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Materials with a large nonlinear refractive index () and relatively small linear and nonlinear absorption losses, namely 
two-photon absorption (2PA, of coefficient ࢻ), have long been sought after for applications such as all-optical switching 
(AOS). Here we experimentally determine the linear and 2PA properties of several organic molecules, which we 
approximate as centrosymmetric and use a simplified essential state model (quasi 3-level model) to predict the dispersion of . We then compare these predictions with experimental measurements of  and find good agreement. Here ‘quasi’ 3-
level means using a single one-photon allowed intermediate state and multiple (here two) two-photon allowed states. This 
also allows predictions of the figure-of-merit (FOM), defined as the ratio of nonlinear refractive phase shift to the 2PA 
fractional loss, that determines the viability for such molecules to be used in device applications. The model predicts that the 
optimized wavelength range for a large FOM lies near the short wavelength linear absorption edge for cyanine-like dyes 
where the magnitude of  is quite large. However, 2PA bands lying close to the linear absorption edge in certain classes of 
molecules can greatly reduce this FOM. We identify two molecules having a large FOM for AOS: one where the main 2PA 
band is far from the linear absorption edge and the other having a large FOM in the telecommunications window. We note 
that the FOM is often defined as the ratio of real to imaginary parts of the third-order susceptibility (࣑()) with multiple 
processes leading to both components. As explained later in this paper, such definitions require care to only include the 2PA 
contribution to the imaginary part of ࣑() in regions of transparency. 

OCIS codes: (190.0190) Nonlinear optics; (300.6420) Spectroscopy, nonlinear; (160.4330) Nonlinear optical materials; (190.4710) Optical 
nonlinearities in organic materials; (270.0270) Quantum Optics; (300.2530) Fluorescence, laser-induced.  

http://dx.doi.org/xx.xxx/xxxxx.xxxx 

1. INTRODUCTION Organic molecules have been widely studied for their applicability in nonlinear optical devices for all-optical switching (AOS) [1-5]. Most devices proposed for AOS require that there is relatively large nonlinear refraction (NLR) while keeping the optical losses to a minimum. In the spectral regions of interest, e.g. the 

telecommunication bands, a dominant loss mechanism is two-photon absorption (2PA) [6]. Although large 2PA is necessary for applications in micro-fabrication [7, 8], optical data storage [9, 10], bio-imaging [11, 12], and optical power limiting [13, 14], the prevalence of 2PA is detrimental when trying to transmit power through an AOS device [15]. Hence, organic molecular systems appropriate for AOS should possess a large figure-of-merit (FOM) which, for our purposes, is 
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defined as the ratio of nonlinear refractive phase shift, Δ߶ = ݇݊ଶܮܫ, to the transmission loss due to 2PA, ߙଶܮܫ.  Here ݇ is the wavenumber defined as 2ߨ ⁄ߣ  with ߣ being the wavelength, ݊ଶ is the nonlinear refractive index, I is the irradiance, L is the sample thickness and ߙଶ is the 2PA coefficient. Thus, the FOM is defined as 2݇݊ଶ/ߙଶ, where the factor of 2 is added to be consistent with other definitions [1]. A great deal of research has been devoted to identifying structure-property relations in a wide variety of organic systems [16-21]. For instance, the nonlinearities of long polymethine dyes can be enhanced significantly by attaching highly delocalized terminal end groups [1], and intramolecular charge-transfer of chromophores can be enhanced through modifying donor-acceptor substitutions [22, 23]. In order to determine structure-property relations for third-order nonlinearities, it is necessary to determine both the spectra of 2PA and the dispersion of n2. While the 2PA spectra can be rapidly obtained by methods such as two-photon induced fluorescence [24] and pump-probe spectroscopy [25], the measurement of the dispersion of n2 is typically more challenging and time consuming. Thus, it is desirable to be able to predict the dispersion of n2 from the 1PA and 2PA spectra.  In this work we experimentally investigate the 2PA spectra and NLR dispersion of n2 for several organic dyes approximated as centrosymmetric molecules using a variety of nonlinear spectroscopic techniques.  Using a simplification of the so called “sum-over-states” (SOS) model, here relying on a quasi 3-level system, we extract the physical parameters of transition dipole moments, linewidths, and transition energies from the linear absorption and 2PA spectra to calculate the dispersion of the third-order susceptibility of the material, thus predicting the dispersion of n2.  By comparing our experimental measurements of n2 with these predictions, we show that this 

simplified model can predict the dispersion of n2 and be used as a tool to determine the FOM of materials for various applications.  
2. ESSENTIAL-STATE MODEL The standard process to describe the dispersion of the bound-electronic nonlinearity of organic molecules is the sum-over-states (SOS) model first proposed in Ref. [26] and expounded upon in Ref. [27]. This quantum-mechanical perturbation theory derived model takes into account the ground state along with all possible excited states, their corresponding transition dipole moments, differences in dipole moments, and differences in state energies. While organic molecular systems can contain a large number of excited states [2], a very useful simplification to the full SOS model, named the essential-state model, was presented in Ref. [28] that uses only a few low lying energy states, which are critical in determining the 2PA spectrum and the dispersion of ݊ଶ in a molecular system.  The spectral behavior of many organic systems with permanent dipole moments can be described by as few as two states [29-31], but the 2-level essential-state model breaks down for symmetric systems (possessing zero permanent dipole moment). In this case, at least a third energy state is required to describe the third-order nonlinearity [32].  Here we present data on several molecules where their permanent dipole moments are small or zero. We justify approximating these as centrosymmetric in Section 3. For the specific case of centrosymmetric molecules in which there is no permanent dipole moment, the microscopic second hyperpolarizability ߛ can be written as a function of the angular frequency ߱ as [27, 31, 33] (see Appendix B for discussion of molecules with permanent dipole moments): ߛ൫߱ = ൣ߱ + ߱ + ߱൧; ߱, ߱, ߱൯ =ଵℏయ ቈ∑ ቊ ఓഔ ఓഔ ఓೖ ఓೕ൫ఠഥ ഔିఠିఠିఠೝ൯൫ఠഥ ିఠିఠ൯൫ఠഥ ିఠ൯ + ఓഔೕ ఓഔೖ ఓ ఓ൫ఠഥ ∗ഔାఠ൯൫ఠഥ ∗ାఠାఠ൯൫ఠഥ ିఠೝ൯ +ᇱజ,,ఓഔ ఓഔ ఓೖ ఓೕ൫ఠഥ ∗ഔାఠೝ൯൫ఠഥ ିఠିఠ൯൫ఠഥ ିఠ൯ + ఓഔೕ ఓഔೖ ఓ ఓ൫ఠഥ ∗ഔାఠ൯൫ఠഥ ∗ାఠାఠ൯൫ఠഥ ∗ାఠାఠାఠೝ൯ቋ −∑ ቊ ఓ ఓ ఓೖ ఓೕ൫ఠഥ ିఠିఠିఠೝ൯൫ఠഥ ିఠೝ൯൫ఠഥ ିఠ൯ + ఓ ఓ ఓೖ ఓೕ൫ఠഥ ∗ାఠ൯൫ఠഥ ିఠೝ൯൫ఠഥ ିఠ൯ + ఓ ఓ ఓೕ ఓೖ൫ఠഥ ∗ାఠೝ൯൫ఠഥ ∗ାఠ൯൫ఠഥ ିఠ൯ +ᇱ, ఓ ఓ ఓೕ ఓೖ൫ఠഥ ∗ାఠೝ൯൫ఠഥ ∗ାఠ൯൫ఠഥ ∗ାఠାఠାఠೝ൯ቋ, (1) where ℏ is the reduced Planck’s constant and i, j, k, and l are the molecular axis coordinates. Here we have used a power series expansion [33] which is the value discussed in the original SOS formalism [27]. Furthermore, unless otherwise noted, MKS units are used throughout this paper. The subscripts p, q, and r represent the frequencies of the applied electric fields and thus describe the photon energies. The typical averaging that is performed over the permuted fields is addressed later by Eqn. (6). The complex frequency  ߱ℓ = ߱ℓ– ݅Γℓ  defines the resonant transition frequency between states g and ℓ (i.e. ℓ = ߭, ݊, ,߭ ℓ′ۧ, describe the transition between g and ℓ and the transition between the different states ℓ′, respectively. Since we consider only 3 essential states, the states corresponding to subscripts|ߤ|ℓۦ ℓۧ and|ߤ|݃ۦ ℓℓᇲ, defined asߤ ℓ andߤ where ߱ℓ is the frequency and Γℓ is the damping factor related to the linewidth of the transition and the ‘*’ denotes the complex conjugate. The transition dipole moments (݉ ݎ ݊, and ݉ refer to either the first excited state (intermediate state) which we will denote as e or the final state 

denoted as e’. Thus, the model presented in Eqn. (1) for the case of centrosymmetric molecules uses the ground state g and the first excited state e with opposite symmetry, and the state e’ with the same symmetry as the ground state, known as a 2PA state. Here the normal dipole allowed selection rules apply and the symmetry of the states is well described by even (gerade) and odd (ungerade) parity. It thus follows that the transition dipole moments are defined as μge and μee’ for the transition between the ground state g and first excited state e and states e and 2PA state e’, respectively, while the resonant frequencies are expressed as ߱ and ߱ᇱ corresponding to the intermediate state transition frequency and the 2PA state transition frequency, respectively. To describe systems with multiple 2PA states, additional states e’(n) are included in Eqn. (1), i.e. the same intermediate state is used. Thus, this model is referred to as a quasi 3-level model when accounting for multiple 2PA states.  For the molecules presented here we use two 2PA states.  Thus, in terms of the quasi 3-level model for centrosymmetric molecules, Eqn. (1) can be re-written as: 
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when ߱ = ߱ = ߱ and ߱ = −߱. By keeping only the terms that possess triply resonant denominators, the expression for ߛො can be simplified to one that includes only 4 terms. Thus, ߛො(߱) in Eqn. (13) and Eqn. (14) can be replaced by the following: ߛො(߱) ≅ ଵଷℏయ ቈ∑ ቆ หఓೣ หమቚఓᇲೣ ቚమ
൫ఠഥ ିఠ൯మቀఠഥ ᇲିଶఠቁ +ᇲ

หఓೣ หమቚఓᇲೣ ቚమ
൫ఠഥ ∗ିఠ൯ቀఠഥ ᇲିଶఠቁ൫ఠഥ ିఠ൯ቇ − ቆ หఓೣ หర൫ఠഥ ିఠ൯య +

หఓೣ หర൫ఠഥ ∗ିఠ൯൫ఠഥ ିఠ൯మቇ, (15) 
 While the full expression for ߛො(߱) is used for all the fittings described within this paper, i.e. Eqn. (6), we will show at the end of Section 6 that relatively good agreement can be obtained using Eqn. (15) with only small adjustments in the fitting parameters compared to those used for the full expression. The limits to the applicability of Eqn. (15) will also be discussed.   

 Figure 2. (a) 2PA spectrum along with quasi 3-level essential-state model fit for YZ-V-69 (molecular structure shown in Figure 5) dissolved in carbon tetrachloride. (b) The experimentally determined ߜேோ spectrum and predicted fits. The solid black line, blue line, and red line in (a) and (b) represent the T-terms, N-terms, and their sum, respectively. The green dashed line in (a) and (b) shows ߜ = 0. Figure 2(a) shows the 2PA spectrum in terms of cross-sections for YZ-V-69 (Compound 6 in Ref. [37], chemical structure shown in Figure 5) in carbon tetrachloride along with the quasi 3-level fit from Eqn. 

(14) and Figure 2(b) shows the experimentally determined n2 spectrum in terms of cross-sections along with the prediction from the model, Eqn. (13). The extraction of the fitting parameters used in the fits is described in Sections 5 and 6 and the values are listed in Table 2. We note that for a centrosymmetric molecular system, the magnitude of 2PA is due to the imaginary component of the T-terms only, which is determined by the magnitude of the transition dipole moments and relative energies of the relevant states as will be discussed in Section 4. Hence the peaks of ݉ܫ(ߛො்) correspond to 2PA resonances and are observed at ߱ᇱ(ଵ) 2⁄  and ߱ᇱ(ଶ) 2⁄ , where the superscripts (1) and (2) represent the lower-lying and higher-lying 2PA state, respectively (see Eqn. (2)). For the same centrosymmetric system, the sign and magnitude of the NLR is due to the real components of the T-terms and N-terms and is also determined by the same parameters that determine the 2PA. In describing ߜேோ via ܴ ො|ߛ :all terms are retained including the real component of the N-terms, which turn strongly negative towards the 1PA resonance. For the fits used for the plots of Figure 2, the bound electronic NLR increases gradually from a small negative value in the DC limit (ω → 0) to a positive peak slightly red-shifted from the lower-lying 2PA peak. The NLR becomes negative as the incident photon energy extends beyond this 2PA peak and remains negative extending past the higher-lying 2PA peak. This spectral shape of n2 near the lower-lying 2PA resonance is consistent with the expected shape from Kramers-Kronig (KK) relations [39-41]. As the incident photon energy approaches the absorption gap of the material, corresponding to ω → ωeg, the N-terms in Eqn. (6) start to dominate the nonlinear contributions, and a large negative n2 is observed. As described in Section 4, the real part of the N-terms for a macroscopic ensemble of molecules corresponds to the change in index of refraction due to the AC Stark effect, sometimes referred to as virtual saturation, and the imaginary part of the N-terms corresponds to absorption saturation when expanded to third order in the electric field. Close to the resonant frequency between states g and e, it is possible for the real part of the N-terms to dominate the NLR even well outside the absorption bandwidth. The sign and magnitude of the NLR approaching the DC limit depends on the strength of the transition dipole moments and positions of the 1PA and 2PA resonance(s) [29, 33, 42] and can be deduced from Eqn. (2) and Eqn. (6) (ොߛ)݁ = ସหఓหమℏయఠయ ∑ ఠఠᇲ ᇱ|ଶᇱߤ| − หߤหଶ൨ Here, the summation includes all 2PA states contributing to the nonlinear response. This formalism assumes that ߱ ≫ Γ and ߱ᇱ ≫ Γᇱ and, thus, has no imaginary component. For the molecule presented in Figure 2, Eqn. (16) predicts the DC limit of ݊ଶ to be negative, in part, since ߤᇱ(ଶ) ≪ ᇱ(ଵ)ߤ <  .approaching the DC limit (ොߛ)ܴ݁ when approaching the DC limit [44-46]. An example of a cyanine is YZ-V-69,  as well as some of the other molecular systems presented in this paper all of which  exhibit negative (ොߛ)ܴ݁ . Negative NLR can be beneficial for applications such as those involving liquid core optical fibers (LCOFs) in which a “zero” n2 can limit adverse effects such as self-phase modulation when using high power light sources, i.e. a solution of solute with negative n2 plus a solvent with positive n2 to give a net n2=0 [43]. To date, cyanine dyes are the prototypical molecules both theoretically predicted and experimentally observed to exhibit negativeߤ
4. FIGURE-OF-MERIT DEFINITION FOR AOS 
DEVICES   
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where ܧ (= ℏ߱) is the energy for the peak absorption in eV, (ߥ)ߝ is the molar absorbance spectrum in units of M-1cm-1 where ߥ is the wavenumber (cm-1) and M is the molarity, and ݂(ଵ) = ൫ߝ൫߱൯ + 2൯ 3⁄  is the first-order local field correction. Here, the local field correction is taken to correct the magnitude of the molar absorbance in the presence of the solvent background. This, however, is not done in the above-mentioned references. The transition dipole moment ߤ is in units of Coulomb∙m. Typically, the units of the transition dipole moments are given in Debye (D) where 1ܦ ≅ 3.33 ∙10ିଷCoulomb∙m.  

 Figure 4. The structure and normalized linear optical absorption (1PA) of the squaraine dye (SD-O 2405) dissolved in toluene. The solid red line is a Lorentzian fit to extract the width of the ground-state transition.  Figure 4 shows the structure and linear optical absorption spectrum of an oxygen-containing squaraine dye dissolved in toluene previously investigated in Ref. [52]. The integral of Eqn. (20) is performed over the main absorption band as well as the small vibronic band associated with the transition. The peak of the absorption occurs at 1.95 eV which gives ߱ and ܧ while a single Lorentzian fit (red line in Figure 4) of the spectrum gives Γ which is the half-width at half maximum (HWHM) of the fit. Using the above parameters, we obtain ߤ = 11 D using Eqn. (20).  

 Figure 5. Chemical structures of the molecular systems under study.  All the molecules are approximated as linear symmetric molecules ignoring the small permanent dipole moment perpendicular to the long axis except AJTC 02, which has no permanent dipole moment. The chemical structures of the various molecular systems are shown in Figure 5 and the corresponding normalized linear optical absorption spectra are shown in Figure 6. Unless otherwise noted, all linear optical parameters are extracted in the same manner as stated previously and are listed in Table 1. 

  Figure 6. Normalized linear optical absorption spectra for the molecules in Figure 5. SJZ-3-16 is dissolved in tetrahydrofuran, SD-O 2405 in toluene, AJTC 02 in dichloromethane, AJBC 3701 and AJBC 3702 in dimethylformamide, YZ-V-69 in carbon tetrachloride, and S-7C in chloroform.  Table 1. Linear spectroscopic parameters of the molecular systems under study. ܧ(eV) ߝmax (105 cm-1M-1) ℏΓ(eV) ߤ (D)Eqn. (20) SD-O 2405 1.95 3.7 ± 0.37 0.035 11SJZ-3-16 2.50 0.91 ± 0.091 0.0401 122S-7C 1.16 4.0 ± 0.0403 0.035 17YZ-V-69 1.27 2.6 ± 0.26 0.044 14AJBC 3701 1.44 1.6 ± 0.16 0.040 9.8AJTC 02 1.44 3.8 ± 0.38 0.12 25AJBC 3702 1.44 1.6 ± 0.16 0.040 9.8Some uncertainty can arise when determining ߤ from Eqn. (20). For instance, SJZ-3-16 does not contain a well-distinguished absorption band corresponding to its ܵ → ଵܵ transition; thus, it is not straightforward to extract the linear parameters from the spectra. Thus, we rely upon the calculated quantity found in Ref. [53] along with the experimentally determined nonlinear optical spectra shown in the subsequent section, i.e. the best fit 2PA spectra gives the linewidth of the linear absorption. Furthermore, uncertainty can arise when setting the limits for the integral in Eqn. (20). We note however that this shouldn’t lead to significantly different values since the determination of the limits of integration should be consistent. Other uncertainty in ߤ arises from the determination of ߝ௫ which typically can have error bars of ±10%.  
6. EXTRACTION OF NONLINEAR OPTICAL 
PARAMETERS AND ANALYSIS  As mentioned previously, the 2PA spectrum is used to extract ߤᇱ, Γᇱ, and ߱ᇱ. Thus, a peak in the 2PA spectrum corresponds to ߱ᇱ whereas the width associated with that peak corresponds to Γᇱ. The 
                                                                                 
1 The width could not be determined by the linear absorption spectra. Knowledge of the nonlinear optical spectra aided with determining this value. 
2 This value is obtained from Ref. [53].  
3 This value is obtained from Ref. [38].   
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dispersion of ݊ଶ is then calculated based on the parameters obtained from the 2PA spectra when put into Eqn. (2) and the resulting values can then be compared with the experimental data.  To extract the nonlinear optical parameters for the quasi 3-level model, the peaks of the 2PA states must be known as well as the width of the transitions. Therefore, in general, relatively high spectral resolution (∆ܧ ≤ ) is necessary to extract these parameters. From the 2PA spectra in Figure 2(a), two peaks are observed: one centered at ~0.56߱ and the other at ~0.75߱ corresponding to 2PA states at ℏ߱ᇱ(ଵ)ܧ0.035 = (1.43 ± 0.02) eV and ℏ߱ᇱ(ଶ) = (1.91 ±0.03) eV, respectively. Measurements of non-degenerate two-photon absorption (ND-2PA) in YZ-V-69 dissolved in chloroform showed a lower-lying 2PA peak at ~0.61߱. Given the ~13 nm red-shift in the linear absorption of YZ-V-69 dissolved in chloroform with respect to carbon tetrachloride, the 2PA bands are expected to have similar red-

shifts as well. Along with the linear optical parameters given in Table 1, the widths of the lower-lying 2PA state and the higher-lying 2PA state, ℏΓᇱ(ଵ) and ℏΓᇱ(ଶ), are fit with 0.06 eV. The corresponding transition dipole moments are  μᇲ(ଵ) = 6.1D and  μᇲ(ଶ) = 0.5D for the lower-lying and higher-lying 2PA states, respectively. Table 2 gives a summary of parameters obtained from the 2PA measurements for all molecules in this study. As was previously shown in Figure 2(b), the experimentally determined NLR cross sections via Z-scans of YZ-V-69 follow the predicted dispersion of NLR from the quasi 3-level model. This is also true for the other molecules studied. In addition, measurements at multiple irradiances for all the studied molecules confirm the dominance of ultrafast nonlinearities, i.e. excited-state effects are negligible.   Table 2. Fit parameters extracted from the 2PA spectra of each molecule. The notations ࢋ → ᇱࢋ  and ࢋ → ᇱࢋ  represent the transition from the intermediate state to the lower energy 2PA state and higher energy 2PA state, respectively.  Molecule Transition ħω (eV) ħΓ (10-2 eV) μ (D) SD-O 24054 ࢍ → ࢋ 1.95 3.5 ࢋ 11 → ᇱࢋ 2.95 ± 0.07 12 ࢋ 6.8 → ᇱࢋ 3.54 ± 0.10 12 6.7 SJZ-3-16 5 ࢍ → ࢋ 2.50 4.0 ࢋ 12 → ᇱࢋ 3.10 ± 0.08 30 ࢋ 5.5 → ᇱࢋ 3.73 ± 0.11 30 16 AJTC-02 ࢍ → ࢋ 1.44 12 ࢋ 25 → ᇱࢋ 1.53 ± 0.02 10 ࢋ 13 → ᇱࢋ 2.16 ± 0.04 10 14 YZ-V-69 ࢍ → ࢋ 1.27 4.4 ࢋ 14 → ᇱࢋ 1.43 ± 0.02 6.0 ࢋ 6.1 → ᇱࢋ 1.91 ± 0.03 6.0 0.50 AJBC 3701 ࢍ → ࢋ 1.44 4.0 ࢋ 9.8 → ᇱࢋ 1.65 ± 0.02 9.5 ࢋ 13 → ᇱࢋ 2.31 ± 0.04 9.5 4.9 S-7C 6 ࢍ → ࢋ 1.16 3.5 ࢋ 17 → ᇱࢋ 1.28 ± 0.02 7.0 ࢋ 6.8 → ᇱࢋ 1.98 ± 0.03 7.0 1.1 AJBC 3702 ࢍ → ࢋ 1.44 4.0 ࢋ 9.8 → ᇱࢋ 1.65 ± 0.02 9.5 ࢋ 16 → ᇱࢋ 2.31 ± 0.04 9.5 4.4 

                                                                                 
4 The peak of the 2PA state at 3.54 eV is confirmed by a dip in the fluorescence anisotropy measurement at 3.54 eV [42].  
5 See footnote “a”. 
6 For S-7C, the 2PA spectrum, shown in Figure 8(a), was measured by non-degenerate 2PA using various pump wavelengths (open red squares) along with Z-scans at select wavelengths. The width of the higher-lying 2PA band was chosen to be the same as the lower-lying 2PA band. 
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 Figures 7-12 show data along with fits similar to Figure 2 and Figure 3 for the other molecules in this study, which gave the parameters shown in Table 2. Details for some of the molecules are given in Appendix A.3. 

 Figure 7 (a) 2PA cross sections of SJZ-3-16 measured via two-photon induced fluorescence plotted along with the fit from the quasi 3-level model [53].  (b) NLR cross sections measured via white-light continuum Z-scans plotted with the quasi 3-level model prediction of the dispersion of NLR. (c) Experimental FOM along with the prediction. The solid red line in (c) gives the FOM where the quasi 3-level model predicts ߜேோ > 0 and the solid black line shows the FOM where ߜேோ < 0. Note that the green data points in (c) represent measurements of positive or “zero” NLR. The green dashed line in (a) and (b) gives δ= 0.   
 

 Figure 8 (a) 2PA cross sections of S-7C measured via Z-scans (open black squares) and non-degenerate 2PA (open red squares) plotted along with the fit from the quasi 3-level model to obtain the parameters. (b) NLR cross sections measured via Z-scans plotted with the quasi 3-level model prediction of the dispersion of NLR. (c) Experimental FOM along with the prediction. The green dashed line in (a) and (b) shows δ= 0. 
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 Figure 9 (a) 2PA cross sections of SD-O 2405 measured via dual-arm Z-scans (black squares) and two-photon induced fluorescence (red squares) plotted along with the fit from the quasi 3-level model. (b) NLR cross sections measured via dual-arm Z-scans plotted with the quasi 3-level model prediction of the dispersion of NLR. (c) Experimental FOM along with the prediction. The green dashed line in (a) and (b) shows δ=07.   
                                                                                 
7 For SD-O 2405, all experimental ߜேோ values are negative. Furthermore, due to both the larger value of ߤ compared to ߤᇱ(ଵ) and ߤᇱ(ଶ) and detuning of the lower lying and higher lying 2PA states, ߜேோ is also negative approaching the DC limit as predicted from Eqn. (15). The large discrepancy in the FOM (Figure 9(c)) for the 2 smallest photon energies occurs in a region where the 2PA and NLR are experimentally determined to be small, and the FOM is the ratio of two small numbers leading to large errors. Thus, the quasi 3-level model 

 Figure 10(a) 2PA cross sections of AJBC 3702 measured via Z-scans plotted along with the fit from the quasi 3-level model. (b) NLR cross sections measured via Z-scans plotted with the quasi 3-level model prediction of the dispersion of NLR. (c) Experimental FOM along with the prediction. The solid red line in (c) gives the predicted FOM where the quasi 3-level model gives ߜேோ > 0 and the solid black line shows the predicted FOM where ߜேோ < 0. The green data points in (c) represents a measurement of zero NLR (i.e. too small to measure). The green dashed line in (a) and (b) shows δ= 0. 
 

                                                                                                                                          cannot accurately match the experimentally determined values and leads to large differences in the FOM far from 2PA resonances. 
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 Figure 11 (a) 2PA cross sections of AJBC 3701 measured via dual-arm Z-scans plotted along with the fit from the quasi 3-level model. (b) NLR cross sections measured via dual-arm Z-scans plotted with the quasi 3-level model prediction of the dispersion of NLR. (c) Experimental FOM along with the prediction. The solid red line in (c) shows the predicted FOM where the quasi 3-level model predicts ߜேோ > 0 and the solid black line shows the predicted FOM where ߜேோ < 0. The green data point in (c) represents a measurement of zero NLR. The green dashed line in (a) and (b) give δ= 08. 
                                                                                 
8 Since AJBC 3701 is similar to AJBC 3702 in both structure (the difference is that the phenyl group is replaced by the chlorine atom at the center of the cyanine-bridge, see Ref. [54].), linear spectrum, and 2PA spectral shape, we assume that the corresponding widths of the 

 

 Figure 12. (a) 2PA cross sections of AJTC 02 measured via Z-scans plotted along with the fit from the quasi 3-level model to obtain the parameters. (b) NLR cross sections measured via dual-arm Z-scans plotted with the quasi 3-level model prediction of the dispersion of NLR. (c) Experimental FOM along with the prediction. The black dashed lines in (b) and (c) represent the predicted NLR dispersion and FOM, respectively, using a smaller value of ߤ than that listed in 

                                                                                                                                          2PA bands are the same with the magnitudes of the 2PA resonances being different. 
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 Table 2 (see discussion in text). The green data points in (c) represent measurements of positive NLR. The green dashed line in (a) and (b) give δ=0.   Figure 10(a) shows the 2PA spectrum of AJBC 3702 obtained via Z-scans (see Appendix C for details). This molecule shows two 2PA bands with similar magnitudes with the lower-lying 2PA state at 0.57߱ (ℏ߱′(ଵ) = 1.65 eV) and higher-lying 2PA state at 0.82߱ (ℏ߱′(ଶ) = 2.31 eV) with the corresponding fit parameters listed in Table 2. The measured ߜேோ  is negative for most of the excitation frequencies, as shown in Figure 10(b), with the absolute value remaining small below the 1PA resonance (i.e. 0.54 − ଶ is adequate in the frequency range corresponding to wavelengths ideal for optical limiting in the telecom window. Figure 11(a) shows the 2PA spectrum of AJBC 3701 obtained via dual-arm Z-scans (see Appendix C for details). Since this molecule is similar to AJBC 3702 in both structure (the difference is that the phenyl group is replaced by the chlorine atom at the center of the cyanine-bridge), linear spectrum, and 2PA spectral shape, we assume that the corresponding widths of the 2PA bands are the same with the magnitudes of the 2PA resonances being different as stated in the footnote. Accordingly, AJBC 3701 shows two 2PA bands with similar magnitudes with the same lower-lying 2PA state at 0.57߱ (ℏ߱′(ଵ)ߜ . Figure 10(c) shows the experimental and predicted FOM which fits both qualitatively and quantitatively. The FOM suffers due to the relatively large magnitudes of 2PA in this spectral region. While this molecule might not be a good candidate for AOS applications, theߤ ′(ଵ) being nearly twice that ofߤ and then increases dramatically as the wavelength approaches the 1PA edge. At the two smallest excitation frequency measurements, “zero” n2 was measured. The counter-ion (tetraphenyl borate, see Fig. 5) is not expected to contribute significantly to the NLR at any of the measured frequencies due to the magnitude of the ground state transition frequencies being much higher than the parent ion [46].  Therefore, we postulate for the NLR spectra that the nonlinearities originate mainly from the cationic polymethines. From the fit parameters obtained from the 2PA spectrum, the predicted NLR dispersion agrees qualitatively with the measured NLR. The NLR calculated from the model becomes positive at low frequencies which agrees with that predicted by Eqn. (15) in part due to (ࢍࢋ0.72߱ = 1.65 eV) and higher-lying 2PA state at 0.82߱ (ℏ߱′(ଶ) = 2.31 eV) as AJBC 3702 with corresponding fit parameters listed in Table 2. The measured ߜேோ  is also negative at the various excitation frequencies, as shown in Figure 11(b), with the absolute value remaining small below the 1PA resonance (i.e. 0.54 − 0.72߱) and then increasing dramatically as the wavelength approaches the 1PA edge. As  with AJBC 3702, the counter-ion (since it is the same as AJBC 3702) is not expected to contribute significantly to the NLR. The predicted NLR dispersion shown in Figure 11(b) agrees qualitatively with the measured NLR. Similar to AJBC 3702, the predicted NLR becomes positive, in part, due to ߤ′(ଵ) being more than twice that of ߤ. Figure 11(c) shows the experimental and predicted FOM which fits both quantitatively and qualitatively. The FOM suffers due to the relatively large magnitudes of 2PA in these spectral regions. This molecule also is a good candidate for optical limiting in the telecom window but not ideal for AOS applications. Shown in Figure 12(a) is the spectrum of 2PA for the non-polar AJTC 02 molecule measured via Z-scans. The 2PA spectrum shows a 2PA band at 0.53߱ (ℏ߱ᇱ(ଵ) = (1.53 ± 0.02) eV ) and a perceived 2PA band at 0.75߱ (ℏ߱ᇱ(ଶ) = (2.16 ± 0.04) eV ) with δ2PA of 3,800 GM 

and 21,000 GM, respectively. Using the fitting parameters obtained from the 2PA spectrum (displayed in Figure 12(a)), the predicted NLR dispersion is compared to the experimental results measured in Figure 12(b). Note that the sign of the measured ߜேோ changes twice at 0.55߱ and 0.61߱ which is not reproduced in the predicted NLR. The magnitude of ߤᇱ(ଶ) is insufficient to overcome the strong negative contribution due to ߤ which is an indication that the N-terms dominate the nonlinear response near the higher-lying 2PA resonance. More so, due to the very large 2PA cross sections, the FOM, as shown in Figure 12(c), is small for the wavelengths measured. The lack of spectral resolution allows for significant variations in the fitting parameters, which we utilize to obtain a better overall fit for the NLR and FOM.  Thus, by reducing ߤ to 15 D, the predicted NLR qualitatively follows the change in sign experimentally measured. With the reduction in ߤ, ߤᇱ(ଵ) and ߤᇱ(ଶ) are both re-fit to 22 D. With limited spectral resolution of the 2PA along with key data points of NLR, the model can give a reasonable qualitative dispersion for n2. Furthermore, the structure of AJTC 02 is octupolar in nature; therefore, the linear approximation given by Eqn. (5) is no longer valid.  

 Figure 13. Comparison of the quasi 3-level fits for (a) the measured 2PA cross sections and (b) NLR cross sections of S-7C using the full expression (solid black line, Eqn. (6)) and the truncated expression (dashed red line, Eqn. (15)). The parameters used are the same as those listed in Table 2. Note that only the Z-scan data is shown in (a). The green dashed line in (a) and (b) give ߜ = 0.  In Section 3, it was mentioned that relatively good agreement can be obtained when using a truncated expression (Eqn. (15)) compared to the full quasi 3-level model (Eqn. (2)) when fitting the experimental data. Figure 13 shows the comparison for S-7C for (a) the 2PA cross sections measured via Z-scan and (b) the NLR cross sections. By using Eqn. (15) in lieu of Eqn. (2), relatively good agreement exists across the entire spectrum. The largest discrepancies occur near the 1PA transition where the anti-resonant terms in Eqn. (2) are left out of the 
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truncated expression. Even so, by using Eqn. (15) to fit the data, the higher-lying 2PA transition dipole moment can be fit to 1.4 D which overestimates the value in Table 2 by only ~27%. We have performed this analysis for the other molecules herein and found that S-7C is affected the most when using the truncated expression since ߤᇱ(ଶ) ≪   .ߤ
7. CONCLUSIONS  We have shown that the simplified sum-over-states model in which a minimum of three excited states (quasi 3-level model) are utilized can predict the dispersion of nonlinear refraction (NLR) of coefficient n2 with knowledge of just the linear absorption spectrum and two-photon absorption (2PA) spectrum from which all the linear and nonlinear optical parameters are extracted. We have compared the calculated NLR to the experimentally-determined NLR and found good agreement both qualitatively and quantitatively for several types of organic molecules which can be approximated as centrosymmetric where the nonlinear optical response is primarily along one molecular coordinate axis. We, thus, ignore the small permanent dipole moments and small transition dipole moments perpendicular to the long axis. The quasi 3-level model predicts a negative contribution to the imaginary component of the third-order nonlinear optical response which becomes more negative when approaching the one-photon absorption edge. This is due to the negative terms (N-terms) present in the few-state model. The Im N-terms should be excluded from these calculations in regions where saturable absorption is not experimentally observed. Using this model, we show that the figure-of-merit (FOM) for all-optical switching (given in terms of the nonlinear refractive index and 2PA coefficient) can therefore be predicted from measured 2PA spectra. We find for several of the molecules studied that the largest FOM, requiring a large magnitude of n2 with low nonlinear optical losses, lies at photon energies just below the one-photon absorption edge, but before any 2PA resonances, where the nonlinear optical losses are small. This paper demonstrates that determination of the linear absorption and 2PA spectra coupled with the quasi 3-level model can accurately predict the NLR dispersion and thus the FOM for nonlinear optical applications as opposed to other such methods as hyper-Rayleigh scattering to predict nonlinear dispersion [55].  
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APPENDIX A In Section 4, it was stated that outside the linear absorption bandwidth the imaginary component of the N-terms should be neglected since the linear losses are negligible. Here we show the Im N-terms are in fact due to saturable absorption so that if there is no observable linear absorption saturation, the Im N-terms should be ignored. Eqns. (18) and (19) are re-stated from the main text as: ௗூௗ௭ = − ఈబଵାூ ூೞೌ⁄ ܫ − ଶ  (A1) ௗூௗ௭ܫଶߙ ≈ ߙ− ቀ1 − ூூೞೌቁ ܫ − ଶܫଶߙ = ܫߙ− + ఈబூೞೌ ଶܫ − ଶ்ߙ ଶܫ ܫߙ≈ − ଶேߙ) + ଶ்ߙ  :ଶ. (A2)  We express α0/Isat in terms of the parameters used in the essential-state model. From a 2-level model [33]ܫ(

ଵூೞೌ = ఙఛൣ(భ)൧మℏఠ ,where ߪ is the 1PA cross section and ߬  is the lifetime.  Thus, including the linear absorption coefficient in Eqn. (A3) leads to: ఈబூೞೌ = ఙమேఛൣ(భ)൧మℏఠ ,where ߙ = ߯  and the linear susceptibilityߙ ܰ. The relation betweenߪ (ଵ) is given as: ߙ = ఠଶబ ߯ ,൫߯(ଵ)൯.In terms of the SOS model݉ܫ (ଵ) can be expressed as [27, 33]:  ߯(ଵ)(߱; ߱) = ே(భ)ℏఌబ ∑ ൜ ఓమఠഥ ିఠ + ఓమఠഥ ∗ାఠൠ .  By only considering the resonant term of Eqn. (A6), substituting this expression into Eqn. (A5), and equating the result with ߪܰ, we express Eqn. (A4) in terms of the parameters used in the essential-state model as:  ఈబூೞೌ = ఠேൣ(భ)൧రఛସబమమℏయఌబమ ௰మ ఓర൫ఠିఠ൯ర.
Additionally, we have made the assumption that Γଶ ≪ ൫߱ − ߱൯ଶ.  Now we find the expression for αଶே. From Eqn. (2) and Eqn. (3) in Section 3, ߯ (ଷ) for the N-terms is expressed as: ߯ே(ଷ)൫߱ = ൣ߱ + ߱ + ߱൧; ߱, ߱, ߱൯ =− ே(య)ℏయఌబ ቈቆ ఓ ఓ ఓೖ ఓೕ൫ఠഥ ିఠିఠିఠೝ൯൫ఠഥ ିఠೝ൯൫ఠഥ ିఠ൯ +ఓ ఓ ఓೖ ఓೕ൫ఠഥ ∗ାఠ൯൫ఠഥ ିఠೝ൯൫ఠഥ ିఠ൯ +ఓ ఓ ఓೕ ఓೖ൫ఠഥ ∗ାఠೝ൯൫ఠഥ ∗ାఠ൯൫ఠഥ ିఠ൯ +ఓ ఓ ఓೕ ఓೖ൫ఠഥ ∗ାఠೝ൯൫ఠഥ ∗ାఠ൯൫ఠഥ ∗ାఠାఠାఠೝ൯ቇ,where the subscript N denotes the N-term contribution. We do not consider any orientational averaging as was done in Section 3, but we do assume that the directional dipole moments are the same in all directions. The strong resonant condition of Eqn. (A8) occurs when ߱ = ߱ = ߱ and ߱ = −߱. This, along with Eqn. (8), allows us to find the expression for the contribution due to the N-terms as: 
ଶே = − ఠே(య)ଶబమమℏయఌబమ ݉ܫ ൬ ఓర൫ఠഥ ିఠ൯൫ఠഥ ିఠ൯൫ఠഥ ିఠ൯ +ఓర൫ఠഥ ∗ିఠ൯൫ఠഥ ିఠ൯൫ఠഥ ିఠ൯൰൨. After simplification and recognizing that ݂(ଷ) = ൣ݂(ଵ)൧ସ for self-action nonlinearities, Eqn. (A.9) can be re-written as:  
ଶே = − ଶఠேൣ(భ)൧రబమమℏయఌబమ ௰ఓర൫ఠିఠ൯రAs was the case in Eqn. (A.7), we have made the assumption that Γଶ ≪ ൫߱ − ߱൯ଶ. Note that Γ߬ is a constant such that Eqn. (A.7) can be written as: ఈబூೞೌ = ఠேൣ(భ)൧రସబమమℏయఌబమ const∙௰ఓర൫ఠିఠ൯ర . 
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the D-terms can significantly affect both the 2PA and NLR near 0.5߱ and as ߱ → ߱. With the inclusion of the D-terms, the sign and magnitude approaching the DC limit are determined by: ߛො| = ସหఓหమℏయఠయ ߤ߂ଶ + ∑ ఠఠᇲ หߤᇱ − หଶᇱߤ − หߤหଶ൨ (B3) 
APPENDIX C For the linear spectroscopic measurements, the choice of solvent is determined by the maximum solubility of the particular molecule.  The peak molar absorptivity coefficient is obtained for each dye by preparing different concentrations and fitting their peak optical density versus the concentration to a linear regression to extract the value according to the Beer-Lambert law.  For YZ-V-69, the 2PA and NLR spectra were obtained via the conventional Z-scan methodology [56]. A Ti:sapphire amplifier (Clark MXR, CPA 2010) producing 2 mJ, 140 fs (FWHM), 1kHz repetition rate pulses at 780 nm pumps an optical parametric generator/amplifier (OPG/A, Light Conversion, TOPAS-800) to produce the wavelengths of measure. The ND-2PA measurements performed in chloroform were obtained using the experimental procedures outlined in Ref. [1].  The experimental conditions to measure the 2PA spectrum via two-photon induced fluorescence for SJZ-3-16 can be found in the Supplemental Information of Ref. [53] (labeled as Compound 4). The experimental conditions for the measurements of ݊ଶ via white-light continuum Z-scans can be found in Ref. [36]. For S-7C, the experimental conditions and procedures used to obtain both ND-2PA and Z-scan measurements are outlined in Ref. [1].  The experimental conditions for the 2PA spectrum of SD-O 2405 measured via two-photon induced fluorescence can be found in Ref. [52] while the experimental conditions for the ߙଶ and ݊ଶ measurements via dual-arm (DA) Z-scans can be found in Ref. [56]. The 2PA and NLR spectra for AJBC 3702 and AJTC 02 were obtained using the conventional Z-scan methodology. A Ti:sapphire amplifier (Clark MXR, CPA 2110) producing 1 mJ, 140 fs (FWHM), 1kHz repetition rate pulses at 780 nm pumps an optical parametric generator/amplifier (OPG/A, Light Conversion, TOPAS-C) to produce the wavelengths of measure. The 2PA and NLR spectra for AJBC 3701 were obtained using the DA Z-scan methodology. A Ti:sapphire amplifier (Clark MXR, CPA 2110) producing 1 mJ, 140 fs (FWHM), 1kHz repetition rate pulses at 780 nm pumps an optical parametric generator/amplifier (OPG/A, Light Conversion, TOPAS-C) to produce the wavelengths of measure. The DA Z-scan technique is beneficial in instances where the solute nonlinearity is small compared to that of the solvent for solution measurements. In conventional Z-scans, two Z-scans are taken: one of the solvent and one of the solution. The scans are then subtracted from each other and the result is the signal due to the solute. Thus when subtracting the solvent signal from the solution signal, the resultant solute signal can be masked by the noise of the two sequential measurements. In the DA Z-scan case, the solvent and solution are scanned simultaneously with identical optics, cuvettes and detectors used in the two paths.  Thus the noise that is common to both paths, e.g., pulse energy, beam size, pulsewidth, and beam pointing, are subtracted in determining the signal from the solute.  This significantly enhances the signal-to-noise (SNR) ratio and eliminates the solvent background nonlinear refraction signal. To realize the enhancement in the SNR ratio requires an identical irradiance distribution in both arms along with matching sample positions. It has been shown in Ref. [56] that this technique allows for the measurement of solute n2’s an order of magnitude smaller than that of the solvent, and 1.5× smaller than that of the quartz cuvettes.  Moreover, this enhancement in sensitivity becomes particularly important when measuring at spectral regions where the NLR changes sign and while approaching the DC limit where the NLR is small.  

APPENDIX D The goal of this section is to consolidate the many different nonlinear definitions presented in the literature as well as provide useful conversions to each. A conversion worksheet with these equations is provided in Ref. [57]. Unless otherwise noted all universal constants and material parameters are in m, kg, and s (MKS) whereas all esu units are in cm, g, and s. We define the electric field as E =ଵଶ ܧ exp൫݅(݇ݖ − ൯(ݐ߱ eො + ܿ. ܿ., where ܧ is the complex field amplitude, eො is the unit vector in the field direction, and ܿ. ܿ. stands for the complex conjugate of the preceding term. We start with the definition for 3rd order nonlinear absorption [34].  ߙଶ = ଷఠ ଶఌబమబమ ൫߯,்(ଷ)݉ܫ ൯where it is assumed that there is no linear absorption saturation contribution to χ(3). The relationship between ߯(ଷ) and ߛ is given as [58, 59]:  ߯(ଷ) = ିߝ ଵ݂ܰ(ଷ)ߛUsing Eqn. (D2) with Eqn. (D1) allows us to obtain a relation between ߙଶ and ݉ܫ(ߛ,்): ݉ܫ(ߛ,்) = ଶఌబమమబమఈమଷఠே(య) ≅ 2.49 ∙ 10ିଵହ బమఒబఈమே(య)where ߣ = ܿߨ2 ߱⁄  is the vacuum wavelength. Combining Eqns. (11) and (D3) gives the relation between ߜଶ and ݉ܫ(ߛ,்) along with ݉ܫ(߯,்(ଷ) ) as: ݉ܫ(ߛ,்) = ଶఌబమమబమఋమುಲଷ∙ଵఱఴℏఠమ(య) ≅ 1.25 ∙ 10ିସ଼ బమఒబమఋమುಲ(య)݉ܫ(߯,்(ଷ) )  = ଶேఌబమబమఋమುಲଷ∙ଵఱఴℏఠమ ≅ 1.42 ∙ 10ିଷܰ݊ଶߣଶߜଶTo switch between mks and esu, we use the following: ߯௦(ଷ) = ସగଽ ∙ 10ି଼߯௦௨(ଷ) ≅ 1.40 ∙ 10ି଼߯௦௨(ଷ) ௦௨ߛ  = ఞೞೠ(య)ଵషలே(య)Therefore, we can rewrite Eqns. (D1), (D3), (D4), and (D5) in esu as: ݉ܫ൫߯,்;௦௨(ଷ) ൯ = ଷ∙ଵఴఌబమబమఈమଶగఠ ≅ 2.02 ∙ 10ସ݊ଶߣߙଶ݉ܫ൫ߛ,்௦௨൯ = ଷ∙ଵభరఌబమబమఈమଶగఠே(య) ≅ 2.02 ∙ 10ଵ బమఒబఈమே(య)݉ܫ൫߯,்;௦௨(ଷ) ൯ = ଷேఌబమబమఋమುಲଶగ∙ଵఱబℏఠమ ≅ 1.015 ∙ 10ିଶଽܰ݊ଶߣଶߜଶ݉ܫ൫ߛ,்௦௨൯ = ଷఌబమబమఋమುಲଶగଵరరℏఠమ(య) ≅ 1.015 ∙ 10ିଶଷ బమఒబమఋమುಲ(య)For the definitions corresponding to NLR, we define the change in index Δ݊ = ݊ଶ௦ܫ where I is defined as 1 2ൗ ݊ܿߝ|ܧ|ଶ.  This definition yields [34]: ݊ଶ௦ = ଷସఌబబమ ܴ݁൫߯(ଷ)൯Combining Eqn. (D9) and Eqn. (D2) leads us to the relation between n2 and ܴ (ߛ)ܴ݁ :(ߛ)݁ = ସఌబమబమమೖೞଷே(య) ≅ 3.13 ∙ 10ିଵସ బమమೖೞே(య)Combining Eqn. (12) with Eqns. (D12) and (D13) gives the relation between ߜேோ and ܴ ܴ and (ߛ)݁ ݁߯(ଷ): ܴ݁(ߛ) = ସఌబమబమఋಿಽೃଷ∙ଵఱఴ(య)ℏఠబ ≅ 2.51 ∙ 10ିସ଼ బమఒబమఋಿಽೃ(య)
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ܴ݁൫߯(ଷ)൯ = ସேఌబమబమఋಿಽೃଷ∙ଵఱఴℏఠమ ≅ 2.83 ∙ 10ିଷܰ݊ଶߣଶߜேோ (D15) To convert to esu for NLR, we now switch to the definition of Δ݊ = ݊ଶ௦௨ ଶܧ 2⁄  which leads to the following relations [60, 61]: ݊ଶ௦௨ = ଷగோఞೞೠ(య)బ  (D16) ݊ଶ௦௨ = బమೖೞସగ  (D17) Thus, we can write Eqns. (D12), (D13), (D14), and (D15) in esu: ܴ݁൫߯௦௨(ଷ) ൯ = బమమೖೞଵଶగమ ≅ 2.53 ∙ 10ହ݊ଶ݊ଶ௦ (D18) ܴ݁(ߛ௦௨) = ଵలబమమೖೞଵଶగమே(య) ≅ 2.53 ∙ 10ଵଵ బమమೖೞே(య)  (D19) ܴ݁൫߯௦௨(ଷ) ൯ = ேమబమఋಿಽೃଵଶ∙ଵఱఴగమℏఠమ ≅ 2.03 ∙ 10ିଶଽܰ݊ଶߣଶߜேோ (D20) ܴ݁(ߛ௦௨) = మబమఋಿಽೃଵଶ∙ଵఱమగమℏఠమ(య) ≅ 2.03 ∙ 10ିଶଷ బమఒబమఋಿಽೃ(య)  (D21) Furthermore, combining Eqns. (D2), (D6), and (D7) gives the following useful relation: ߛ௦௨ = 9 ∙ 10ଵସ(4ߝߨ)ିଵߛ௦ ≅ 8.1 ∙ 10ଶସߛ௦ (D22) Lastly, we define the FOM in terms of the above parameters: ܯܱܨ = ସగఒబ ฬమೖೞఈమೖೞฬ = 2 ቚఋಿಽೃఋమುಲቚ = ቤ ோ൫ఞ(య)൯ூቀఞವ,(య) ቁቤ = ฬ ோ(ఊ)ூ൫ఊವ,൯ฬ (D23) where this definition differs from that of Ref. [6] by a factor of 4π.  Again, no linear absorption saturation is included in the ݉ܫ൫߯(ଷ)൯or (ߛ)݉ܫ.. 
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