. Employing KS-
DFT reference orbitals or the Brueckner doubles variant did
not cause an overall improvement of the results. On the other
hand, choosing ROHF, TD-SCF, or SA-MCSCF(2,2) CSFs as
reference orbitals resulted in substantial improvements in the
accuracy of TD-CCSD total energies.

The large test set of biradicals was used to make fur-
ther comparisons between the performance of the RHF/TD-
CCSD, SA-MCSCF(2,2)/TD-CCSD, and RHF/EOMCCSD
approaches. For T0 total energies, SA-MCSCF(2,2)/TD-
CCSD outperformed RHF/EOMCCSD by a factor of two. A
similar comparison between TD-CCSD and EOMCCSD was
made for S1 � T0 gaps and the RHF/EOMCCSD method was
again outperformed by a factor of two, this time by RHF/TD-
CCSD. The relatively poor performance of RHF/EOMCCSD
was traced back to underlying RHF/SR-CCSD ground-state
wavefunctions having large t1 and t2 amplitudes. By contrast,
TD-CCSD amplitudes remained small and thus provided a
better approximation of the multi-reference nature of the states.

To definitively explain the large discrepancies pro-
duced by the SA-MCSCF/TD-CCSD and RHF/EOMCCSD
approaches for the S1 � T0 splittings, refined MREOM values
were generated using larger active spaces, up to and including
(8,8). The TD-CCSD method is found to be successful in some
cases where RHF/EOMCCSD fails, in particular when the
underlying RHF/CCSD ground-state wavefunction is poorly
described in the RHF/EOMCCSD calculation, as can happen
when multi-reference character intrudes. For such cases, TD-
CCSD S1 � T0 gaps can be more accurate, in some cases
by over 1.0 eV, making TD-CCSD the strongly preferred
alternative for describing S1 � T0 gaps involving biradical
states. We demonstrate this for the exemplary cases of the
cycloalkanediyl and xylylene systems.

The TD-CCSD method has been shown to be a promis-
ing alternative to RHF/EOMCCSD for the generation of cer-
tain excited states. In addition, the analysis of TD-CCSD
amplitudes is straightforward, as the starting point is a spin-
adapted configuration based on the particular occupied-virtual
excitation. This leaves little ambiguity in the assignment of
states during geometry optimizations or when facing near-
degeneracies.

Future work will involve formulation and implementa-
tion of a perturbative extension to TD-CCSD accounting for
connected triples excitations, i.e., TD-CCSD(T). This method
is expected to provide a significant improvement over EOM-
CCSD(T) for the description of triplet and open-shell singlet
states, as well as S1 � T0 gaps. Further investigation of formal
aspects of the SA-MCSCF/TD-CCSD method is also war-
ranted, including consideration of its performance for describ-
ing single-bond-breaking potential energy curves and electric
and magnetic properties.

SUPPLEMENTARY MATERIAL

See supplementary material for tables of geometries and
individual TD-CCSD values used to generate the correlation
plots in this work.
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46A. Balková and R. J. Bartlett, Chem. Phys. Lett. 193, 364 (1992).
47P. G. Szalay and R. J. Bartlett, J. Chem. Phys. 101, 4936 (1994).
48J. F. Stanton, J. Gauss, M. E. Harding, P. G. Szalay, A. A. Auer,

R. J. Bartlett, U. Benedikt, C. Berger, D. E. Bernholdt, Y. J. Bomble,
O. Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson,
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83N. Suaud, R. Ruamps, N. Guiheŕy, and J. Malrieu, J. Chem. Theory Comput.

8, 4127 (2012).
84J. P. Malrieu, R. Caballol, C. J. Calzado, C. de Graaf, and N. Guihéry, Chem.
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